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High-LET (Linear Energy Transfer) particle irradiation as being provided from heavy ion
accelerator facilities has an increasing impact on bio-medical research and cancer
treatment. Nevertheless, there are a lot of open questions concerning the
understanding of damaging mechanisms and repair processes within the light of radio-
sensitivity and thus, individualized medical applications. The three-dimensional
architecture of genomes on the meso- and nano-scale acts in combination with
epigenetic gene activation as an important player of gene regulation and fundamental
biological processes such as DNA damage response and repair. So far only little is known
about the impact of high-LET particles on the chromatin architecture along the passing
track when they are “lumbering” through the cell nucleus. How does a cell nucleus manage
such complex damages and re-organize the chromatin toward functionally intact units? Is
there a radio-sensitivity related difference in this reaction? Here, we present some
approaches to investigate spatial and topological parameters of chromatin to glimpse
some aspects related to these questions. Two cell lines, a radio-resistant glioblastoma and
a radio-sensitive fibroblast cell line, were used and irradiated by 15N-ions in 90° and 10°

radiation beam geometry. Nano-probing of particle induced damage sites along particle
tracks, and the recruited DNA repair proteins (as presented here for 53BP1 and Rad51) in
combination with super-resolution Single Molecule Localization Microscopy (SMLM) are
powerful methods for geometric and topological analyses to study particle related
mechanisms of chromatin conformation and repair complexes in single cells. We used
variable tools for such investigations based on image free high precision SMLM, nano-
scaled molecule distribution analyses, appropriate metrics following Ripley’s distance
frequencies and cluster formation analyses, as well as topological quantifications
employing persistence homology. The data reveal a cell type specific nano-architecture
of DNA damage foci along particle tracks and their dynamic molecular re-arrangements
during repair. Comparing the topology of repair foci by persistence homology suggests
similarities of repair cluster formation along given particle tracks. Our studies contribute to
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the molecular understanding of cellular radiation response at sub-light microscopic
chromatin levels; thereby showing how chromatin architecture around complex
damage sites and repair foci nano-architecture may contribute to ongoing repair
processing. The methodological approach presented here may give a basis for
improved biological dosimetry or radiotherapies in the future.

Keywords: heavy ion irradiation, single molecule localization microscopy, Ripley distance frequency analysis,
topological analysis, persistent homologies, ionizing radiation-induced foci, DNA double strand breaks

INTRODUCTION

All over the Universe, matter is subjected to extreme conditions as
for instance high temperatures, pressures, and densities. Stellar
collisions and explosions prepare ultra-fast heavy ions interacting
with any material crossing their ways. With mankind´s quest to
discover space and our planetary system not only by vehicles but
also by manned space missions, an understanding of interactions
of these heavy ions with biological and especially cellular systems
has become an urgent demand to science [1]. Modern nuclear
accelerators enable researchers to create radiation conditions of
space in the earth-based laboratory. Particle beams of various
elements at different intensities and qualities can be generated
and applied on cells, tissues, organs or organisms. While
protective systems to control or even to avoid accidental
exposure of humans on space missions are under development
[2, 3], targeted applications as for instance the powerful treatment
tool against aggressive tumors especially brain tumors, have been
established worldwide in medicine [4, 5].

Up to now research has delivered a huge amount of
knowledge and findings of biological, epigenetic response to
low-LET (Linear Energy Transfer) photon and high-LET
particle irradiation; thereby a lot of questions concerning
damaging profiles and repair response remain unanswered
[6–10]. Scientific results improving the understanding of
mechanisms behind damaging and repair are demanded in
order to optimize space mission planning or to individualize
radiation treatment [11]. Therefore not only defined radiation
experiments in accelerator facilities are required but also novel
tools to elucidate components of epigenetic control and their
impact on radiation response.

Radiation induced DNA damages are depending on the dose,
dose rate, LET, radiation type, cell radio-sensitivity, DNA repair
capacity, etc. In contrast to low-LET photon irradiation which
induces DNA damages in a coarse gain pattern, high-LET
particles (e.g., protons, α-particles, heavy ions) pass the
chromatin in linear tracks [12] along which a complex
damaging process happens, which locally may lead to an
overload of single (SSB) and double strand breaks (DSB)
[13–15]. The most severe damages being created are complex
double-stranded breaks (DSBs) of the DNA molecule [16]. These
complex lesions consist of several SSBs and DSBs generated in
close mutual proximity in combination with other types of DNA
damages [17] and highly challenge all repair mechanisms being
available for cellular survival [18–20]. Multiple complex DSBs
often remain unrepaired which leads to cell death, the treatment
effect envisaged in successful radiation cancer therapy.

On the other hand, escaping cell death, the complexity of
lesions increases the risks of dysfunctional cells with mutations
and chromosome aberrations, a serious problem, which medical
radiation treatment schemes always have to avoid [21–23]. In
contrast to cell death being required for heavy ion radiation
therapy, radiation protection in the field of long-term space
missions planned [2] should save the cells in their best
functional conditions. These extremely opposite demands
show the urgent need for further investigations in order to
better understand the mechanisms of DNA damaging and repair.

In general, the genome is responding to DSBs by specific
phosphorylation of histone H2AX in a 2 Mbp region surrounding
the chromatin damage site, which can be visualized in form of so-
called γH2AX foci [24, 25] against which specific antibodies are
available. Inside these foci, the cell starts to repair the damage by
recruiting and releasing a complex network of proteins along
given repair pathways. The main repair pathways are the canonic
non-homologous end-joining (c-NHEJ), the homologous
recombination (HR) and the less precisely classified alternative
(or backup) pathways, such as Ku-independent non-homologous
end-joining (a-NHEJ), single-strand annealing (SSA) or
microhomology-mediated end-joining (MMEJ) [26–30].

