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Intensity- and amplitude-weighted average lifetimes, denoted as τI and τA hereafter, are

useful indicators for revealing Förster resonance energy transfer (FRET) or fluorescence

quenching behaviors. In this work, we discussed the differences between τI and τA

and presented several model-free lifetime determination algorithms (LDA), including the

center-of-mass, phasor, and integral equation methods for fast τI and τA estimations.

For model-based LDAs, we discussed the model-mismatch problems, and the results

suggest that a bi-exponential model can well approximate a signal following a

multi-exponential model. Depending on the application requirements, suggestions about

the LDAs to be used are given. The instrument responses of the imaging systems were

included in the analysis. We explained why only using the τI model for FRET analysis can

be misleading; both τI and τA models should be considered. We also proposed using

τA/τI as a new indicator on two-photon fluorescence lifetime images, and the results

show that τA/τI is an intuitive tool for visualizing multi-exponential decays.

Keywords: fluorescence lifetime imaging, lifetime determination algorithm, average lifetimes, multi-exponential

decays, lifetime image visualization, FRET—fluorescence resonance energy transfer

1. INTRODUCTION

Fluorescence lifetime imaging (FLIM) is a crucial technique for assessing microenvironments
of fluorescent molecules [1, 2], such as pH [3], Ca2+ [4, 5], O2 [6], viscosity [7], or
temperature [8]. Combining with Förster Resonance Energy Transfer (FRET) techniques, FLIM
can be a powerful “quantum ruler” to measure protein conformations and interactions [9–12].
Compared with fluorescence intensity imaging, FLIM is independent of the signal intensity
and fluorophore concentrations, making FLIM a powerful quantitative imaging technique for
applications in life sciences [13], medical diagnosis [14–16], drug developments [17–19], and
flow diagnosis [20–22]. FLIM techniques can build on time-correlated single-photon counting
(TCSPC) [23–25], time-gating [26–28], or streak cameras [29]; they record time-resolved
fluorescence intensity profiles to extract lifetimes with a lifetime determination algorithm
(LDA) [1]. There is a rapid growth of real-time applications that fast analysis is sought
after [12, 30]. Traditional LDAs usually use the least square method (LSM) or maximum
likelihood estimation (MLE) [31] to analyze decay models chosen by users, and model-fitting
analysis follows a reduced chi-squared criterion [1]. In reality, however, it is difficult to
know the exact decay model as fluorescent molecules in biological systems can demonstrate
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complex multi-exponential decay profiles. For instance, a
mixture of fluorophores, a multi-tryptophan protein, single
fluorophores in varied environments, and single-tryptophan
proteins in multiple conformational states [1] can show multi-
exponential decays as

f (t) = A

p∑
i=1

qiexp(−t/τi), where

p∑
i=1

qi = 1, (1)

where A represents the amplitude, qi and τi (i = 1, . . . ,
p) denote the amplitude fractions and lifetimes, respectively,
and p is the number of lifetime components. There are
time-domain or frequency-domain [32–35] FLIM systems to
measure a fluorescence decay. In this work, we focus on time-
domain approaches.

Suppose the instrument response function (IRF) of the
measurement system is irf (t), the task performed by FLIM
analysis tools is to extract f (t) from the measured decay h(t), as

h(t) = irf (t) ∗ f (t). (2)

The problems with traditional LSM or MLE are two-fold. (1)
It is challenging to categorize a fluorescence emission into a
specific exponential model described by Equation (1) in complex
biological processes. An arbitrary choice of p in Equation (1)
simply based on reduced chi-squared tests [36] would lead
to totally different interpretations. As the fitting routine is
not mathematically unique; a measured decay could be fitted
equally well with a bi-exponential or a tri-exponential model.
(2) To ensure the accuracy, it usually needs a high photon
count (long acquisition time) when p ≥ 2 [37]. Instead of
completely extracting qi and τi (i = 1, . . . , p), which is doubtful
as mentioned above and time-consuming, in many applications,
it is often useful to determine only the average lifetime which
can be expressed in two forms [1]: the intensity-weighted
average lifetime

