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In this paper, the synchronizability of multilayer K-nearest-neighbor networks is studied by

using the master stability function method. The analytical expressions for the eigenvalues

of the supra-Laplacian matrix are given for two-layer and multilayer K-nearest-neighbor

networks. In addition, the impacts of various topological parameters (such as the network

size, the node degree, the number of layers, the intra-layer and the inter-layer coupling

strengths) on the network synchronizability are discussed. Finally, the theoretical results

are verified through numerical simulation.

Keywords: multilayer network, K-nearest-neighbor topology, synchronizability, master stability function method,

supra-Laplacian matrix

1. INTRODUCTION

Since the appearance of small-world networks and scale-free networks [1, 2], complex networks
have attracted much attention due to their pervading through various scientific fields. Till now,
complex networks have been applied in nature and society, such as scientific cooperation networks,
information networks, biological networks, power grids, social networks, and so on [3, 4]. Recently,
a new description of the complex network called the multilayer network, where nodes interact with
more than one type of links, was put forward and gradually became an important branch of complex
networks [5–8].

Synchronization, as a significative collective behavior on complex networks, has been widely
and extensively discussed during the past two decades [9–14]. Further, there has been an increasing
interest focusing on the finite-time synchronization, especially when the synchronization is
required to be realized in finite time because of practical need [15, 16]. On the other hand,
scholars have done a lot of work to analyze the synchronization of multilayer networks. A general
framework for studying the diffusion processes on multiplex networks was proposed in [17, 18].
In 2014, Aguirre et al. revealed that the connector nodes between layers play an important role
in the synchronizability of interconnected networks [19]. Further, intra-layer synchronization,
inter-layer synchronization, counterpart synchronization, and generalized synchronization in
multiplex networks have been investigated [20–24]. Tang et al. proposed three necessary regions
to describe the different types of coherent behaviors (such as complete synchronization, intra-layer
synchronization, and inter-layer synchronization) in multiplex networks based on the master
stability function method [25].

However, most of the existing works focused on the effects of network structures on the
synchronizability of multilayer networks through numerical simulation. To better understand the
relationships between topological parameters and synchronizability, it is necessary to give a more
rigorous theoretical analysis. Recently, the analytical expressions for the eigenvalues of multilayer
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fully-connected networks, star networks, chain networks, and
star-ring networks were derived to analyze the synchronizability
[26–30]. To the best of our knowledge, very little work has
been devoted to studying the synchronizability of multilayer
K-nearest-neighbor networks. Due to the complexity of the
multilayer networks, it is still a real challenge to derive the
analytical expressions for the eigenvalue spectrum of the supra-
Laplacian matrix.

Motivated by the above discussion, we study the
synchronizability of multilayer networks with K-nearest-
neighbor topologies. The present study uses the master stability
function method to investigate the relationships between various
topological parameters and network synchronizability. With
this framework, we strictly derive the analytical expressions for
the eigenvalues of two-layer and multilayer K-nearest-neighbor
networks. Analytical and numerical results show that the network
size, the node degree, the number of layers, the intra-layer and
the inter-layer coupling strengths can have important effects on
the synchronizability of multilayer K-nearest-neighbor networks.

The structure of this paper is organized as follows. The
model of multilayer networks and some preliminaries are
given in section 2. Section 3 studies the synchronizability
of two-layer and multilayer K-nearest-neighbor networks.
Numerical examples in section 4 illustrate the effectiveness
of theoretical results. The conclusion is finally drawn
in section 5.