All these repair pathways are functioning differently and
recruit different series and amounts of repair proteins to the
initially induced γH2AX damage foci. The main differences in the
chosen pathways are the speed and quality of repair. HR is very
precise in maintaining the base sequence of the damaged region
exactly; thereby it is slow since an appropriate DNA sequence
template has to be arranged, the damaged sites have to be resected
correctly, and nucleotide by nucleotide has to be reconstructed. In
contrast to HR, c-NHEJ is fast but tolerates the loss of some
nucleotides in the new strand after trimming and “sticking” the
broken ends together. a-NHEJ and other alternative pathways
only seem to play a significant role after multiple damaging by
high dose exposure. Due to a lack of availability of enough repair
proteins, broken ends are repaired under omitting some typical
c-NHEJ proteins with the consequence of being slow and more
error prone. Repair errors also occur due to illegitimate
recombination between short homologous sequences or repeats.

At a first glimpse, it appears that a cell decides individually or
even randomly which repair pathway is used at a given damage
site. However, a more detailed view on repair processes reveals
that repair pathway selection is depending on several conditions
like the phase of the cell cycle, the chromatin structure and
compaction at the site of damage, the complexity and multiplicity
of DSBs, the general radiation sensitivity of the cell type, and
potentially several other factors [19, 31–42]. All these factors
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contributing to repair pathway choice at a given damage site in a
given cell type require a complex epigenetic controlling system [9,
10] that may interact according to so far not fully
understood rules.

Beyond the “classical” epigenetic systems following so far
known epigenetic protein pathways, another level of epigenetic
function and control appears to be relevant for further
consideration especially in case of complex damaging
processes. This epigenetic system, not pushed into the focus of
investigations, yet, is the chromatin architecture. Chromatin
architecture is known to be functionally organized [43, 44] on
the micro-, meso- and nano-scale, and its relaxation and precisely
regulated re-arrangements were observed at damage sites [6, 45];
reviewed in Ref. 8 [9, 10]. On the sub-micro scale, local chromatin
architecture changes after DNA-damage induction and along
repair processes. In the context of chromatin architecture, two
perspectives have to be considered: a) the broken chromatin
strands with their chemically different ends, environment of
H2AX phosphorylation and variable mobility [6]; [8], and b)
the spatial organization of repair protein during formation and
release of repair complexes (visible as repair foci). Understanding
how spatial arrangements of chromatin and recruited proteins
impact DNA repair, requires a precise analysis of geometry and
topology of single molecules of γH2AX as well as of by repair
proteins forming foci, e.g., MRE11, 53BP1, RAD51, etc. Counting
of these foci, generally known as Ionizing Radiation-Induced Foci
(IRIFs), by means of light microscopy has become a well
established measure for intra-cellular dosimetry [14, 46, 47].
Until recently, the investigations of nano-architecture of
chromatin and repair complexes had to rely on electron
microscopy [48–50], which, however, suffers from serious
limitations and disadvantages. A breakthrough in the field was
brought about by the development of super-resolution light
microscopy techniques [51, 52], based on specific labeling of
the target molecules that allowed to overcome Abbes’ diffraction
limit [15, 45, 53–56].

For low-LET radiation, the numbers of DSBs and labeled
γH2AX foci are directly correlated, although it is still under
debate whether and how many DSBs are joined together
within one IRIF. For high-LET radiation, it has become
obvious that foci are enlarged and their number is
considerably below the predicted number of DSBs [14, 57, 58].
This phenomenon can be explained by overlapping and
aggregation of several foci in a not well defined way. The
internal architecture and complexity of repair foci after high-
LET particle traversing, however, have not been systematically
and thus satisfyingly investigated. The spatial structure,
organization, and topology of IRIF thus remain to be
intensively discussed. Open questions such as the arrangement
of elementary or functional foci sub-units call for further research
on the nature and typical parameters (shape, size, quantitative
composition, etc.) of these still mysterious structures and their
relationship to particular repair pathways.

Investigations using super-resolution light microscopy or
electron microscopy revealed sub-structures like clusters
within γH2AX or repair protein (e.g., 53BP1, MRE11, Rad51,
pATM etc.) foci. These cluster can be observed independently of

nature or the LET of radiation [49, 54, 56, 59–65]. For low-LET
irradiation, the number of repair-focus sub-units (clusters) seems
to better correlate with the number of DSBs and damage
complexity than the number of IRIFs detected at the
microscale [54]. In addition, after low-LET irradiation, γH2AX
cluster sub-units were found to show high topological similarity
provided they were closely associated to heterochromatin [66].

For high-LET irradiation, beyond the analyses of γH2AX foci
and sub-units [15, 16], it has become obvious that the architecture
and topology of the clusters of the follow-up recruited repair
proteins is important with respect to the question of spatial
organization of molecules as epigenetic control systems. 53BP1
foci were analyzed in more detail [15, 55, 56] after high-LET
radiation exposure. 53BP1 is involved in NHEJ and acts as a
stabilizing factor during HR [67]. 53BP1 binds to methylated
regions of histones where it interacts with other repair proteins,
for instance to promote NHEJ. During such interactions, 53BP1
could be displaced from the primary damaged sites [68, 69]
opening them for instance for access of BRCA1 or CtIP.

