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Copper, a cofactor for many enzymes, is a bioelement that is involved in many main
biochemical processes; although high levels of copper promote the proliferation of cancer
cells. Further development of radiopharmaceuticals based on copper radioisotopes
depend on understanding and taking advantage of its biochemical pathways in
oncogenesis. As with other radiometals used in molecular imaging and/or targeted
therapy, biological vectors are employed to transport copper radioisotopes to a target,
aiming for high specific uptake at tumor sites and precise delivery of ionizing radiation.
Evidence of the clinical utility of copper radioisotopes in the ionic form CuCl2 were also
proven in an in vivo study of the copper metabolism, guiding personalized copper-
chelating treatment in cancer patients and in imaging pathological sites associated
with copper imbalance. Five of the copper radioisotopes have gained interest for
nuclear medicine applications, based on their emissions, energies, and half-lives, as
they can be produced with pharmaceutical-grade quality. The uptake mechanism,
kinetics, and metabolic parameters are important findings in molecular imaging, which
are decisive when designing individualized targeted radiotherapy for dose calculations of
high linear energy transfer Auger electrons and β− emissions of 64Cu and 67Cu. As radiation
deposits a high amount of energy within the intra-cellular space, the biochemical
involvement of copper determines targets in drug design and validation. The
biochemical pathways depict copper metabolism in normal cells and highlight its
increased activity in tumor progression and angiogenesis. The avid uptake of copper
into inter- and intra-mitochondrial spaces, as constituents of cytochrome C oxidase,
substantiate the selection of 64/67CuCl2 as theranostic agents.
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INTRODUCTION

The natural occurrence of copper (69.17% 63Cu, 30.83% 65Cu
[1]), either in metallic form or as a mineral, confers a wide
exposure to humans. Its inorganic salts are highly toxic but its
varied coordination complexes have gained a lot of interest in
drug design, as they are selective and also exhibit convenient
pharmacokinetics and pharmacodynamics.

Copper is an essential microelement involved in important
biochemical processes, such as: homeostasis, iron transport,
respiration, and metabolism, as a result of its redox abilities in
the biological environment: reversible translation between
oxidized form (cupric ion, Cu2+) and the reduced form
(cuprous ion, Cu+). It is a transition metal with 29 isotopes,
out of which 27 are radioactive [2].

Along with the progress of nuclear medicine practices and
technology, approaching molecular imaging and personalized
treatment, five of the copper radioisotopes have gained interest
for medical applications, considering their emissions, energies,
production route, and availability, with half-lives ranging from
9.7 min (62Cu) to 2.6 days (67Cu) [2, 3]. Especially, 64Cu and 67Cu
were intensively investigated as medically emergent radioisotopes
for theranostic applications and therapy, respectively. Still, there
is a need for more data regarding the production of 60Cu, 62Cu,
and particularly 67Cu in medical small cyclotrons.

Recent studies demonstrated the usefulness of 64/67Cu agents,
containing biological vectors to carry radioisotopes to target,
aiming for high specific uptake at tumor sites, and precise
delivery of ionizing radiation, such as peptides, antibodies, or
other biologically active small molecules [2, 3]. Besides using such
carriers, the clinical utility of copper radioisotopes in their most
simple chemical form, copper chloride, was also proven, either for
an in vivo study into the copper metabolism, guiding personalized
copper-chelating treatment in cancer patients, or to image
pathological sites associated with copper imbalance in
inflammation, tumor angiogenesis, and metastasis.

As many of these findings are evidence-based and sourced
directly from clinical practice (e.g., the significantly higher copper
levels measured in serum and tumor cells of patients with cancer
compared to normal subjects [4]), there is a need for an in-depth
biological evaluation of the involved mechanisms and
quantification. Therefore, we reviewed the relevant literature
regarding the biological and biochemical pathways of copper,
to substantiate the use of copper radioisotopes in oncology and
promoting its further development.