2. PROBLEM FORMULATION AND
PRELIMINARIES

The dynamics of multilayer networks consisting of M layers are
described as follows [25]:

dXi
α

dt
= f

(

Xi
α
)

− a

N
∑

j = 1

wij
αH

(

Xj
α
)

− d

M
∑

β=1

di
αβŴ

(

Xi
β
)

, (1)

where Xα
i ∈ Rn is the state of the i-th node in the α-th layer,

1 ≤ i ≤ N, 1 ≤ α ≤ M. f :Rn → Rn is a smooth non-
linear vector function. The continuous function H : Rn → Rn

and a are the intra-layer coupling function and coupling strength,
respectively. Ŵ : Rn → Rn and d are the inter-layer coupling
function and coupling strength, respectively. For simplicity, let
H(Xj

α) = HXj
α , Ŵ(Xi

α) = ŴXi
α and H = Ŵ. In the α-th layer, if

the i-th node is connected with the j-th (j 6= i) node, wij
α= − 1,

otherwise, wij
α=0, and wii

α = −
∑N

j = 1,j 6=i wij
α (i, j = 1, 2, ...,N

and α = 1, 2, ...,M). L(α) = (awij
α) ∈ RN×N is the Laplacian

matrix of the α-th layer. Similarly, if the i-th node, in the α-th
layer, is connected with its replica in the β-th (α 6= β) layer,

d
αβ
i = −1, otherwise d

αβ
i = 0, and di

αα = −
∑M

k = 1,k 6=α di
αk

(α,β = 1, 2, ...,M (α 6= β)). It is obvious that LI = (dd
αβ
i ) ∈

RM×M is the interlayer Laplacian matrix.

Denote

X(α) =








X1
α

X2
α

...
XN

α







,X =








X(1)

X(2)

...

X(M)







,

f̃ (X(α)) =








f (X1
α)

f (X2
α)

...
f (XN

α)







, F(X) =









f̃ (X(1))

f̃ (X(2))
...

f̃ (X(M))









,

then we can rewrite the evolution of the multilayer network (1)
as following form:

dX

dt
= F(X)−

(

(LL + L
I)⊗ Ŵ

)

X, (2)

where

L
L =








L(1) 0 · · · 0

0 L(2) · · · 0
...

...
. . .

...

0 0 · · · L(M)








=
M
⊕

α=1
L(α), (3)

L
I = LI ⊗ IN . (4)

Here,⊗ is the Kronecker product,⊕ is the direct sum operation,
IN is the N × N identity matrix. Then we can get the supra-
Laplacian matrix of multilayer networks (1),

L= L
L + L

I . (5)

The decomposition of the supra-Laplacian matrix given in
Equation (5) is fundamental for the discovery of several
spectral performances of themultilayer networks [17]. According
to the master stability function (MSF) framework [31], the
synchronized regions of dynamical systems can be classified
into four classes: empty, bounded, unbounded and the
union of some bounded and unbounded regions. Here, we
only focus on the bounded and unbounded synchronized
regions. If the synchronized region is unbounded, the network
synchronizability is positively correlated to the non-zero
minimum eigenvalue (λ2) of the supra-Laplacian matrix. On
the other hand, if the synchronized region is bounded, the
eigenratio of the maximum eigenvalue and the non-zero
minimum eigenvalue (r = λmax/λ2) characterizes the network
synchronizability. A smaller r value means that there is a stronger
synchronizability of the network.

Throughout the rest of this paper, a useful lemma is presented
as follows.

Lemma 1. (see [28]) Let A and B are two square matrices with the
same size, then

∣
∣
∣
∣
∣
∣
∣
∣
∣

A B · · · B
B A · · · B
...

...
. . .

...
B B · · · A

∣
∣
∣
∣
∣
∣
∣
∣
∣

M×M

= |A− B|M−1 · |A+ (M − 1)B| , (6)

where M is a positive integer greater than 1.
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FIGURE 1 | Two-layer networks with K-nearest-neighbor topologies, where d

is the inter-layer coupling strength and a is the intra-layer coupling strength.

3. SYNCHRONIZABILITY OF MULTILAYER
NETWORKS

In this section, analytical results are presented for
the synchronizability of multilayer networks with
K-nearest-neighbor topologies.