SMLM [70, 71] has been successfully applied to study DNA
repair and cluster formation of γH2AXmolecules under low-LET
radiation condition [53, 54, 72] and during long-term cell culture
under folate deficiency [73]. Foci and sub-focus clusters of repair
proteins were also investigated after particle irradiation [15, 55,
56].

SMLM of fluorescently tagged 53BP1 molecules was
performed and clusters of these tags were determined as sub-
units of repair foci, so that the formation and relaxation of these
clusters could be studied during the repair period [15, 55].

In the article presented here, we continue in the analysis of
53BP1 clustering after 15N particle irradiation with the focus on
cluster size and environment during repair. In addition, we will
show that persistent homologies of clusters as being calculated by
topological methods of mathematics show different degrees of
similarities in cell lines of high and low radio-sensitivity. These
tools exemplarily presented here may be used to classify foci with
respect of their follow-up repair mechanisms. Nitrogen ions were
used as they are relevant for both space research and
radiotherapy. They are present in galactic and solar cosmic
radiation [74] and are extensively produced when cosmic
radiation interacts with the atmosphere [75]. Interestingly,
Pioneer 10 spacecraft have revealed increased (up to the factor
of 20) amounts of N (and O) ions relative to their abundance in
galactic or solar cosmic rays, pointing to specific sources of this
component of cosmic radiation in the Universe [76]. N-ions are
also generated during hadron radiation therapy and may
significantly contribute to the patients’ absorbed dose [77].
Nitrogen ion beams have been also studied as promising
particles for radiotherapy [78].

MATERIALS AND METHODS

Cell Culture and Specimen Preparation
Cell culturing and specimen preparation has been described in
detail elsewhere [14, 15, 55]. In brief: Primary neonatal human
dermal fibroblasts (NHDF) and human U87 glioblastoma cells
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were cultured in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% fetal calf serum (FCS) and a 1%
gentamicin-glutamine solution (all reagents from Sigma-
Aldrich). For the ion-radiation experiments, the cells were
maintained in T 25 cell flasks at 37 °C in a humidified
atmosphere with 5% CO2. 16 – 18 h before irradiation, cells
were seeded on glass coverslips fixed on bottoms of Petri dishes
and cultivated until 80% confluence. The cells were irradiated at
room temperature. After irradiation the samples were further
cultivated and individual slides in duplicates were fixed with 4%
formaldehyde/PBS (phosphate-buffered saline) at indicated
periods of times post-irradiation (PI), ranging from 5 min PI
to 24 h PI (5, 15 min (10° only), 30, 45 min (10° only), 1, 2, 4, 8,
24 h). This approach ensured that cells of the same condition
(proliferation phase, cell cycle distribution, and physiological
status) were analyzed at all post irradiation time point. For
fluorescence labeling, the cells were washed twice in 1x PBS,
permeabilized in 0.2% Triton X-100 at RT, washed again three
times in 1× PBS, and incubated in 2% bovine serum albumin
(BSA) for 60 min at RT. Primarily rabbit anti-53BP1 (ab21083,
Abcam) antibodies or rabbit anti-Rad51 (ab63801, Abcam)
antibodies, respectively, were added to the cells and the cells
were rinsed with 0.2% Triton X-100 and washed three times with
1× PBS for 5 min at RT. The secondary antibodies, AlexaFluor
594-conjugated goat anti-rabbit (Johnson Laboratories) (53BP1),
or Alexa Fluor 568-conjugated donkey anti-rabbit (ThermoFisher
Scientific) (Rad51), respectively, were applied to the cells for
30 min and again the cells were washed three times in 1× PBS for
5 min and counterstained with DAPI. After washing the slides
three times in 1× PBS for 5 min each, the cover slips were air
dried, and the cells were embedded in ProLong Gold®(ThermoFisher Scientific) for SMLM. Prolong Gold was left to
polymerize for 24 h in the dark at RT before the slides were sealed
with nail polish and stored.

Specimen Irradiation
As described in detail elsewhere [14] 15N ions were accelerated
using a U 400M isochronous cyclotron in the Flerov Laboratory
of Nuclear Reaction at the Joint Institute for Nuclear Research
(JINR, Dubna) [79]. The radiation conditions applied are
summarized in Table 1.

In the experiments, cells were exposed to an average of about 2
and 25 particles per nucleus for 10° and 90° irradiation,
respectively. This corresponds to the doses of 1.3 Gy (10°

irradiation) and 4.0 Gy (90° irradiation). The values were
calculated as described in Ref. 80; for the average nuclear area
of 186 μm2. The non-homogeneity within the irradiation field of
14 mm in diameter was less than 5%, as monitored using five
identical flow-type ionization chambers; the central chamber

served as the monitor of the radiation dose [79]. The energy
and corresponding LET values of ions at the plane of the cell
monolayer were calculated using LISE++ software [81].

The cells were irradiated on glass coverslips at Petri dish
bottoms tangentially or perpendicularly. The side of the
coverslips covered with cells was oriented toward the ion
beam so that the cells were hit by the particles before the
beam entered the culture medium in the Petri dish. During
irradiation, the cells were kept in a thermostable box, ensuring
a constant temperature of 37 °C and prevention from infection
during the whole procedure. After irradiation, the cells were
immediately placed back into the incubator until fixation. For
microscopic analyses, the cell nuclei were fixed at numerous
periods of time after irradiation (5 min–24 h PI), as explained in
detail in paragraph Cell Culture and Specimen Preparation.