BIOLOGICAL PATHWAYS OF COPPER IN
HUMANS

Copper Bioavailability and Dietary
Interactions
Humans are exposed to environmental copper from water, food,
and tools or household goods, therefore the World Health
Organization (WHO) defined a safe range for copper intake
and acknowledged its effects, either positive or negative, on

human health [1]. In an adult organism there is approximately
1.5 copper mg/kg bw, still up to 2.2 mg/kg bw is considered
acceptable in the physiological range. Foods most abundant in
copper are seafood, dry nuts and seeds, dark chocolate, and
mushrooms [5]. A high nutritional intake does not represent
any risk considering copper toxicity, as the human organism has a
dynamic mechanism of homeostasis.

Copper bioavailability is fairly affected by dietary factors, such
as carbohydrate, iron, zinc, molybdenum, and ascorbic acid co-
ingestion. Large quantities of dietary zinc can decrease copper
absorption and induce the symptoms of systemic copper
deficiency. Also, an increased molybdenum intake drives the
organism toward secondary copper deficiency, which can be
rapidly corrected by copper supplementation. On the other
hand, iron-copper interactions in the intestines conduct the
regulation of copper transport modulation by the iron levels.
Reduced levels of copper lead to a series of physiological changes,
inducing pathological conditions, while high intake of copper,
found as chronic or acute exposure, can result in liver damage [1].

Copper Metabolism and Physiological Role
The intestines are the main absorption site, the process being
conducted by the enterocytes, with the participation of copper
permease and human copper transporter-1 (hCTR1) [1–7]. Dietary
Cu2+ is reduced to Cu+ by reductases, prior to being transported
through the brush border membrane of the enterocytes by hCTR1
[1, 5, 8], yet the mechanisms for selective permeation of Cu+ ions
across cell membranes are unknown [9]. After absorption, copper,
bound to metallochaperone proteins, is delivered to the
mitochondrion [10, 11] by the SLC25A3 inner membrane
transporter [11, 12], which is required for the metalation of
enzymes within the mitochondrial inter-membrane space [13].
The exceeding amount of copper can be deposited in an inert
form in metallothionein, the main intracellular copper storage
protein. Subsequently, it is released under the influence of
ATP7A. At the end of the process, Cu+ is effluxed from
enterocytes, chemically reconverted to Cu2+, and is thus able to
bind to the transport proteins, albumin and alpha-2-macroglobulin.
The carrier proteins deliver copper to the hepatic tissue, fromwhere
it is subsequently redirected to the target sites; therefore liver is the
main organ that controls copper homeostasis mechanisms [1, 5].
Copper is distributed mostly in the bone and muscle tissues (up to
67%), but also in the liver, brain, and heart [1, 8].

Copper is further transferred to the cytoplasm, in inter-
mitochondrial and intra-mitochondrial spaces, where it becomes
a constituent of cytochrome c oxidase (CcO) and superoxide
dismutase-1 (SOD1) [10–12]. Under normal circumstances,
copper is transferred into the trans-Golgi network, where it is
used for the synthesis of other cuproenzymes (ceruloplasmin,
lysis oxidase, peptidylglycine alpha-amidating monooxygenase,
and dopamine beta-hydroxylase) [1]. In the case of high
intracellular copper influx, the same transporters will move to the
cell surface, where they will mediate the efflux of excessed copper to
the plasma (ATP7A) or bile (ATP7B) [1, 8]. Copper excretion is
mainly achieved through bile, in the form of bile salts; the urinary
excretion is rather insignificant [1, 8]. The ubiquitarian role of
copper derives from its structural importance in a wide array of
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functional and modulatory proteins that are deeply involved in
physiological and pathological mechanisms [13–15]
(Supplementary Table S1). Copper is an enzymatic cofactor, an
essential component of Cu-dependent enzymes: ceruloplasmin,
cytochrome C oxidase, metallothionein, Cu/Zn superoxide
dismutase-1, amine oxidases, lysyl oxidase, tyrosinase, zyklopten,
andmono-oxygenases, and also represents an up-regulating trigger
for a series of redox status modulatory enzymes: catalase,
glutathione peroxidase, hepaestin, cartilage matrix glycoprotein,
and Protein-6-lysine oxidase [1, 13]. Reduced activity of these
enzymatic proteins is found in copper deficiency states [13, 16].

