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Metasurface is an artificially arranged sub-wavelength micro-structure array, where each

structure can be regarded as a unit cell that is controlled by electromagnetic waves.

Recently, bifunctional metasurfaces have garnered increasing interest and become

excellent candidates for device miniaturization and integration. In this study, we propose

a highly efficient bifunctional metasurface composed of silicon nanopillars, enabling

beam anomalous refraction and focusing at visible wavelength. Based on the proposed

metasurface, the other two metasurfaces demonstrating high-order beam anomalous

refraction and focusing are designed successfully. This work will establish a positive

prospect for the development of high-performance bifunctional metasurfaces.
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INTRODUCTION

The complete control of electromagnetic waves has always been an emerging field of research.
Traditional optical equipment has a large volume, heavyweight, complex shape, and other
inevitable defects, therefore, such equipment is not suitable for application in integrated photonic
systems and device miniaturization. Considering the fact that the conventional optical components
rely on gradual phase shifts accumulated during light propagation to shape light beams [1],
a three-dimensional metamaterial, exhibits peculiar material properties that do not exist in
nature, provide a more flexible way in manipulating the wavefront of electromagnetic waves,
which can be used to realize negative refractive index [2], perfect lens [3], and invisibility
cloaking [4]. However, three-dimensional metamaterials have many drawbacks, such as high
inherent losses and manufacturing difficulties, which limit the miniaturization of the device
in practice. With the development of nanotechnology, a metasurface, which is regarded as
a two-dimensional metamaterial, has been proposed to cope with the drawbacks due to its
ultrathin sub-wavelength structure, relatively easy to manufacture and conformal integration with
systems [5, 6]. Metasurfaces typically consist of an array of sub-wavelength metallic or dielectric
nanostructures, their geometric parameters, including size, shape, and direction can be adjusted
to change the amplitude, phase, and polarization of light. Based on the obvious features, various
metasurfaces with different functions have been extensively studied, including beam deflectors
[7–10], metalenses [11–13], waveplates [14, 15], and high-resolution holograms [16, 17].
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FIGURE 1 | Schematic of the proposed highly efficient bifunctional metasurface. The lower corner shows the unit cell of the metasurface.

So far, most of metasurfaces invented by people have a single
function. With the increasing demand for data storage and
information management, it is desirable to fabricate a device
that has multiple functions. Recently, metasurfaces with multiple
functions have been developed by controlling the polarization,
wavelength, and incident angle [18–23]. These metasurfaces can
be used in integrated systems owing to their small footprint,
which has been confirmed in the microwave [24, 25] and visible
bands [26, 27]. Traditional bifunctional plasmonic metasurfaces
mainly depend on the Pancharatnam-Berry (PB) phase to
control the wavefront of circularly polarized (CP) light. In
spite of its intrinsic wavelength-independent and dispersion-
free features which results in the broadband operation, the PB
phase is susceptible to several restrictions. For a metasurface
that depends on the PB phase, the incident CP light is known
to be scattered into waves of both the same and opposite
polarizations [28]. By rotating the orientation of meta-atoms,
it is easy to obtain the abrupt phase shift, which is useful
for wavefront shaping. However, it works only for CP light
with the opposite polarization, leading to a limited polarization

conversion efficiency of 25% [29]. Due to the metasurface is
formed by spatial multiplexing of two metasurfaces that provide
different functions, it may cause a functional crosstalk because
one function tends to add background noise to the other [30].

In this paper, we propose a highly efficient bifunctional
dielectric metasurface, enabling beam anomalous refraction
and focusing at visible wavelength. The meta-atom constituting
the metasurface unit cell is made of rectangular silicon
nanopillar, enduing polarization-selective phase shifts to
realize the two functions. With regard to this purpose,
we first discussed the relationship between the geometric
parameters of the nanopillar and the polarization-dependent
phase shifts, the results show that, upon the light with the
designated polarizations in normal incidence, the metasurface
not only exhibits a highly efficient and ignorable functional
crosstalk beam anomalous refraction, but also exhibits light
focusing. Based on the metasurface proposed above, the
other two metasurfaces demonstrating high-order beam
anomalous refraction and focusing have been designed
successfully. The reliability of the proposed method is
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confirmed by the consistency between the simulation and
theoretical calculation.

