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The biophysical properties of polymer based gels, for instance the commonly used
Matrigel, crucially depend on polymer concentration. Only certain polymer
concentrations will produce a gel optimal for a specific purpose, for instance for
organoid development. Hence, in order to design a polymer scaffold for a specific
purpose, it is important to know which properties are optimal and to control the
biophysical properties of the scaffold. Using optical tweezers, we perform a biophysical
characterization of the biologically relevant Matrigel while systematically varying the
polymer concentration. Using the focused laser beam we trace and spectrally analyze
the thermal fluctuations of an inert tracer particle. From this, the visco-elastic properties
of the Matrigel is quantified in a wide frequency range through scaling analysis of the
frequency power spectrum as well as by calculating the complex shear modulus. The
viscoelastic properties of the Matrigel are monitored over a timespan of 7 h. At all
concentrations, the Matrigel is found to be more fluid-like just after formation and to
become more solid-like during time, settling to a constant state after 1–3 h. Also, the
Matrigel is found to display increasingly more solid-like properties with increasing
polymer concentration. To demonstrate the biological relevance of these results, we
expand pancreatic organoids in Matrigel solutions with the same polymer
concentration range and demonstrate how the polymer concentration influences
organoid development. In addition to providing quantitative information about how
polymer gels change visco-elastic properties as a function of polymer concentration
and time, these results also serve to guide the search of novel matrices relevant for
organoid development or 3D cell culturing, and to ensure reproducibility of bio-relevant
Matrigels.
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INTRODUCTION

Cells in an organism are surrounded by a matrix, often made of
biopolymers, whose physical properties dramatically influence
cell behavior. For instance, the visco-elastic properties of the
extracellular matrix (ECM) has been shown to play an
important role in fundamental cellular processes such as cell
migration [1, 2], proliferation [3–5], and differentiation [6–8],
as well as for the spreading of cancerous cells [5, 9, 10]. For this
reason, much effort has been put into developing physics-based
tools, experimental and theoretical, to enable characterization of
the biophysical properties of polymer solutions. Atomic force
microscopy (AFM) and shear rheology are two common
experimental techniques which allow for quantification of the
elastic properties of the ECM [11, 12]. However, both methods
still struggle to measure the stiffness changes of the ECM during
imaging of cells in culture media and none of them have the
ability to measure deep inside organisms or tissue in a non-
invasive manner. Optical tweezers and video-microscopy are
two other techniques, which has proven capable of quantifying
visco-elastic properties, also inside living cells and organisms,
through passive monitoring of an optically trapped tracer
particle. These methods have the advantage that they provide
both the elastic and viscous responses of a polymer matrix over a
large frequency range, including the range relevant for polymer
dynamics [13, 14].

Cellular development can be influenced, or controlled, by
proper matrix choice. This is instrumental for the
development of organoids, which are 3D cell models, derived
from a few cells, which allow for in vitro expansion of an organ for
potential medical usage. Matrigel is the most commonly used
polymer matrix for successful organoid development. In this
paper, we use Matrigel as a biologically relevant polymer
matrix with the purpose of systematically investigating how
the physical properties of the polymer matrix change as a
function of polymer concentration. Thereby, we continue work
which was sparked by investigating the elastic properties of actin
network by MacKintosh et al in 1995 [15]. More than 1800
peptides have been identified in Matrigel, however, the main
components are Laminin ( ∼ 60%), Collagen IV ( ∼ 30%) and
entactin/nidogen ( ∼ 8%), while the remaining ∼ 2% consists of a
wide range of macromolecules, including proteoglycans. A major
difference in protein composition, when comparing the basal
lamina or Matrigel to another ECM as, e.g., the connective tissue,
is a higher proportion of Laminin compared to Collagen IV.
Laminin is a macromolecule with structural functions that
especially can withstand tensile forces, while Collagen IV
assembles into very large, stiff structures. As a result of this,
Matrigel has much more tensile resilience than compressive
resilience. Its physical properties then correlate with its role as
an element that for example, connects skin cells to connective
tissue. One reason why Matrigel is particularly relevant is that
mixtures of Matrigel and media have resulted in unprecedented
achievements in organoid growth in 3-dimensional structures
[16, 17].

Here, we systematically quantify the viscoelastic properties of
Matrigel preparations at different polymer concentrations using a

passive optical tweezers based method which can be carried out
non-invasively during confocal imaging of the sample. These
results have interest also for other types of polymeric solution
where it is an outstanding question how the viscoelastic
properties depend on the polymer concentration. It is also
demonstrated how the physically different matrices result in
different growth of embedded organoids.