Copper Deficiency and Pathological
Implications
Reduced orminimal activity of copper-dependent enzymes results in
symptoms that may include hypochromic anemia, neutropenia,
thrombocytopenia, and hypopigmentation, bone, cardiovascular,
and neurological abnormalities, as well as immune system
depression [1, 8]. Copper-related genetic diseases include Menkes
syndrome (a mutation of ATP7A gene) which is expressed by
reduced intestinal copper absorption and Wilson’s disease (a
mutation of the ATP7B gene), when copper accumulates in
excess in different organs (liver, brain, cornea) [1, 5, 8]. Wilson’s
disease is caused by the cerebral and hepatic tissue accumulation of
copper, leading to neurologic and psychiatric symptoms, and liver
impairment [16, 17].

Children can develop potentially fatal idiopathic copper
toxicosis when drinking contaminated water or food [8, 18,
19]. Correlations with Alzheimer’s disease have also been
observed; elevated levels of free (unbound) copper in the
blood were present, as well as high copper levels in amyloid
senile plaque deposits [18, 20]. Diabetic patients exhibit elevated
plasma copper levels [19, 21]. Copper deficiency is also associated
with cardiovascular diseases [22].

The proliferation of cancer cells is promoted by high levels of
copper [8, 23]. Elevated copper levels were found in different
types of tumors while cancer growth was minimized when copper
was chelated [5, 24]. Considering its redox properties, copper is a
source for reactive oxygen species [1].

MEDICAL RADIOISOTOPES OF COPPER

Molecular Imaging, Targeted Therapy, and
Theranostic Role of Radio-Copper
Molecular imaging allows for the quantification of functional
parameters of an organ or process; moreover the interactions of a
drug with its desired target can be analyzed, side effects can be
determined, and the delivery, absorption, distribution, metabolism,
and elimination in a living system can be precisely evaluated [25–27].
Among the molecular imaging techniques, positron emission
tomography (PET) is most often used to tailor and deliver
personalized treatment, as a result of receptor identification and
mapping their density to a tissue or organ of interest, or by exploiting
the imbalanced metabolism in different stages of pathological
processes.

The positron-emitting radionuclide is customarily selected
taking into account several factors, such as: the half-life of the
radionuclide (this should match with the vector pharmacokinetics
to allow optimal uptake), the energy of the positron emission
(which determines the precision and image resolution), and the
availability and cost of the production. Moreover, the specific/
molar activity and carrier-free specifications, as quality parameters,
become tremendously important when associated with molecular
term (either imaging or therapy), together with radiobiological
parameters, mainly the affinity, uptake, and retention profiles
(radio)toxicity, blood clearance, and elimination route.

Five radioisotopes of copper (Table 1) can be produced at a
cyclotron, with characteristics required for clinical use [28–31].
Based on their radioisotope emissions, 60Cu, 61Cu, 62Cu, and
64Cu are suitable for molecular imaging applications, while 64Cu
and 67Cu are selected for targeted radionuclide therapy [30–32].
Due to their short half-lives, they are used in ionic form (as
chlorides) or in combination with fast kinetic peptides. While
the radiopharmaceuticals based on longer-lived radionuclides,
such as 177Lu, 89Zr, or 90Y enable the investigation of the
biological processes over a number of hours, which is often
demanded by the study or imposed by slow kinetics of the vector
[33–35], copper-64 is a theranostic radionuclide of particular
interest due to its simultaneous emission of both β+ (17.52%)
and β− (38.48%) particles [36–44]. The positron emission allows
for high resolution PET imaging, while low abundance gamma
emissions do not affect the imaging process compared to other
positron emitters [30, 45]. It decays also through electron
capture (EC 43.53%), when high linear energy transfer Auger
electrons are emitted. When this happens in the close vicinity of
a cancerous cell nucleus, it may cause DNA damage, eventually
triggering cell death and thus, achieving a therapeutic effect.
Taking advantage of the positron emissions, real-time therapy
follow-up can be performed by PET imaging, presumably at any
time point during therapy.