Single Molecule Localization Microscopy
A detailed description of the SMLM instrument has been
published elsewhere [53, 54, 64, 82]. In brief: The microscope
has an oil-objective (100×/NA 1.46) and four lasers 405 nm/
491 nm, respectively. Measurements were done with the 561 nm
wavelength laser. An in-built electron multiplier (EM-gain)
enhances signals detected by the EmCCD camera (80 nm/px).
The microscope was installed on a Smart-Table compensating for
vibrations, and provided with a water-cooling system to keep
constant temperature and to minimize drifts. Lasers were
controlled using the “Omicron Control Center” program and
image acquisition was carried out using “Live Acquisition v.
2.6.0.14” software. For thermal stabilization, first
measurements with the microscope were performed 1 h after
booting.

A protocol for automatized localization image acquisition was
used. In brief, an initial excitation switched most fluorophores
into a reversibly bleached state; then 2,000 single image frames
were taken at maximum laser power with an exposure time of
100 ms per image frame. Wide-field images were always taken
before localization image acquisition. For each time point during
the repair period, a minimum of 23 cells was imaged. The image
data stacks were stored as *.tif stacks and subjected to further
computational analysis as described below.

Data Evaluation and Image Processing
The local positions of the detected dye molecules of the antibodies
were obtained from registration of molecular blinking events
according to an algorithm described elsewhere [82], which is
based on subtraction of the brightness values of two successive
frames. This method enables the differentiation of the blinking
events from the background. A so-called “Orte-Matrix” was
produced, which contained information about the signal

TABLE 1 | Radiation values of the experiments.

Irradiation angle Dose [Gy] Energy [MeV/n] LET [keV/µm] Fluence [106/cm]
per 1 Gy

Expected Mean
Number of

Particles/Nucleus

10° 1.3 13.1 181.4 3.40 2.1
90° 4.0 13.0 182.9 3.41 25.4
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amplitude, the lateral x- and y-coordinates, the standard
deviations in the x- and y-direction, position errors, etc. This
“Orte-Matrix” was the starting data set for all further evaluation
procedures and for the construction of artificial images of the cell
nuclei.

Mathematical procedures and algorithms were applied on
these raw coordinate data of the detected labeling points
instead on processed images. The data analysis program is
modularly built up and was programmed in Python (https://
www.python.org) (Gote, Neitzel et al., manuscript in
preparation). Several algorithms developed are based on
Ripley’s point-to-point distance frequency measure structure
information [84] or use DBSCAN [85]) in order to obtain
information whether the fluorophores were localized in
clusters. The point-to-point distances were measured by
distances from each given central point to its peripheral ones.
Without regarding absolute position information, the graphical
display of absolute and relative distance frequencies makes it
possible to discriminate between specimen structure signals and
background signals. The envelope function of the distance
frequency histogram is correlating to functional arrangements
of points [53].

A homogeneous point-to-point distance distribution leads to a
linear increase in the distance frequency histogram. The slope of
the straight line is scaled with the number of detected points. If
the points appear in clusters, smaller distances are more frequent
resulting in a peak. The width of the peak gives the maximum
distance between two points in the cluster and thus the cluster
diameter. The area under the peak is a measure relative to the
point density in a cluster. The shape of the peak gives a measure of
the homogeneity of the distribution of points in the cluster. If
clusters are embedded in a pointillist background, the result
consists of three parts: a) a homogeneous distribution (linear
increase); b) a cluster distribution (peak) and c) a cross term or
additional peak, which contains the distances between the points
of two neighboring clusters.

According to the DBSCAN algorithm [85], clusters are compact
regions of increased local density of points. The amount of all points
inside a given radius around a point must have a minimum value to
define a cluster. If any points inside such a cluster also meet the
cluster definition they are attributed to the same cluster. The cluster
size is themaximum area in which all pointsmeet the cluster criteria.
Inside clusters various characteristics can be examined and
compared to the point distributions outside the clusters.

The following cluster parameters describing the minimum
number of points within a given radius were interactively
determined (Table 2).

Novel analytical methods for 53BP1 cluster characterization
were applied using procedures of persistence homology [66]. This

method, using established calculations and mathematical
operations, allows two point distributions, here the point
distributions of 53BP1 clusters of two irradiation schemes, to
be compared to each other in a cell-independent manner, thereby
giving a mathematical measure of their similarity [86].

The major principle of this analysis for persistent topologies
is to record properties of point patterns, which are invariant
under certain deformations of the object. Mathematically these
deformations correspond to continuous transformations of the
topological space defined by the structures. For 53BP1 clusters,
the attention was focused on two properties: a) the number of
“components”, which are independent from each other in such
sense that connections between points only exist within the
respective components; b) the number of “holes” of the
structures inside the components. In algebraic topology,
these properties are called the Betti numbers for zero- and
one-dimensional simplicial complexes. They are the
topological invariants that distinguish between different
topological spaces.

SMLM data sets of repair foci are clustered point-sets for
which components and holes can be defined [66]. In the
following, this procedure is briefly described: A geometric
relationship among cluster points is obtained by growing
spheres of radius α around each point. Whenever two of these
spheres mutually embed each-other’s center, these centers are
connected by a line. The connected points belong to the same
component. With increasing radii of the spheres, more and more
points are connected to previously disjoint components. Thus,
the number of components is decreasing with increasing of the
radius α. At the end of the procedure, a single component is
remaining. For the definition of holes, the simplest polygon, the
triangle, is appropriate. Whenever a component of three
connecting lines of points forms a triangle, the area of the
triangle is considered as a hole. With reducing the number of
disjunct components, the number of holes is increasing and
decreasing again.