3.1. Two-Layer K-nearest-neighbor
Networks
We consider a two-layer model, each layer is a K-nearest-
neighbor network with N nodes (K is an even number) and
every node in one layer is connecting with its counterpart in
the other layer. The corresponding structure can be shown
in Figure 1.

So the supra-Laplacian matrix can be written
as follows:

L =

(

A+ dIN −dIN
−dIN A+ dIN

)

, (7)

where

A =
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. . .
.
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.

TABLE 1 | Change of a, d, K, N for λ2, r = λmax/λ2 of two-layer

K-nearest-neighbor networks.

Increase of a d K N

λ2

d <
aπ2K(K+1)(K+2)

12N2 λ2 ≈ 2d — ↑ — —

d >
aπ2K(K+1)(K+2)

12N2 λ2 ≈ aπ2K(K+1)(K+2)

6N2 ↑ — ↑ ↓

r = λmax
λ2

d <
aπ2K(K+1)(K+2)

12N2 r ≈ a(K+1)(3π+2)+6πd
6πd

↑ ↓ ↑ —

d >
aπ2K(K+1)(K+2)

12N2 r ≈ 2aN2 (K+1)(3π+2)+12πdN2

aπ3K(K+1)(K+2)
↓ ↑ ↓ ↑

↑, increase; ↓, decrease; —, unchange.

According to Lemma 1, we can get the characteristic polynomial
of L:

|λI2N −L| =

∣
∣
∣
∣

λIN − (A+ dIN ) dIN
dIN λIN − (A+ dIN )

∣
∣
∣
∣

= |(λ − 2d)IN − A| · |λIN − A| . (8)

Let |λIN − A| = 0, the eigenvalues of the K-nearest neighbor
network can be written as [32]:

λl = Ka− 2a

K/2
∑

j = 1

cos

(

2π
(

l− 1
)

j

N

)

, l = 1, 2, ...,N.

Let |(λ − 2d)IN − A| = 0, it follows that

λl − 2d = Ka− 2a

K/2
∑

j = 1

cos

(

2π
(

l− 1
)

j

N

)

, l = 1, 2, ...,N.

Then, the eigenvalues of L are

0,Ka − 2a

K/2
∑

j = 1

cos

(

2π
(

l− 1
)

j

N

)

, 2d,Ka

+ 2d − 2a

K/2
∑

j = 1

cos

(

2π
(

l− 1
)

j

N

)

,

l = 2, 3, ...,N. (9)

When 1≪K≪N, we can obtain the smallest non-zero eigenvalue
λ2 and the largest eigenvalue λmax based on the series expansion,

λ2 ≈ min

{
aπ2K (K + 1) (K + 2)

6N2
, 2d

}

, (10)

λmax ≈ a (K + 1)

(

1+
2

3π

)

+ 2d. (11)

The relationships between λ2, r = λmax/λ2 and the network
parameters are shown in Table 1.

Remark 1. When K = 2, the eigenvalues of single networks

are λl = 2a − 2a cos
(
2π(l−1)

N

)

= 4a sin2
(

(l−1)π
N

)

, l =

1, 2, ...,N. Then, the eigenvalues of supra-Laplacian matrix L

are 4a sin2
(

(l−1)π
N

)

, 2d + 4a sin2
(

(l−1)π
N

)

, l = 1, 2, ...,N. In

[26], synchronizability of duplex ring networks was investigated.
Obviously, the network model of this paper is more general.
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3.2. Multilayer K-nearest-neighbor
Networks
Similarly, we consider the multilayer network with M layers, the
corresponding structure is shown in Supplementary Figure 1.

We obtain the supra-Laplacian matrix L,

L =








A+ (M − 1)dIN −dIN · · · −dIN
−dIN A+ (M − 1)dIN · · · −dIN

.

.

.
.
.
.

. . .
.
.
.

−dIN −dIN · · · A+ (M − 1)dIN








M×M

,

(12)
where A is given in section 3.1.
According to Lemma 1, the characteristic polynomial of L is:

|λIMN −L|

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(λ − (M − 1)d)IN − A dIN · · · dIN
dIN (λ − (M − 1)d)IN − A · · · dIN
.
.
.