τI =
p∑

i=1

qiτ
2
i /

p∑
i=1

qiτi, (3)

and the amplitude-weighted average lifetime

τA =
p∑

i=1

qiτi/

p∑
i=1

qi =
p∑

i=1

qiτi. (4)

The question about which average lifetime we should use
according to the applications has been investigated in [38]. For
instance, they suggested:

(a) τA can estimate the energy transfer efficiency in FRET [39],

E = 1− IDA

ID
= 1− τDA,A

τD,A
, (5)

where E is the energy transfer efficiency, IDA and ID are the
fluorescence intensities of the donor in the presence and absence
of energy transfer, respectively, and τDA,A and τD,A are τA

of the donor in the presence and absence of energy transfer,
respectively. E can further estimate the donor-acceptor distance.

(b) τA can also assess dynamic quenching behaviors, described
by the Stern-Volmer equation [40],

I0

I1
= 1+ KD[Q] =

τ0,A

τ1,A
, (6)

where I0 and I1 are fluorescence intensities, τ0,A and τ1,A are τA
of the fluorophore in the absence and presence of the quencher,
respectively,KD is the Stern-Volmer quenching constant, and [Q]
is the concentration of the quencher. Additionally, the average
radiative rate constant can be expressed as, kr = QE/τ1,A, where
QE is the quantum yield.

(c) τI can be used to estimate the average collisional constant
kq from the Stern-Volmer constant KD.

Average lifetimes can either be calculated by extracting the
lifetime components using model-based LDAs and then using
Equations (3) and (4). Or they can be directly obtained with
model-free LDAs, such as hardware-friendly center-of-mass
methods (CMM) [41–44], the phasor method (Phasor) [45–47],
the rapid lifetime determination method (RLD) [30, 48–51], or
the integral extraction method (IEM) [52, 53], without assuming
any decay model.

In this work, we theoretically investigated two types of
average lifetimes evaluated by model-free LDAs, examined the
performances of τA and τI estimations using different LDAs, and
suggested the choices of LDAs in terms of accuracy, precision,
and estimation speeds according to the applications. We also
described a multi-exponential decay visualization tool using the
ratio τA/τI . Experimental results demonstrate the performance
of τA/τI in comparison with Phasor.

2. THEORY

In this section, we derived the average lifetimes determined by
the model-free methods, CMM, Phasor, and IEM and described
the general work flow of average lifetime estimations with the
model-free and model-based LDAs.

As Equation (2), the measured signal h(t) is the convolution of
f (t) with irf (t). Here we focus on the signal hm and irfm obtained
from a TCSPC system, as shown in Figure 1,

hm =
m∑
k=0

irfk−m · fm,m = 0, 1, 2, . . . ,M − 1, (7)

irfm =
∫ (m+1)1t

m1t
irf (t)dt,

fm =
∫ (m+1)1t

m1t
f (t)dt = A

p∑
i=1

qiτie
−m1t

τi [1− e
−1t

τi ],

where hm is the photon count collected in Bin m at
tm = (m + 1/2)1t, M is the number of bins, and 1t is
the time resolution.

(a) CMM
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FIGURE 1 | Illustration of hm and irfm obtained with a TCSPC system.

The average lifetime evaluated with CMM is

τCMM =
∫ ∞
0 t · h(t)dt∫ ∞
0 h(t)dt

−
∫ ∞
0 t · irf (t)dt∫ ∞
0 irf (t)dt

=
∑p

i=1 qiτ
2
i∑p

i=1 qiτi

≃
∑M−1

m=0 tm · hm∑M−1
m=0 hm

−
∑M−1

m=0 tm · irfm∑M−1
m=0 irfm

, (8)

which is equal to τI . The derivation of Equation (8) is shown in
the Appendix.