Production of Medical Radioisotopes of
Copper, with Particular Interest on 64Cu
Researchers are investigating different routes to produce
carrier-free and high specific activity copper radioisotopes
[29]. Copper-64 can be produced in a reactor by (n,γ) and
(n,p) reactions, on enriched targets [30], at thermal neutron
fluxes (6-7·1012 n*cm−2*s−1). The average specific activity of
64Cu obtained was 2.4 TBq/g Cu, at the end of irradiation.
Using this route, radionuclide impurities 65Zn and 60Co are co-
produced and should be eliminated by radiochemical
processing, using an anion exchange separator [31]. Higher
specific activity can be achieved when fast neutron reactions
are employed, but thermal neutron reactions also occur,
leading to high amounts of long-lived radionuclide
impurities, such as 65Zn (T1/2 � 245 days) [29].

The most common way to produce 64Cu is by using a small/
medium energy cyclotron [32, 36–49]. Several nuclear reactions
can be triggered on nickel or zinc targets by proton beams:
64Ni(p,n)64Cu, natZn(p,xn)64Cu or 68Zn(p,αn) [49–57], but also
deuterons induced reactions: 64Ni(d,2n), 66Zn(d,α), 64Zn(d,2p)
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[52–54, 56]. Good yields of 64Cu production, with low
radionuclide impurities, were obtained using enriched 64Ni or
64/66/68Zn targets [49]. The irradiation of natZn targets is a less
expensive method to conveniently obtain lower activities of 64Cu,
while the use of deuteron beams on these targets requires energies
above 20 MeV to obtain reasonable yields [56].

The 64Ni(p,n)64Cu reaction is used at large scale for the
production of 64Cu, although bearing the disadvantage of costly
target material, this route is preferred for the high yields that can be
achieved, even at small medical cyclotrons [54, 55, 58]. Using a
12MeV cyclotron, specific activity of >87 × 104 GBq/g and an
irradiation yield of >111MBq/µAh were reported [42]. 64Ni (99.5%
enrichment) is electrodeposited from the 64Ni(NO3)2 solution,
resulting in a64Ni solid target [46]. Alternatively, liquid targets
consisting of solutions of 64Ni(NO3)2 are conveniently used, with
lower production yield [47]. The irradiation process parameters are

tuned for best yields, according to the experimental set-up and needs
of a site; optimal parameters: 2–4 h irradiation time, 40–50mg 64Ni
on target, lead to 9.99–18.5 GBq of 64Cu and high specific activity
(11.47 × 106 GBq/g Cu). The production yield, on 15–55mg of
enriched 64Ni targets, ranges from 82.9 to 185MBq/μAh [48].
Separation of Cu from the Ni targets employs ion-exchange
chromatography, using a cation exchanger column (AG1-X8).
Enriched 64Ni can be recovered up to 95% [42]. During proton
irradiation of enriched 64Ni, 61Co is produced as a contaminant,
which can be separated with 4M HCl as an eluent [49].

64CuCl2 as Radiopharmaceutical and/or
Precursor
64CuCl2 is used either as a radiopharmaceutical or as a precursor
for radiolabeling specific carriers, such as monoclonal antibodies,

TABLE 1 | Radioisotopes of copper produced in medium energy cyclotrons.