The amounts of components and holes are depending on the
value of α. For the formation of each component and each hole,
a bar of a barcode pattern starts. The end of the respective bar is
fixed at the disappearance of components and holes with
increasing α [87]. The mathematical transfer of the spatially
organized pattern of labeling points into barcodes contains
information about components and holes in a compact and
illustrative way. The sets of barcodes for each 53BP1 cluster
were compared with each other and their similarity was
calculated. The procedure used for quantification of the
barcodes similarity is based on the Jaccard index [88]. A
detailed description and illustration is presented in Refs. 66
and 86. The result of this normalized similarity measure is a
value between 0 and 1, where a value of 0 means no overlap of
two bars and 1 the identity of two bars. The similarity of
barcodes of different dimensions is defined as the average of
the individual similarity values of the bars of a cluster. Such
topological comparisons are independent of the scale and the
perspective on the clusters so that it is possible to compare
variably large foci randomly orientated to the microscopic
detection system.

TABLE 2 | Cluster parameters of the experiment.

cluster values 53BP1 Rad51

Cell line NHDF U87 NHDF U87 NHDF U87
Irradiation angle 10° 10° 90° 90° 10° 10°

Radius [nm] 200 200 200 200 200 200
Min Number of points 65 65 84 55 60 60
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FIGURE 1 | 2D density SMLM images of 53BP1 repair proteins. Typical examples are shown for fluorescently-labelled 53BP1 proteins in NHDF cells (A,B) and U87
cells (C,D) after 1.3 Gy tangential 15N-irradiation (A,C) (10° angle between the ion beam and the cell layer) and 4 Gy perpendicular 15N-irradiation (B,D) (90° angle
between the ion beam and the cell layer). The time values indicate the period PI when the samples were taken as aliquots of the same irradiated culture and fixed. For
comparison, examples of non-irradiated control cells are presented. The left columns are merged images of SMLM data and wide-field images. In the right
columns the SMLM image data and cluster areas are shown. The scale bars equal to 1 μm.
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RESULTS

The Neonatal Human Dermal Fibroblast (NHDF) line was
studied as model of normal (non-transformed) cells with
relatively higher radio-sensitivity while U87 glioblastoma cells
were selected for their high radio-resistance [55] and aggressive
cancer phenotype. In addition, forming the skin, NHDF
fibroblasts are always irradiated by external radiation sources.
Glioblastoma (U87 cells) then represents a tumor treated by
radiation but with poor results only due to its high radio-
resistance. Both cell types were exposed to high-LET 15N ions
in two different geometries (i.e., under the angle of 10°and 90° as
described inMaterials and Methods) and IRIF formed by γH2AX
and selected repair proteins (53BP1 and Rad51) were studied with
SMLM in different periods of time post-irradiation (PI), ranging
from 5 min PI to 24 h PI. Within the first minutes after
irradiation, 53BP1 proteins were recruited to the damaged
sites, visualized as γH2AX foci. 53BP1 foci provide
information of the early recruitment of proteins for repair. In
the previous studies [15, 55], we have shown that DSB repair
proceeds much slower in cells exposed to (high-LET) 15N ions
than in cells irradiated with low-LET γ-rays. Also, it emerged
obvious that 53BP1 repair foci differ in their parameters for
NHDF and U87 cells. Here, the 53BP1 data sets already
investigated by SMLM [55] were further analyzed for
structural clustering and topological similarity. In addition,
data sets of the same cell types and radiation conditions were
prepared also for Rad51 protein, which is, unlike 53BP1,
selectively involved in DSB repair via homologous
recombination. The first data of Rad51 labeling and spatial
organization of Rad51 foci were elucidated and compared to
results obtained for 53BP1 repair protein participating both in
NHEJ and HR. Focus formation and clustering, persistent
homologies, and structural changes during the post-irradiation
(PI) period of repair were analyzed at several repair relevant time
points (5, 15 min (10° only), 30, 45 min (10° only), 1, 2, 4, 8, 24 h).

In contrast to U87 cells, NHDF fibroblasts quickly recruited
the majority of the 53BP1 proteins (∼60%) to the damaged
chromatin sites along the particle tracks so that clusters have
already been visible and well developed at 5 min PI, though their
number progressively increased within the first 30 min PI. In both
cell types, the cluster numbers were maintained until 8 h and then
started to decrease; thereby a considerable proportion of clusters
persisted even after 24 h PI (Figure 1).

U87 cells contained 53BP1 clusters also prior to irradiation
(control samples) which was not observed in NDHF cells. In U87
cells, the formation of 53BP1 clusters in tracks was delayed up to
30 min PI and the relative number of recruited 53BP1 proteins
was always less than 40% of the protein pool available. These
results thus confirmed our previous observations [55]. In
Figure 1, illustrative examples of SMLM images of 53BP1
foci/clusters are shown for the two cell lines, the two radiation
schemes, and different periods PI. The left images showwide-field
images of DAPI-stained nuclei with inserted point signals of
individual 53BP1 molecules acquired with SMLM. The right
columns then provide the corresponding SMLM images of the
53BP1 foci after cluster area determination. For the 10°

irradiation angle, the specimens of both cell lines showed
characteristic tracks highlighted by dense arrangements of
labeling tags. At later periods PI, the tracks partly dissolved
and separated protein cluster units became visible dispersed,
over the cell nuclei. In contrast to the 10° irradiation
experiments, the 90° irradiation experiments showed more
clusters irregularly dispersed over the cell nucleus. Since the
dose was higher in these experiments, all these clusters may
represent a separate particle track perpendicular to the
image plain.