(b) Phasor

The average lifetime evaluated with Phasor is

τP = s

gω
=

∑p
i=1 qiτ

2
i /(1+ ω2τ 2i )∑p

i=1 qiτi/(1+ ω2τ 2i )
, (9)

where ω = 2π/T, T = M1t is the measurement window, and g
and s are the phasor components expressed as

g =
∫ ∞
0 f (t) · cos(ωt)dt∫ ∞

0 f (t)dt
=

∑p
i=1 qiτi/(1+ ω2τ 2i )∑p

i=1 qiτi

=
Rh + s · Iirf

Rirf
,

s =
∫ ∞
0 f (t) · sin(ωt)dt∫ ∞

0 f (t)dt
=

∑p
i=1 ωqiτ

2
i /(1+ ω2τ 2i )∑p
i=1 qiτi

=
Ih · Rirf − Rh · Iirf

R2
irf

+ I2
irf

,

where

Rh =
∫ ∞
0 h(t) · cos(ωt)dt∫ ∞

0 h(t)dt
≃

∑M−1
m=0 hm · cos(ωtm)∑M−1

m=0 hm
,

Ih =
∫ ∞
0 h(t) · sin(ωt)dt∫ ∞

0 h(t)dt
≃

∑M−1
m=0 hm · sin(ωtm)∑M−1

m=0 hm
,

Rirf =
∫ ∞
0 irf (t) · cos(ωt)dt∫ ∞

0 irf (t)dt
≃

∑M−1
m=0 irfm · cos(ωtm)∑M−1

m=0 irfm
,

Iirf =
∫ ∞
0 irf (t) · sin(ωt)dt∫ ∞

0 irf (t)dt
≃

∑M−1
m=0 irfm · sin(ωtm)∑M−1

m=0 irfm
.

τP is a weighted average lifetime whose weights are
qiτi/(1 + ω2τ 2i ). If τi ≪ T, then the weights are approximately
equal to qiτi, i.e., τP is close to τI .

(c) IEM

For IEM, the underlying exponential decay should be
extracted by a model-free deconvolution method. With the

estimated exponential decay f̂m, the average lifetime with IEM is

τIEM = −
∫ ∞
0 g(t)dt∫ ∞
0 g′(t)dt

=
∑p

i=1 qiτi∑p
i=1 qi

≃ −1t
∑M−1

m=0 Sm · f̂m
f̂M−1 − f̂0

,(10)

g(t) = A

p∑
i=1

qiτie
−t/τi [1− e−1t/τi ],

where Sm = [1/3, 4/3, 2/3, 4/3, 1/3] are the coefficients for
numerical integration based on Simpson’s rule. τIEM is actually
an estimator for τA.

Figure 2 summarizes the flow diagram for τI and τA
estimations with different algorithms used in this study. The
simulated signals hm and irfm are directly sent into CMM and
Phasor blocks to estimate τI . The estimated fm (from hm and
irfm with the Laguerre expansion deconvolution method with
L = 16 and α = 0.912 [54, 55]) is sent to IEM to estimate τA
and sent to the bi-decay center-of-mass method (BCMM; j = 2)
[56], the variable projection method (VPM; j = 2) [57], or LSM
with a j-exponential model (denoted as LSM-j), to estimate τI
and τA. CMM and Phasor are fast as no deconvolution routine
is needed, whereas IEM, BCMM, VPM, and LSM are direct or
iterative estimation approaches once fm is extracted. Artificial
neural network assisted analysis tools [58, 59] can be included
in this diagram, but they are out of the scope of this work.

3. RESULTS

3.1. Simulations
In reality, it is difficult to characterize a real fluorescence profile
with a suitable exponential model described in Equation (1).
To demonstrate how model-free analysis can be beneficial, we
examined two scenarios. Case A: we used exponential decay
signals with p = 1 ∼ 4 to assess the influence of the model
mismatch between the signal and the algorithm on τI and τA
estimations. This study is to investigate the scenario when users
select a j-exponential model to analyze a p-exponential decay
(p can be different from j). Case B: we generated synthetic bi-
exponential (p= 2) decay signals to assess the performances of τI
and τA estimations with the model-free and model-based LDAs.

The performances of lifetime estimations can be assessed in
two aspects: (1) the accuracy Bn = |τ̂n− τn|/τn and the precision
Fn =

√
Ntotστ̂n/τ̂n [60], where n= I or A for the intensity- or the

amplitude-weighted lifetimes, τn and τ̂n are actual and estimated
values, στ̂n is the standard deviation of τ̂n, and Ntot is the total
photon count. The lower the F, the higher the precision (F = 1
for the ideal case).
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FIGURE 2 | Flow diagram for τI and τA estimations.