DESIGN AND ANALYSIS

A bifunctional metasurface is required to impart two disparate
spatial phase distributions efficiently to realize distinct wavefront
modulation.Moreover, the two functions will not entail crosstalk,
meaning that one function is rarely affected by the other. Our
bifunctional metasurface is based on the idea that a single
dielectric element atom causes a flexible phase delay on incident
light according to polarization. The schematic of the proposed
bifunctional metasurface is shown in Figure 1. For the incident
light of X-linear-polarized (Xp) and Y-linear-polarized (Yp), the
metasurface can realize beam anomalous refraction and focusing,
respectively. The dotted lines correspond to modes 2 and 3. The
unit cell is composed of a rectangular Si nanopillar on the top of

a silicon dioxide (SiO2) substrate, as shown in the illustration in
the lower right corner. The illustration shows the section and top
views of the unit cell. Regarding the unit cell, the Si nanopillar
implies a full range of phase from 0 to 2π in the transmission
of Xp and Yp incident light, which can provide a full span of
wavefront phase. To investigate the feasibility of the proposed
design, we simulate the bifunctional metasurface using the
finite difference time domain (FDTD) method (FDTD Solutions,
Lumerical, Canada). In the simulations, the period of the unit cell
is set as P= 230 nm, while the thickness of Si nanopillars are set as
h = 310 nm. The operation wavelength is designed to be 660 nm
for the wavelength of optical communication.

RESULTS AND DISCUSSIONS

For the proposed dielectric metasurface, it is believed that the Si
nanopillar constituting the unit cell plays a role as a truncated

FIGURE 2 | (A,B) The phase distribution and transmission efficiency of Xp light as a function of parameters a and b. (C,D) The phase distribution and transmission

efficiency of Yp light as a function of parameters a and b.
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FIGURE 3 | (A,B) The theoretical and simulated phase profiles for beam anomalous refraction and focusing under normal Xp and Yp light incidence, respectively.

(C) The x-component of the transmitted electric field under normal Xp light incidence. (D) The y-component of the transmitted field intensity under normal Yp light

incidence. (E) Normalized far-field intensity as a function of the angle of refraction at the wavelength of λ = 660 nm under normal Xp light incidence.
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waveguide and operates as a low-quality factor Fabry-Pérot
resonance [20]. Figures 2A,B exhibit the phase variations and
transmission efficiency of Xp light, respectively, as a function
of the widths of the nanopillar, including a and b. Similarly,
Figures 2C,D correspond to Yp light, and the efficiency has
reached more than 86%.

A bifunctional metasurface composed of an array of 33 ×

33 meta-atoms has been proposed to realize beam anomalous
refraction and focusing. In this regard, it is proved that a
bifunctional metasurface that employs the proposed nanopillars
can impart two different wavefront modulations. Each row of
33 nanopillars arranged along the x-axis can be considered as
a supercell that imparts a hyperbolic phase distribution to the
incidence of Yp light. With regard to the anomalous refraction
realized by the incidence of Xp light, the 33 nanopillars along the
y-axis can be considered as three supercells, with each supercell
consisting of 11 nanopillars to provide a linearly varying 2π
phase shift. Both theoretical and simulated phase profiles are
demonstrated in Figures 3A,B. For the incidence of Xp light, the

anomalous refraction is depicted in Figure 3C, and the phase
profile of the anomalous refraction is dictated by the generalized
Snell’s law:

sin(θt)nt − sin(θi)ni =
λ

25

d8

dx
(1)

where θi is the incident angle, ni and nt are the refractive indices
of the incident and transmitting media, respectively, and dΦ/dx
is the gradient of phase discontinuity along the interface. For the
incidence of Yp light, the beam is focused at a focal length f,which
is designed to be 11µm, as shown in Figure 3D. Its hyperbolic
phase profile is governed by the following equation:

φ(x) =
25

λ
(f −

√

(x− x0)2 + f 2) (2)

where λ is the operating wavelength, and x0 is the central position
in the middle of the supercell. The angle of refraction θ1 is

FIGURE 4 | Design of the dielectric metasurfaces with three different orders diffraction modes. (A) Schematics of lateral dimensions of the 11 designed nanopillars.