The following investigations are reasoned by the hypothesis
that repair proteins form characteristic, similarly sized clusters at
the damaged chromatin sites. These proteins are recruited to and
released from clusters during the repair period; thereby their
spatial topology can be expected to show high similarity provided
the chromatin environment around the damage sites is also
similar and the same repair mechanism has been activated.
The correct topological arrangement is assumed to be required
for the downstream repair steps so that the follow-up repair
protein molecules could correctly access the damaged chromatin
sites. The results presented here support these ideas and show by
which mathematical operations the biophysical verification of the
hypothesis could be approached.

To further investigate the dynamics and cluster formation of
tagged 53BP1molecules, Ripley distance analysis was applied that
is based on relative frequency histograms of pairwise point
distances. The distance frequency histograms were compared
for all repair time points of each cell type and each radiation
condition. In Figure 2, the results are presented. The controls of
both cell lines showed a peak at smaller distances, which indicates
these small distances occur very frequently, i.e., the labeled
proteins are often arranged in such closely adjacent
conformations (�cluster conformations). These clusters are
embedded in a random distribution of points which can be
concluded from the linearly increasing frequency of larger
distances. Note that the histograms show the relative
frequency of distances but do not give information about the
absolute number of distances or clusters.

Shortly after irradiation, the formation of clusters increases in
NHDF cells but not in U87 cells. Subsequently, from 1 h PI, the
absolute cluster frequency was decreasing in NHDF cells. For
longer periods PI (2–24 h), some clusters remained while the rest
of protein labeling points followed a strong random distribution
(Figures 2A,B). This behavior was found for both, the 10° and 90°

irradiation schemes, though it was less pronounced for 90°

(compare Figure 2A vs. 2B).
The cluster and labeling point dynamics appeared to be

different in U87 cell nuclei (Figures 2C,D). Significant clusters
were found also in the non-irradiated controls, embedded within
a random labeling point pattern. For the 10° irradiation scheme,
the amount of labeling points was increasing and larger clusters
were formed after 5 min PI (Figure 2C). From 15 min PI until the
end of the period of investigation (24 h), the clusters kept their
size and remained. Some minor fluctuations within some
randomly dispersed labeling points were observed. For the 90°

irradiation scheme, the control showed the same behavior as for
the 10° irradiation scheme, separate clusters within an

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5786627

Hausmann et al. Localization Microscopy of DNA-Repair Foci

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


environment of randomly dispersed labeling points. However,
after irradiation with the high dose (4 Gy), the situation was
different as fluctuations in cluster formation and size appeared
until 2 h PI (Figure 2D). Between 2 and 24 h PI, a low clustering
frequency within a strong random distribution of labeling points
could be seen.

These measurements, in conclusion, indicate that 53BP1
clusters are quickly formed after irradiation. With the progress
of the early repair period (ending at about 30 min or 1 h PI) one
part of the clusters becomes dispersed while the other part persists
within a growing amount of randomly distributed proteins. These
persistent clusters remained in cell nuclei until the end of the
investigation period (24 h PI).

In the next step, we decided to analyze “remaining” 53BP1
clusters at 2 h PI in terms of the persistent homology and
determined the degree of their mutual topological similarity.

Based on the pointillist information obtained by SMLM, we
used this new analytical method for 53BP1 cluster
characterization after high-LET 15N ion irradiation for the first
time. A cell independent, pairwise comparison of point
distributions (here the point distributions of two 53BP1
clusters) with each other was elaborated for a selected
ensample of clusters. For the evaluation, the following total
numbers of clusters were considered (Table 3):

The resulting barcodes of 0 (components) and 1 (holes)
dimensions were compared in both directions and a
mathematical measure of their similarity was calculated and
visualized in heatmap descriptions (Figure 3). For both cell
types the similarity measure as being determined by the
Jaccard index was very high for the components (>0.9)
independent of the irradiation scheme (Figures 3A,B, a). This
indicates that the complex, ion-induced damages are marked with
a specific repair cluster setup. On the other hand the similarity
measure for the holes was below 0.5 for both cell types and
radiations schemes (Figures 3A,B, b). Interestingly the similarity
of holes was on average higher for NHDF (Figure 3A, b) than for
U87 cells (Figure 3B, b).

The similarity values obtained by averaging of components
and holes values for each 53BP1 cluster are presented in Figures
3A,B, c. When the clusters of the 10° irradiations scheme were

FIGURE 2 |Ripley distance frequency analysis. The relative frequencies of pairwise distances are presented for the aliquots of the irradiated cell samples at different
time points PI (color label of curves); (A) NHDF and (C) U87cells irradiated under 10° irradiation angle; (B) NHDF and (D) U87cells irradiated under 90° irradiation angle.

TABLE 3 | Overview of the number of clusters included into the analyses of
persistent homologies.