Radioisotope and half-life Decay
mode and energy

Most
intense γ emissions

Nuclear reaction and
cross-section data [74]

67Cu 61.8 h β− (100%)
121 keV (57%)
154 keV (22%)
189 keV (20%)

91.2 keV (7%)
93.3 keV (16.1%)
184.6 keV (48.7%)

64Cu 12.7 h β− (38.5%)
191 keV (38.5%)

-

EC and β+ (61.5%)
278.2 keV (17.6%)

1,345.77 keV (0.475%)

62Cu 9.7 min EC and β+ (100%)
1,321 keV (98)

875.7 keV (0.15%)
1,173 keV (0.342%)

61Cu 3.32 h EC and β+ (100%)
524 keV (51%)

282.9 keV (12.2%)
656.0 keV (10.8%)
1,185.2 keV (3.7%)

60Cu 23.7 min EC and β+ (100%)
872 keV (49%)

1,332.4 keV (88%)
1791.6 keV (45.4%)

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 5682964

Niculae et al. Biological Pathways of Copper Radioisotopes

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


peptides, amino acids, hormones, nanoparticles, or small
molecules, using chelating agents [58–60]. This is also the case
for all the other copper radionuclides. Various cold copper
complexes were studied and also used as anticancer agents [60].

After IV administration, 64CuCl2 accumulates in the liver
(uptake fraction 0.65), brain (uptake fraction 0.1), kidney
(uptake fraction 0.01), and pancreas (uptake fraction 0.0002).
Based on preclinical studies, the calculated effective dose (ED) is
70 mSv for the whole body of a 70 kg adult, after the intravenous
injection of 925 MBq of 64CuCl2 [61].

The chelators used for binding radio-copper to biomolecules
(Figure 1) should have high thermodynamic stability; compact
structures of macrocyclic or macro-bicyclic ligands with
increased kinetic stability are preferred [62–71]. When
dissociated from the complexes, Cu2+ is reduced to Cu+ and
binds to SOD in high concentrations [63]. DOTA have been used
for chelating 64Cu, however, its ability to bind many different

metal ions, trans-chelation to liver proteins, and its decreased
stability compared to TETA/CB-TE2A make it less attractive [64,
65]. By comparison, NOTA and the hexaamino sarcophagine
ligands demonstrate ease of conjugation, high radiolabeling
yields, and in vivo stability [58, 66]. They also achieve better
clearance from the blood, liver, and kidneys [65, 66]. The kinetic
stability of copper (II) cross-bridged cyclam complexes is
superior to those of the TETA and DOTA complexes [63],
while 64Cu-CB-TE2A proved to be the most stable, when
compared to CB-cyclam, CB-DO2A, DOTA, and TETA,
respectively [62].

Comparing the biodistribution, at 24 h p.i., of 64Cu-CB-
DO2A, 64Cu-CB-TE2A, 64Cu-DOTA, and 64Cu-TETA, a larger
amount of 64Cu-labeled cross-bridged chelates was cleared form
the blood, liver, and kidney than the non cross-bridged analogues;
moreover, 64Cu-CB-TE2A was the most resistant to trans-
chelation in rat liver [65]. Hexaaza macrobicyclic

FIGURE 1 | Chelators used for binding radio-copper to biomolecules.
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sarcophagines (Sar) are very compact structures, acting like a
“cage” around Cu2+, which increases the thermodynamic and
kinetic stability, leading to low accumulation at non-targeted
tissues. Evaluating the biodistribution data of 64Cu-Sar, 64Cu-
diamSar, and 64Cu-SarAr in balb/c mice, it was found that all
three complexes had been cleared from the blood rapidly, while
the uptake was low in bone, heart, stomach, spleen, muscle, lungs,
and the gastrointestinal tract [66].

64Cu as Radioisotope Contained in
Theranostic Agents Intended for Different
Tumors
64CuCl2 shows an increased and specific uptake in melanoma
expressing high hCTR1: 12.7% ± 0.26 in B16F10 cells and
4.6% ± 0.04 in A375M cells, the tumor-to-muscle ratio was
4.11 ± 0.07 for B16F10 and 3.46 ± 1.25 for A375M. During
64CuCl2 treatment, tumor growth in both melanoma models
was slower than without treatment, suggesting that 64CuCl2
radiotherapy is effective for hCTR1 high-expressing
tumors [67].