TABLE 1 | τi , τI, and τA for p = 1 ∼ 4 with qi = 1/p.

p τ i (ns) τ I (ns) τA (ns)

1 2.5 2.5 2.5

2 0.1, 2.5 2.40 1.3

3 0.1, 1.3, 2.5 2.04 1.3

4 0.1, 0.9, 1.7, 2.5 1.92 1.3

3.1.1. Case A: Model Mismatch
Ideally, a bi-exponential signal should be analyzed by a bi-
exponential model. For instance, BCMM, VPM, and LSM-2
are used for bi-exponential decay models, and LSM-j for j-
exponential models, j > 2. However, in realistic biological
processes, it is difficult to know precisely how many lifetime
components a decay profile contains. In traditional FLIM analysis
tools, users usually need to select an exponential model to fit
measured decays and use the reduced chi-squared to evaluate
the goodness-of-fit. If the reduced chi-squared is not satisfactory,
then a different exponential model is chosen. This process
continues until the reduced chi-squared is acceptable. Often
different exponential models can produce similar reduced chi-
squared values, and the question is which fitting we should use?
It is quite common that a j-exponential model might analyze a
signal containing p lifetime components and j 6= p. We would
like to know if p is unknown to the user, whether using a different
analysis model (j 6= p) would lead to a different biological story.

We generated exponential decay signals hm (m = 0,. . ., M-1)
to test the LDAs for τI and τA estimations. hm can be artificially
generated with f (t) = A

∑p
i=1 qiexp(−t/τi), where p = [1, 2,

3, 4], qi = 1/p, and the IRF is approximated with a Poisson
distribution irfm = exp(λ)λm/m! with λ = 500 ps, FWHM ≃
300 ps, andM = 256. The measurement window T = 10 ns, and
the total photon count Ntot = 103. τi, τI , and τA for each p are
summarized in Table 1.

The performances of τI and τA estimations with the simulated
exponential decays are shown in Figures 3A–D for BI , FI , BA, and

FA, respectively. For model-free LDAs, BI and BA are below 10%
and are independent of p. For LSM-1, when p = 1, BI , and BA
are zero, whereas when p > 1, BI and BA increase especially
for p = 2. For model-based LDAs where j > 1, BCMM, VPM,
and LSM-j have similar performances even for p 6= j, seemingly
suggesting that a bi-exponential model can well approximate a
signal following an arbitrary p-exponential model. We generated
100 signals with τi and qi chosen randomly in the ranges of
0.1 ∼ 2.5 ns and 0.1 ∼ 0.9, respectively, for each p. BCMM,
VPM, and LSM-2 were used to fit the signals with bi-exponential
decays. The goodness-of-fit is judged by the reduced chi-squared
χ2 = 1

M

∑M−1
m=0 (fm − fc,m)2/fm, where fm and fc,m are actual and

fitted signals of Binm. The box plots of χ2 for BCMM, VPM, and
LSM-2 are shown in Figures 3E–G, respectively. The χ2 values
are insensitive to p for the three LDAs so that we conclude that
a bi-exponential decay is suitable to approximate an arbitrary
p-exponential decay (p ≤ 4).

Therefore, if the decay model of the signal is inaccessible,
model-free and model-based LDAs, BCMM, VPM, and LSM-2
are enough for τI and τA estimations.

In practice, users can choose an optimization algorithm and
set initial conditions to analyze FLIM images when LSM-2 is
used. We would like to know how they can affect τI and τA
estimations. Four bi-exponential decays, Decays 1 ∼ 4, with
different parameters (q1, τ1, τ2) were analyzed using LSM-2 with
different initial conditions (q10, τ10, τ20), denoted as Init. 1 ∼ 4
listed in Table 2 with Ntot = 103. When either of the estimated
τ1 and τ2 is larger than T (10 ns), we say that the estimation
fails. The probabilities of producing a failed trial, P(τ1 or τ2 >