NHDF, 10° NHDF, 90° U87, 10° U87, 90°

Number of clusters evaluated 198 297 146 219
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compared, the Jaccard indices laid between 0.55 and 0.82 for both
cell types. The frequency distribution was broad without a peak
for NHDF cells whereas U87 showed a clear peak at 0.64
(Figure 4). Comparing the clusters of the 90° irradiation
scheme, the peak was at 0.63 for U87 cells. This value was
also obtained for the comparison of the 10° with the 90°

irradiation scheme. For these two comparisons (90° vs. 90°, 10°

vs. 90°), NHDF cells showed a bimodal peak distribution with one

peak at 0.67 and another peak at 0.72 (Figure 4). In general it can
be concluded that the more radio-sensitive NHDF cells revealed a
higher topological similarity in 53BP1 clustering than the more
radio-resistant U87 cells.

53BP1 is known to be preferentially involved in NHEJ but it
could also act as a stabilizing factor during HR. So in a very first
approach we wanted to see whether under harsh damaging
conditions occurring during high-LET ion irradiation, HR is

FIGURE 3 | Heatmaps indicating the similarity of 53BP1 clusters in (A) NHDF cells and (B) U87 cells irradiated under an irradiation angle of 10° or 90° and fixed 2 h
PI. The heatmaps show (a) the similarity of the barcodes of dimension 0 (components), (b) the similarity of the barcodes of dimension 1 (holes), (c) the average similarity of
the barcodes of dimension 0 and 1. The comparison of clusters in cells irradiated with 10° (90°) is shown in the upper left (lower right) corner of the heatmaps. In the upper
right (lower left) corner clusters in cells irradiated with 10° (90°) are compared to clusters in cells irradiated with 90° (10°). Clusters occurring in the same cell are
located next to each other in the heatmap. Blue color indicates that the compared clusters have similar topological characteristics, whereas red color indicates differing
cluster characteristics.
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used for DNA damage repair. Therefore we labeled γH2AX and
Rad51 simultaneously in cell nuclei of the two cell lines under the
10° irradiation scheme. In Figure 5A, a typical example is shown.
It was obvious that also HR was employed as a repair pathway for
broken chromatin in the track. In these cases, the Rad51 signals
were always completely embedded in a γH2AX environment.
However, the frequency of Rad51 clusters was very different for
the cells analyzed. For both cell types, nearly no Rad51 cluster was
found in the control. An increase of Rad51 clusters emerged
between 1 and 8 h PI for NHDF and between 2 and 8 h PI for U87.
The number of Rad51 clusters at 24 h PI was again on the level of
the non-irradiated control specimen (Figure 5B).

DISCUSSION

High-LET particle radiation has a Janus-faced nature. On one
side it is highly dangerous and risky, as for instance during space
mission. Even single particles could have a significant damaging
effect on individual cells, with an unpredictable outcome for
astronauts on space missions. On the other hand, high-LET
particles can inactivate cells deeply inside the patients’ bodies,
making them an ideal tool for radiation treatment, especially of
brain tumors or tumors embedded in very sensitive (and
potentially vital) tissues. Therefore radio-protection as well as
radio-therapy require a better understanding of the processes
which the cells employ to repair complex damage events along the
particle track.

Heavy ion accelerator facilities offer defined high-LET
radiation conditions as for instance in terms of the particle
type, dose, irradiation angle etc. Hence, particle accelerators
allow precise and defined experiments on given cell models,
which are a prerequisite for sophisticated systematic analyses
of DNA damaging and repair upon specific irradiation
conditions. Research opportunities offered by these facilities
have therefore rocketed bio-medical research.

High-LET particles lumbering through the chromatin of a cell
nucleus induce a very complex damage pattern highlighted by
γH2AX foci and other foci of recruited repair proteins. So far it is
neither known how many damaged sites associate and are
eventually repaired within one focus (visible at the
microscale), nor whether the foci have an internal nano-
structure composed of smaller sub-units (clusters),
representing a single damage each, which are potentially
functionally organized. A correct repair of the associated
broken DNA ends indicates that the relevant repair units may
be smaller clusters, for some reason aggregated in foci. Otherwise,
multiple damage concentrated within one repair focus, would
promote miss-repair in a much higher extent than it is observed.
Hence, it cannot be excluded that the hypotheses of “repair
factories”, postulated but not confirmed to explain DSB repair
and formation of chromosomal aberrations at the microscale
(reviewed in Ref. 8), will be revitalized at the nanoscale.
Therefore, it is of high interest to better understand the spatial
organization of repair foci and consequently the repair
mechanism resulting from defined spatial arrangements of
repair protein clusters. This has motivated us to perform
sophisticated microscopy studies of repair protein foci along
particle damage tracks by means of super-resolution SMLM.
Systematic investigations have been started using the radiation
facility at JINR Institute (Dubna, Russia) by applying different
doses of various high-LET particle radiation types at different
doses and under different irradiation angles to well established
cell systems of different radio-sensitivity. In Ref. 55; we analyzed
the abundance and recruitment dynamics of 53BP1 repair
protein, which indicated significant differences in IRIF nano-
architecture between radiosensitive normal fibroblasts (NHDF)
and cancerous, highly radioresistant U87 cells. Here, we have
continued these studies with a special focus on cluster formation
and topological cluster similarity. Ripley distance frequency
analysis in combination with calculations of similarity values
after evaluation of persistent homology provided novel insights

FIGURE 4 | Normalized histograms of the frequencies of similarity values of barcodes (Jaccard indices) of 53BP1 clusters in NHDF and U87 cells irradiated under
10° or 90° irradiation angle and fixed 2 h PI. The distributions of the average similarity of dimension 0 and 1 barcodes of 53BP1 clusters in NHDF (compare Figure 3A,c)
and U87 (Compare Figure 3B,c) cells are shown. The similarity distributions of clusters in cells irradiated under an angle of 10° (values from the upper left part of the
heatmaps) are shown in blue, the similarity distributions of clusters in cells irradiated under 90° (values of the lower right part of the heatmaps) are shown in orange,
and the similarity distributions obtained when comparing clusters in cells irradiated with 10° to clusters in cells irradiated with 90° (values of the upper right part of the
heatmap) are depicted in green.
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into the nano-architecture of repair foci that form at damaged
sites in different cell types.