.

.

.
. . .

.

.

.

dIN dIN · · · (λ − (M − 1)d)IN − A

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= |(λ −Md)IN − A|M−1 · |λIN − A| . (13)

Then, the eigenvalues of L are

0,Ka− 2a

K/2
∑

j = 1

cos

(

2π
(

l− 1
)

j

N

)

,Md, ...,Md
︸ ︷︷ ︸

M−1

,

Ka + Md − 2a
K/2∑

j = 1
cos

(
2π(l−1)j

N

)

, ...,Ka+Md

−2a
K/2∑

j = 1
cos

(
2π(l−1)j

N

)

︸ ︷︷ ︸

M−1

,

l = 2, 3, ...,N. (14)

When 1≪K≪N, we can obtain the smallest non-zero eigenvalue
λ2 and the largest eigenvalue λmax based on the series expansion,

λ2 ≈ min

{
aπ2K (K + 1) (K + 2)

6N2
,Md

}

, (15)

λmax ≈ a (K + 1)

(

1+
2

3π

)

+Md. (16)

The relationships between λ2, r = λmax/λ2 and the network
parameters are shown in Supplementary Table 1.

Remark 2. When M = 2, the smallest non-zero eigenvalue λ2 ≈

min
{
aπ2K(K+1)(K+2)

6N2 , 2d
}

and the largest eigenvalue λmax ≈

a (K + 1)
(

1+ 2
3π

)

+ 2d, which are equal to the eigenvalues in
Equations (10) and (11). Actually, the two-layer network is a
special case of the multilayer network.

4. NUMERICAL SIMULATIONS

In this section, numerical examples are presented to study the
synchronizability of the multilayer K-nearest-neighbor networks.

4.1. The Synchronizability of Two-Layer
Networks
(1) Let N = 200, K = 50, d = 1, the impact of the

intra-layer coupling strength a on network synchronizability
is shown in Figures 2A,B. When the synchronized region
is unbounded, Figure 2A displays that λ2 increases with

small a (a < a0 = 12N2d
π2K(K+1)(K+2)

≈ 0.3668), and

then reaches a certain value λ2 = 2d = 2. This implies
that the synchronizability of two-layer networks is first
enhanced with small values of increasing a and then held
constant with ever-increasing a. When the synchronized
region is bounded, it can be observed from Figure 2B

that the eigenratio r = λmax/λ2 first decreases with
small a (a < a0) and then increases monotonically.
It means that the synchronizability is enhanced firstly,
then gets weakened after reaching the maximum. The
synchronizability of two-layer networks is maximized

at a0 =
12N2d

π2K(K+1)(K+2)
.

(2) Let N = 200, K = 50, a = 0.5, the impact of the
inter-layer coupling strength d on network synchronizability
is shown in Figures 2C,D. When 0.5 < d < d0 =
aπ2K(K+1)(K+2)

12N2 ≈ 1.3632, Figure 2C depicts that λ2
increases linearly with small d. When d > d0, it reaches
a certain value λ2 = 2d0. This implies that, with an
unbounded synchronized region, the synchronizability is
first enhanced with small d and then kept invariant. In
Figure 2D, it can be observed that the eigenratio r =

λmax/λ2 first decreases with small d (d < d0) and then
increases slowly. It means that, with a bounded synchronized
region, the synchronizability is enhanced firstly and then
slowly gets weakened after reaching the maximum. The
synchronizability of two-layer networks is maximized

at d0 =
aπ2K(K+1)(K+2)

12N2 .
(3) Let N = 200, d = 5, a = 0.5, the relationship between

the synchronizability and the node degree K is shown in
Figures 3A,B. When the synchronized region is unbounded,
as shown in Figure 3A, λ2 increases sharply with increasing
K (50 < K < K0 = 77), and then reaches a λ2 =

2d = 10. This implies that the synchronizability of two-
layer networks is first enhanced and enhanced and then
kept invariant. When the synchronized region is bounded,
it can be observed from from Figure 3B that the eigenratio
r = λmax/λ2 first decreases with increasing K (50 < K <

K0 = 77) and then increases monotonically. It means that
the synchronizability is enhanced sharply with increasing K,
then reaches its maximum, and finally gets weakened. The
two-layer networks is maximized at K0 = 77.