10) and producing biased τI and τA with BI and BA > 0.3, i.e.,
P(Bn > 0.3), n = I orA, are shown in Figure 4. Figures 4A–F are
the LSM-2 results with the unconstrained and constrained trust-
region-reflective (TRR) algorithms, respectively. The constraints
are 0 < q1 < 1 and 0 < τ1, τ2 < 10 ns. Figures 4G–I are the
LSM-2 results using the Levenberg-Marquardt (LM) algorithm.
For the unconstrained TRR, the performances are relatively
sensitive to initial conditions. P(τ1 or τ2 > 10) for Init. 4 is
quite significant which results in large P(Bn > 0.3), n = I
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FIGURE 3 | Performances of τI and τA estimations with exponential decay signals using different algorithms, (A) BI, (B) FI, (C) BA, and (D) FA. (E–G) Box plots of χ2

for BCMM, VPM, and LSM-2.

TABLE 2 | Bi-exponential decays and initial conditions for τI and τA estimations

with LSM-2.

Decay Parameters Init. Initial conditions

q1 τ1 τ2 q10 τ10 τ20

1 1/2 0.1 2.5 1 1/2 0.1 0.5

2 4/5 0.1 2.5 2 1/2 0.1 2.5

3 1/2 0.5 1 3 1/2 2 4

4 1/2 1 2.5 4 1/2 4 6

or A, for all four decays. Although Init. 3 leads to a low P for
Decays 2 ∼ 3, P(BA > 0.3) for Decay 1 rises to 0.7. Thus, if the
initial conditions are not chosen properly, the quality of τI and
τA images cannot be guaranteed. The constrained TRR and LM
are insensitive to initial conditions. Although the LM has failed
trials, they barely affect P(Bn > 0.3), n = I or A. Therefore, to
ensure accurate τI and τA estimations, the constrained TRR and
LM are recommended for LSM-2.

3.1.2. Case B: Performances of Average Lifetime

Estimations
As mentioned above, it might be challenging to use a proper
exponential model to describe realistic biological processes; a bi-
exponential model might well approximate them. Here we will
use a bi-exponential model to explain why model-free LDAs have
the benefits of higher photon efficiency and faster analysis than
model-based LDAs for τI and τA estimations.

hm can be artificially generated with the same IRF used in Case
A and f (t) = A[q1exp(−t/τ1)+ (1−q1)exp(−t/τ2)], where τ1 <

τ2 and q1 is the amplitude fraction of τ1. Figure 5A shows the

signal and IRF. In FRET and dynamic quenching applications,
the fluorescence lifetime of the donor fluorophore is in general
decreasing, and we assume τ2 = 2.5 ns and τ1 varying from 0.1 to
2.5 ns to emulate FRET or quenching. The theoretical τI , τA, and
τP with q1 = 0.5 are shown in Figure 5B. τP has a negative bias
from τI . With T/τ2 increasing, τP approaches τI . Figure 5B that
two different (τ1, τ2) sets can deliver the same τI , for instance,
(0.32, 2.5) ns and (2.1, 2.5) ns have the same τI of 2.3 ns.

Therefore, only estimating τI can be misleading. Figure 5B
also shows that the dynamic range of τI is only 2.5–2.23 =
0.27 ns and within which the above problem persists. Whereas
τA does not have this problem for this case. We conducted
Monte Carlo simulations to estimate τI and τA with the simulated
signals, including Poisson noise under different conditions
q1 = 0.2, 0.5, and 0.8.

The performances of τI and τA estimations with bi-
exponential decay signals are shown in Figures 6A–D for BI , FI ,
BA, and FA, respectively. For τ̂I , BI,CMM , and BI,BCMM are roughly
10 and 8%, respectively determined by T/τ2. The larger T/τ2 is,
the smaller BI becomes (with FI,CMM and FI,BCMM being closer to
1). Phasor has a lower accuracy when q1 becomes larger and τ1
smaller, and it is less precise than CMM. VPM and LSM-2 both
have a smaller BI = 3% but higher FI (1.5 ∼ 5) than CMM and
BCMM. For τ̂A, BA is 7% except for τ1 = 0.1 ns, and FA is around
5 for the four LDAs. Figures 6C,D show that if only τA is needed,
there is no need to resort to slower model-based LDAs.