First line M1: a supercell with transmitted phase ranging from 0 to 2π. Second line M2: a rearranged supercell with phase ranging from 0 to 2 × 2π. Third line M3: a

rearranged supercell with phase ranging from 0 to 3 × 2π. (B) The phase shift of the 11 designed nanopillars for three different modes.
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FIGURE 5 | (A,B) The x-component of the transmitted electric field under normal Xp light incidence on the metasurface working in the 2nd and 3rd orders,

respectively. (C,D) The y-component of the transmitted field intensity under normal Yp light incidence on the metasurface working in the 2nd and 3rd orders,

respectively. (E,F) Normalized far-field intensity as a function of the angle of refraction at the wavelength of λ = 660 nm under normal Xp light incidence on the

metasurface working in the 2nd and 3rd orders, respectively.

estimated to be 14.02◦ in simulation (Figure 3E), which closely
agrees with the theoretically calculated angle of 14.48◦.

Based on the designed metasurface above, two metasurfaces
working in high-order diffraction modes have been designed
successfully. In the design of metasurface 1 (M1), we discrete the

phase range from 0 to 2π to 0 into 11 nanopillars along the y-
axis with equal step of π/5 for Xp transmitted light. The lateral
dimensions of the 11 selected silicon nanopillars are numbered
in ascending order, as shown in the first line of Figure 4A. It
appears that the range of phase control could be extended to
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high-order diffraction modes by appropriately selecting the unit
cells in M1 and rearranging them. For instance, if we intend to
expand the diffraction mode to the Nth order, the phase coverage
should be from 0 toN×2πwith a gradient of N×π/5 between two
neighboring nanopillars for Xp transmitted light. As a result, the
second line of Figure 4A presents the rearranged supercell for the
second order diffraction mode (M2), where the phase coverage
of the unit cell is from 0 to 4π with a gradient of 2π/5 between
two neighboring nanopillars for Xp transmitted light. Similarly, a
metasurface working in the third order diffraction mode is also
constructed by a set of 11 dielectric nanopillars, whose phase
coverage is from 0 to 6π with a gradient of 3π/5 between two
neighboring nanopillars for Xp transmitted light, as shown in the
third line of Figure 4A. To clearly outline the concept, we plot
the transmission phase of the 11 elements with three concrete
arrangements for Xp transmitted light, as shown in Figure 4B.

For comparison, Figure 5 demonstrates the beam anomalous
refraction and focused electric field distribution of the other two
rearranged metasurfaces made of newly designed supercells (M2

and M3) for Xp and Yp incident light. Since the supercells of the
two metasurfaces have been rearranged, the optical behavior of
M2 and M3 are governed by the following diffraction equation:

sin(θt)nt − sin(θi)ni = m
λ

D
(3)

where m is the order of diffraction spectrum, and D = 11p is the
periodicity of the supercell. According to Equations (1) and (3),
it can be noted that the interface with the phase coverage of 2
× 2π and 3 × 2π, correlates to dΦ/dx = 2×2π/D and dΦ/dx
= 3 × 2π/D, respectively, over a periodicity D, the resulting
anomalous refraction corresponds to the second and third order
diffraction. The effect of focusing will not be affected due to the
phase of the supercell along the x-axis is in maintaining with the
metasurface working in the first-order diffraction. Figures 5A,C
show that the metasurface working in the second order has an
anomalous refraction angle θ2 and the beams are focused at
11µm, Figure 5B,D correspond to the third order. It is clearly

obtained from Figures 5E,F that the angles of refraction θ2 and

θ3 are 29.58
◦ and 48.43◦, respectively, which are closely consistent

with the theoretically calculated angles of 30◦ and 48.59◦.

CONCLUSION

In conclusion, we have proposed a highly efficient transmissive
bifunctional metasurface that enables the beam anomalous
refraction and focusing at visible wavelength. By controlling
the parameters of the Si nanopillars in each unit cell of the
metasurface, a full range of phase from 0 to 2π for the
transmission of incident light and a high efficiency (over 86%)
are obtained. The nanopillars that comprise the bifunctional
metasurface are devised accurate to impart a linear and
hyperbolic phase profile to the Xp and Yp incident lights,
respectively. Based on the designed metasurface, another two
metasurfaces that demonstrate the high-order beam anomalous
refraction and focusing have been proposed successfully. Our
work can be easily extended to the design of other optical
transmitting facilities with high-efficiency, which will be useful in
the fabrication of miniaturized and multifunctional metadevices.
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