In a xenograft model of glioblastoma multiforme (GBM)
U87MG, the biodistribution of 64CuCl2 indicated no brain
uptake, while PET images showed an uptake in glioma cells; a
decrease of the tumor volume with more than 68% was noticed,
raising the survival rate of the treated mice [68]. SI113 inhibits
SGK1, a protein with increased the expression of glioblastoma.
The combination of SI113 and 64CuCl2 has a synergistic effect
and affects cell viability, triggering apoptosis, and necrosis. The
inhibitory dose, tested in three cell lines in glioblastoma ((LI)
PARI, ADF, and T98G) with different mutational status for p53,
was 40 MBq [68].

In a study using the hypoxia-selective agent 64Cu-ATSM on
hamsters implanted with GW39 (human colorectal carcinoma),
the inhibition of tumor growth was observed for a 220 MBq
injected dose; the animals presented an increased rate of survival
with no acute toxicity. After administration, PET scans revealed
that 64Cu-ATSM was localized in the GW39 tumor and PET
imaging could be performed regularly [69].

Administration of 555MBq of 64Cu-TETA-Y3-TATE in a single
dose to CA20948 rats, a model of somatostatin receptor-positive
pancreatic cancer, decreased the tumor volume (29–73%) and
inhibited its growth. The multiple dose radiotherapy study (3 ×
370MBq) decreased the tumor volume (36–81%) and provided a
tolerable radiation exposure level over an extended period [70].

64Cu-ATSM (64Cu-diacetyl-bis(N-4-methylthiosemicarbazone)
showed a high cytotoxic effect, decreasing the clonogenic survival
of LL/2 cells (Mouse Lewis Lung carcinoma cells) in a dose
dependent manner; the uptake of 1.50 Bq/cell of 64Cu killed
99% of the cells. Under hypoxic conditions, 64Cu was
accumulated in the cells and produced DNA damage, detected
by comet assay and Annexin V-FITC and propidium iodide
staining methods [71].

DU-145 human prostate cancer xenografts were visualized by
PET using 64CuCl2, the cellular uptake was mediated by hCTR1,
demonstrated by negative control PC-3 prostate cancer cells.

Knockdown of hCTRl reflected the decreased cellular uptake and
inhibition of tumor growth [72]. After 64CuCl2 administration, a
rapid uptake in the PCa lesions reached the maximum value in
1 h [73].

CONCLUSIONS

The biochemical pathways show copper metabolism in normal
cells and highlight its increased activity in human cancer cells, at a
higher metabolic rate. Its involvement in tumor progression and
angiogenesis and its pivotal role in preserving the intracellular
homeostasis are particular indicators used in functional imaging.
Thus, specific processes are targeted by radio-copper chloride, but
also specific vectors radiolabeled with copper radioisotopes are
used. Moreover, the copper presence in intermitochondrial and
intramitochondrial spaces, as constituents of cytochrome c
oxidase, substantiates the selection of 64Cu, a short range high
LET emitter (Auger electrons), as a therapeutic agent, in a
bioavailable chemical form, 64CuCl2.

The uptake mechanism, kinetics, and metabolic parameters
are very important findings for PET imaging using 60Cu, 61Cu,
62Cu, or 64Cu which are decisive when designing an
individualized targeted therapy and, also, for dose calculations
of high LET Auger electrons and β− emissions of 64Cu and 67Cu.
The concept of theranostic applications applies perfectly to
copper radioisotopes, by matching pairs for diagnostics and
therapy (e.g., 61Cu and 67Cu) or by taking advantage of the
dual emissions of 64Cu for both purposes. In this latter case, a
real-time therapy follow-up brings important benefits for
patients.
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