For τI estimations, LSM-2 and VPM are preferred when high
accuracy is required. Still, they are slower and have lower photon
efficiency than CMM and BCMMwhichmeans the photon count
should be higher to have similar precision, for instance, a relative
standard deviation of 5% can be reached with Ntot = 3,600
for LSM-2 and Ntot = 500 for CMM and BCMM. When the
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FIGURE 4 | (A,D,G) P(τ1 or τ2 > 10), (B,E,H) P(BI > 0.3), and (C,F,I) P(BA > 0.3), for estimations of Decays 1 ∼ 4 with Init. 1 ∼ 4 using (A–C) the unconstrained

TRR, (D–F) the constrained TRR, and (G–I) the LM algorithms.

FIGURE 5 | (A) Simulated signal (blue) and IRF (black), (B) theoretical τI (blue), τA (black), and τP (magenta) average lifetimes with q1 = 0.5.

accuracy of CMM or BCMM (10% @ T/τ2 = 4) is acceptable,
CMM or BCMM should be employed for their high photon
efficiency and estimation speeds. CMM is faster than BCMM as
it can work without deconvolution. For τA estimations, since the
performances of IEM, BCMM, VPM, LSM-2 are similar, IEM can
be the right candidate for fast analysis. Notice that the τA method
is less photon efficient than the τI method as FA is higher than FI .

3.2. Experimental Results
tSA201 cells, which are a transformed human kidney cell
line, were co-transfected with hP2Y12-eCFP and hP2Y1-eYFP
receptors. After 48 h of transfection, the cells on the coverslips
were washed once gently with PBS followed by fixation with

ice-cold methanol for 10 min at room temperature. After
being washed three times with PBS, they were mounted
on to glass microscope slides with Mowiol. The microscope
slides were then stored in the dark at room temperature
overnight to allow the coverslips to dry, then stored at 4◦C for
later use.

Cells were imaged on LSM510 (Carl Zeiss) equipped with a
TCSPC module (SPC-830, Becker & Hickl GmbH), to determine
the fluorescence lifetime and consequently the amount of FRET.
The donor is CFP with the excitation wavelength range of
350 ∼ 500 nm and the emission wavelength range of 450
∼ 600 nm. The acceptor is YFP. The sample is scanned
pixel by pixel by a femtosecond Ti:Sapphire laser (Chameleon,
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FIGURE 6 | The performances of τI and τA estimations with bi-exponential decay signals with τ1 = 0.1 ∼ 2.5 ns, τ2 = 2.5 ns, q1 = 0.2, 0.5, 0.8, (A) BI, (B) FI and (C)

BA, (D) FA.

Coherent) with an average output laser power of 3.8 W at
800 nm, as a two-photon excitation source to reduce cellular
damage. The laser power is controlled with two polarizers.
The repetition rate is 80 MHz with illuminating duration
<200 fs. The emitted fluorescence signal from the donor is
collected through a 63× water-immersion objective lens (N.A.
= 1.0), a 480 ∼ 520 nm bandpass filter, and transferred into a
photomultiplier tube (PMT) detector. The FLIM scanning was
performed in a dark room containing the microscope. A set of
experimental data (256 × 256 pixels, M = 256, T = 10 ns) was
collected over an exposure period of up to 15 min. The IRF
is obtained from the measurement of dried urea [(NH2)2CO]
[61].

3.2.1. Average Lifetime Images With LSM, CMM, and

IEM
Figures 7A,C show the τI and τA images of the data evaluated by
LSM-2 with an execution time of 410 s. The lifetime images were
evaluated on Matlab R2016a, 64-bit with the Intel(R) Celeron(R)
CPU (2950M @ 2 GHz) with 20923 pixels above an intensity
threshold. Figures 7B,D show the τI and τA images evaluated
by CMM and IEM with execution times of 0.25 and 92.3 s,
respectively. IEM can be further accelerated to 0.6 s per image
with histogram classification methods (we will report the details
soon), as shown in Figure 7E. Although Fast-IEM causes a small
bias in some pixels, themean square error is acceptable with 0.005
ns2. The color bar represents lifetimes and the pixel brightness
represents photon counts. The Figures 7F,G are histograms of τI
and τA, respectively. Although the histogram of τI with CMM
deviates slightly from the one with LSM-2, CMM is 1,800-fold

faster than LSM-2. If T/τi > 4, the bias of τI with CMM
would become smaller. The τA images are almost the same with
IEM and LSM-2, whereas IEM and Fast-IEM are much faster
than LSM-2.