For normal NHDF fibroblasts, our data on 53BP1 molecules
within IRIF revealed cluster formation and relaxation that was
comparable for the two different radiations schemes and doses
applied. In contrast, U87 cells showed a more variable cluster
formation with fluctuations during the repair time. Moreover,
independently of dose and irradiation angle the topology of the
clusters was highly similar for NHDF cells in comparison to U87
cells. The high topological similarity of 53BP1 clusters in NHDF
may indicate that, for both applied irradiation schemes, the
53BP1 clusters forming along the ion-induced chromatin
damage have a specific, thus potentially functional setup. One
reason for the existence of this setup may be the presence of
several complex damage sites within the clusters instead of one
single DSB. Further, with 53BP1 being located in the
perichromatin and interchromatin [61], the specific
arrangement of 53BP1 may be caused by the chromatin

structure. Similar to our findings, the presence of resembling
substructures of 53BP1 foci has also been observed by Reindl
et al., who found that 53BP1 foci are subdivided into nano-foci of
a constant size, thence no difference was observable in the setup
of the nano-foci after low-LET proton and high-LET carbon ion
irradiation [63, 89].

In addition, the comparison of the two cell lines (NHDF and
U87) indicated that the loss of radio-sensitivity may be associated
with a reduction of topological similarity of 53BP1 clusters. One
possible explanation for this may be that, due to defects in DNA
damage repair, U87 cells fail to build up clusters in a standard
structured manner. In that case, the increased radio-resistance
may originate from a “radiation adaptation” leading to cell
survival with an unrepaired genome instead of more efficient
repair [53]. As cancer cells often have modifications in their
chromatin structure, another option would be that the
characteristics in the repair cluster setup of U87 cells and their
increased radio-resistance may be associated with chromatin re-

FIGURE 5 | (A) Example of an NHDF cell nucleus taken from the sample 1 h PI (irradiation angle 10°). Left: wide-field overview images taken in the color plain of
γH2AX (upper row) and Rad51 (lower row); middle: SMLM image of the protein loci merged with the wide-field image; right: identified clusters as detected by the
DBSCAN algorithm. (B) Box plots for the numbers of Rad51 clusters for NHDF and U87 cells determined in aliquots at different time points PI.
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arrangements characteristic for carcinogenesis in general or
specifically for this cell type. Nevertheless, a combination of
several phenomena seems to be the most probable
explanation. In Ref. 55; we observed that the more complex
53BP1 clusters disappeared much faster fromU87 cells compared
to NHDF fibroblasts though the overall repair kinetics of both cell
types was more similar. This could mean that while some repair
pathways are defective, the others are augmented.

Here, we wanted to introduce novel technical and
mathematical approaches. The results of 53BP1 SMLM
analysis revealed the potential of these proposed approaches.
Future investigations will therefore be directed not only to further
analyses of the clustering and topological similarity of 53BP1 at
other time points PI but also to systematic investigations on
γH2AX foci that directly indicate the reaction of chromatin to
(low-LET vs. high-LET) radiation damage.

In general, the structure of the chromatin and the arrangement
of proteins involved in repair may influence repair process and
even the pathway choice by determining the accessibility of the
damage site for follow-up proteins [55, 66, 90]. It has been
proposed that 53BP1 is excluded from the center of the repair
region and relocated to the outer part, if the DSB repair is directed
to HR. This reposition opens space for loading of particular HR
proteins, such as Rad51 [63, 67, 69, 91]. Hence, the structure of
53BP1 clusters may have a direct impact on the pathway
selection. This correlation remains to be studied in future. As
the first attempt to investigate the relationship between a specific
topology of 53BP1 clusters, chromatin architecture at the damage
sites, and initiation of HR, we have checked whether the HR
marker, Rad51, is recruited to the damage track. In order not to
find a Rad51 cluster or focus just by chance somewhere in the
nucleus, we irradiated the cells in a sharp (10°) angle, which
allowed us to visualize particle tracks trough the nucleus (using
γH2AX as the damage marker) in the x-y plane of the microscope
with much better resolution compared to 90° irradiation [14].
Indeed, during later repair times we found a considerable increase
of Rad51 clusters that colocalized with γH2AX, indicating an
increase in HR activity. This may be surprising since the harsh
complex damage generated by high-LET particles could be
expected to be a very challenging target for HR. On the other
hand there seems to be special chromatin conditions that favor
HR repair at high-LET damage sites. So far this data on the repair
pathway selection at specific DSB sites are preliminary but
indicate the need of further investigations in order to better
understand how chromatin architecture affects chromatin
functionality in relation to DNA damage repair. As presented

here, powerful mathematical procedures applicable to SMLM
data of repair processes are available that will shed new light into
the shadow of complex damage events along particle tracks. As
well, modern particle accelerators offer systematic evaluation of
damage events induced by different types of precisely defined
high-LET particle radiation.
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