(4) Let K = 50, a = d = 1, the relationship between
the synchronizability and the network size N is shown in
Figures 3C,D. When 300 < N < 330, it depicts that λ2 and
the eigenratio r = λmax/λ2 remain invariant with increasing
N. When N > 330, λ2 decreases with increasing N, and
the eigenratio r = λmax/λ2 increases with increasing N.
This implies that, with unbounded or bounded synchronized
regions, the synchronizability is first kept invariant and then
gets weakened with increasing the network size N.
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FIGURE 2 | Synchronizability of two-layer K-nearest-neighbor networks. Panels (A,B) display λ2 and r = λmax/λ2 vs. the intra-layer coupling strength a (N = 200,

K = 50, d = 1). Panels (C,D) display λ2 and r = λmax/λ2 vs. the inter-layer coupling strength d (N = 200, K = 50, a = 0.5).

4.2. The Synchronizability of Multilayer
Networks
Here, we investigate the synchronizability of
multilayer K-nearest-neighbor networks. As shown in
Supplementary Figures 2,3, the impact of the intra-layer
coupling strength a, the inter-layer coupling strength
d, the node degree K and the network size N on
network synchronizability are similar to the two-layer
K-nearest-neighbor networks.

It can be seen from Supplementary Figure 2 that λ2 increases
nearly linearly at the beginning and then reaches a upper
bounded value, the eigenratio r = λmax/λ2 first decreases and

then increasesmonotonically. It reveals that the synchronizability
is enhanced firstly, and then reaches its maximum. Furthermore,

the optimal parameters a0 = 6MN2d
π2K(K+1)(K+2)

≈ 1.8339,

d0 = aπ2K(K+1)(K+2)
6MN2 ≈ 0.2726 and K0 = 133 are obtained

to maximize the synchronizability of multilayer networks.
Supplementary Figures 3A,B depict that λ2 and the eigenratio
r = λmax/λ2 remain invariant with increasing N (100 <

N < 147). When N > 147, λ2 decreases and the eigenratio

r = λmax/λ2 increases with increasing N. This implies that, the
synchronizability is first kept invariant and then gets weakened
with increasing the network size N. Let N = 200, K =

50, a = d = 0.5, Supplementary Figures 3C,D show that
λ2 increases at the beginning and then keeps invariant, the
eigenratio r = λmax/λ2 first decreases and then increases
slowly with increasing the number of layers M. The observation
reveals that the synchronizability of multilayer networks is
maximized atM0 = 6.

5. CONCLUSION

This paper aims to investigate the synchronizability of multilayer
networks with K-nearest-neighbor topologies. The master
stability function method allows one to analyze how various
topological parameters influence network synchronizability.
Here, the analytical expressions for the eigenvalues of two-
layer and multilayer K-nearest-neighbor networks have been
obtained. Further, we have discussed the impacts of the network
size, the node degree, the number of layers, the intra-layer
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FIGURE 3 | Synchronizability of two-layer K-nearest-neighbor networks. Panels (A,B) display λ2 and r = λmax/λ2 vs. the node degree K (N = 200, d = 5, a = 0.5).

Panels (C,D) display λ2 and r = λmax/λ2 vs. the network size N (K = 50, a = d = 1).

and the inter-layer coupling strengths on the synchronizability
of multilayer K-nearest-neighbor networks. Recently, network
coherence [33, 34] is an interesting but challenging topic, and
coherence analysis of multilayer networks is a part of our
future work.
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