Since the FRET efficiency E has a linear relationship with the
average lifetimes as shown in Equation (5), Figures 7A–E can also
be used to represent E images with the color bar in the range of 0
∼ 100%. As we mentioned in Introduction, it is straightforward
to obtain E images from τA images, so that Figures 7C–E are
proper E images. If τI images are misused for E, the results would
be different, as shown in Figures 7A,B, leading to a different
biological story.

3.2.2. Visualization of Multi-Exponential Decays With

τA/τI
τI and τA can not only access the essential parameters in FRET
and dynamic quenching processes but also indicate the positions
where multi-exponential decays occur. As mentioned previously,
a fluorescence signal can be approximated by a bi-exponential
decay, so that the ratio of τI and τA can be expressed as

τA

τI
= [1+ q1(R− 1)]2

1+ q1(R2 − 1)
, (11)

where R = τ1/τ2. The distribution of τA/τI (Figure 8) shows that
when R ≃ 1 or q1 ≃ 0 or 1, τA/τI ≃ 1. With a decrease of R or an
increase of q1, τA/τI decreases. Therefore, the ranges of q1 and R
of a pixel can be determined by τA/τI .

To present the multi-exponential decay visualization
performance of τA/τI , the τI and τA images evaluated by LSM-2,
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FIGURE 7 | (A,C) τI and τA images evaluated with LSM-2, (B,D) τI and τA images evaluated with CMM and IEM, respectively. (E) τA image with Fast-IEM. (F)

Histograms of τI with LSM-2 (blue) and CMM (black). (G) Histograms of τA with LSM-2 (blue), IEM (magenta), and Fast-IEM (yellow). The color bar represents lifetimes

and the pixel brightness represents photon counts. (A–E) Can also represent FRET efficiency (E) images evaluated with the corresponding lifetime images with the

color bar representing the range of E, 0 ∼ 100%. (F,G) Can also be used to show the histograms of E with the upper x label.

Figures 9A,B, were used to generate the τA/τI image as shown
in Figure 9C. The histograms of τI and τA and the phasor plot
are shown in Figures 9D,E. Figure 9F shows the possible range
of q1 and R of the selected pixels in Figure 9C. Figures 9C,F
share the same color bar. Figure 9D shows that τA has a broader
lifetime dynamic range than τI , which is consistent with the
theoretical lines shown in Figure 5B. The τA histogram shows
two clusters with different peaks, whereas the τI histogram only

indicates a single merged group, meaning that there is no way
to differentiate these two clusters. It is why using τI to analyze
samples with a strong FRET can be misleading.

The results of the selected pixels within different τA/τI ranges
are shown in Figure 10, τA/τI = 0.2 ∼ 0.5, and Figure 11, τA/τI
= 0.5 ∼ 1. For the pixels with τA/τI = 0.2 ∼ 0.5, the histograms
clearly show that τA is much smaller than τI , which means the
difference between τ1 and τ2 is significant. Figure 10F shows that
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the ranges of q1 and R are approximately 0.5 ∼ 1 and 0 ∼ 0.2,
respectively. For the pixels with τA/τI = 0.5 ∼ 1, τA is closer to
τI , meaning the pixels have decays close to mono-exponential.
Separating the average lifetime images with τA/τI is easier than

FIGURE 8 | Distribution of τA/τI with q1 = 0 ∼ 1 and R = 0 ∼ 1.

phasor plots because τA/τI is one dimensional and phasors are
two dimensional. Furthermore, τA/τI can show the q1 and R
ranges more intuitively than phasor plots. τA/τI can be a useful
tool to visualize the properties of the fluorescence decays within
a lifetime image.

4. DISCUSSION

In realistic samples, fluorescence signals always follow multi-
exponential decay models. However, extracting lifetime
components with a traditional fitting method is a time-
consuming process. For some applications that require
calculating FRET efficiency and accessing dynamic quenching
behaviors, average lifetimes are satisfactory. Model-free lifetime
determination algorithms can be used to evaluate average
lifetimes directly, for instance, CMM and Phasor for intensity-
weighted average lifetimes τI and IEM for amplitude-weighted
average lifetimes τA. Discussions of the influence of the model
mismatch between the real signal and the model-based LDAs
on τI and τA estimations suggest that a bi-exponential model
can well-approximate a signal following a multiple-exponential
model. The results of the Monte-Carlo simulations suggest that
VPM and LSM based on a bi-exponential model can be used
for applications requiring high accuracy. The constrained TRR
and LM algorithms with proper initial conditions are supported
for LSM to guarantee accuracy. In contrast, CMM and IEM are
recommended for applications requiring high estimation speeds.

FIGURE 9 | (A) τI-intensity image, (B) τA-intensity image evaluated by LSM-2, (C) τA/τI ratio image, (D) histograms of τI (yellow) and τA (blue), (E) phasor plot, and (F)

distribution of τA/τI of the selected pixels in (C).
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FIGURE 10 | (A) τI-intensity image, (B) τA-intensity image evaluated by LSM-2, (C) τA/τI ratio image, (D) histograms of τI (yellow) and τA (blue), (E) phasor plot, and

(F) distribution of τA/τI of the selected pixels in (C) with τA/τI = 0.2 ∼ 0.5.

FIGURE 11 | (A) τI-intensity image, (B) τA-intensity image evaluated by LSM-2, (C) τA/τI ratio image, (D) histograms of τI (yellow) and τA (blue), (E) phasor plot, and

(F) distribution of τA/τI of the selected pixels in (C) with τA/τI = 0.5 ∼ 1.
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We also explained why τI models can be misleading, and τI
and τA models should be considered. Experimental data were
used to compare the performances of LSM-2, CMM, and IEM
for evaluating τI and τA images. Similar τI and τA images were
generated, whereas CMM and IEM are much faster than LSM-2.
The data were further analyzed with τA/τI , which is capable of
indicating the possible ranges of the amplitude proportion of
the short lifetime and the ratio of the short and long lifetimes.
We believe τA/τI is a useful and intuitive tool for visualizing
multi-exponential decays in a lifetime image.
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APPENDIX

Derivation of τCMM . Take the integration of t · h(t) and h(t),

∫ ∞

0
t · h(t)dt =

∫ ∞

0
t

∫ ∞

0
irf (t − t′) · f (t′)dt′dt

=
∫ ∞

0

∫ ∞

0
(t − t′) · irf (t − t′) · f (t′)dt′dt

+
∫ ∞

0

∫ ∞

0
irf (t − t′) · t′ · f (t′)dt′dt

=
∫ ∞

0
[t · irf (t)] ∗ f (t)dt +

∫ ∞

0
irf (t) ∗ [t · f (t)]dt

=
∫ ∞

0
t · irf (t)dt

∫ ∞

0
f (t)dt

+
∫ ∞

0
irf (t)dt

∫ ∞

0
t · f (t)dt, (A1)

∫ ∞

0
h(t)dt =

∫ ∞

0
irf (t)dt

∫ ∞

0
f (t)dt. (A2)

Dividing Equation (A1) by Equation (A2) gives

∫ ∞
0 t · h(t)dt∫ ∞
0 h(t)dt

=
∫ ∞
0 t · irf (t)dt∫ ∞
0 irf (t)dt

+
∫ ∞
0 t · f (t)dt∫ ∞
0 f (t)dt

. (A3)

Then,

τCMM =
∫ ∞
0 t · f (t)dt∫ ∞
0 f (t)dt

=
∑p

i=1 qiτ
2
i∑p

i=1 qiτi

=
∫ ∞
0 t · h(t)dt∫ ∞
0 h(t)dt

−
∫ ∞
0 t · irf (t)dt∫ ∞
0 irf (t)dt

≃
∑M−1

m=0 tm · hm∑M−1
m=0 hm

−
∑M−1

m=0 tm · irfm∑M−1
m=0 irfm

. (A4)
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