MATERIALS AND METHODS

Optical Setup
An overview of the optical tweezers based setup used for the
experiments is provided in Figure 1. The optical trap is
constructed from an infrared laser (1064 nm, Nd:YVO4,
Spectra-Physics J20-BL10-106Q) directed into an inverted
microscope (Leica, TCS SP5), equipped with a proper dicroic
mirror. Both the laser and the microscope light are focused onto a
sample placed in a sample holder through a water immersion
objective (PL APO, NA � 1.2, 63X, w). The sample holder is
placed on a movable piezo stage (Newport, XY Translation Stage
Model M406), that is used to position the sample with respect to
the focus of the optical trap. After interacting with the weakly
trapped bead, the back-scattered light is collected by the
condenser and imaged onto a Quadrant Photo Diode (QPD)
(Hamamatsu, Si PIN photodiode S5981) in the back focal plane.
In addition, the sample plane is imaged with a CCD camera
(Imagesource, DFK 31AF03), monitoring the sample. The
measurement output of the QPD, the raw data, consists of
four voltages that are transformed into appropriate sums and
differences linearly related to the position of the bead inside the
trap [18, 19]. The laser was operated at 200–300 mW of which
approximately 20% reached the sample plane.

Power Spectral Analysis Method
Optical tweezers exert a harmonic force, F � κx, on a trapped
bead, where κ is the spring constant and x is the distance from
the bead’s equilibrium position within the trap. For the bead
sizes used here ( ∼ 1μm), the spring constant is similar in the
two directions perpendicular to the propagation of the laser
light and smaller in the direction parallel to the laser light [20].
For a trapped bead with radius of r in a normal viscous fluid
(e.g., water) with viscosity of η, power spectral analysis shows
that the power spectrum P(f ) at frequency f is ideally given by
[21, 22].

P(f ) � kBT

6πηrβ2
1

(f 2c + f 2), (1)

where fc is the corner frequency, kBT is thermal energy and β is the
calibration factor which is relating positionmeasurement in Volts
by the QPD to meters.

When the surrounding medium is a visco-elastic medium
rather than a newtonian fluid, for frequencies well above the
corner frequency of the trap, the power spectrum can be
described by:
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P(f )∝ f −(α+1). (2)

For tracer motion within a medium, the value of α relates to the
behavior of the tracer particle as follows:

• α � 0: The particle is completely confined by the
surrounding medium.

• 0 < α < 1: The particle undergoes sub-diffusion, the lower
the value of α, the more elastic the medium, and the closer to
1 the more viscous the medium.

• α � 1: The particle performs free diffusion described as
Brownian motion, and the surrounding medium is purely
viscous.

• α > 1: The particle undergoes super-diffusion, indicating
that there are active processes and that particle movement is
propelled by external forces.

Complex Shear Moduli
The frequency dependent complex shear modulus,G(f ) � G′(f ) +
iG″(f ) can be found from the power spectral density and analysis
of the response function of the trapped particle. The frequency
dependent shear modulus, G(f ), has as its real part the elastic
modulus, G′(f ), which describes the stored energy in the complex
medium. Conversely, the imaginary part, the loss modulus, G″(f ),
is a measure of the energy dissipated by deformation of the

complex material. For a microparticle inside a viscoelastic
medium, the Fourier transform of the stochastic thermal force,
F(f ), and the Fourier transformed of the position of the particle,
x(f ) are related through linear response theory [23],

x(f ) � c(f )F(f ), (3)

where c(f ) is the compliance of the medium [24]. The medium
compliance is a complex function which in turn is related to the
viscoelasticmodulus through theGeneralized Stokes-Einstein relation,

G(f ) � 1
6πrc(f ). (4)

Thus, the different physical quantities are extracted as follows:

G′(f ) � 1
6πr

c′(f )
c′(f )2 + c″(f )2 (5)

G″(f ) � − 1
6πr

c″(f )
c′(f )2 + c″(f )2 (6)

c″(f ) � πf
2kBT

P(f ) (7)

FIGURE 1 | Sketch of the setup. (A) 1,064 nm laser light is directed into an inverted microscope. The microscope objective focuses the laser onto a sample (b)
placed on a movable piezo stage. After interacting with the sample, the back-scattered light is collected by a condenser and focused onto a Quadrant Photo Diode
(QPD). A CCD camera monitors the sample. (B) Sketch of a sample containing Matrigel solution and an optically trapped tracer particle.
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c′(f ) � 2
π
∫  ∞

0
cos(2πft)dt∫

 ∞

0
c″(f )sin(~f t)d~f (8)

where the last results follows from the Kramers-Kronig relation.
This method is less challenging in comparison with active
methods (oscillatory microrheology) [25], however, since the
trap stiffness is not accounted for, the laser power should not
be too high. And since the photodiode detection system may act
as an unintended filter [26], the frequency span of the method lies
between the corner frequency of trap and the filtering frequency
of the photodiode, this frequency interval spanning several orders
of magnitude and encompassing frequencies relevant for polymer
dynamics. With these concerns accounted for, the frequency
dependent viscoelastic characteristics of the medium can be
determined as described above. The loss tangent,
tan(δ) � G″/G′, relates to the overall behavior of the medium
at the particular frequency, i.e., it describes the solid (or gel like)
(G″/G′ < 1)- or fluidlike (G″/G′ > 1) behavior of the viscoelastic
material.

Preparation of Matrigel Matrix and Sample
Chamber
The major components of the ECM include water, proteins,
and polysaccharides and different types of ECMs for cell
culturing are commercially available, extracted from
different types of tissue using different protocols [27–29].
ECM preparations of particular viscoelastic properties can
be produced with different compositions by including a
variety of proteins and biopolymers. MatrigelR is a
commercial ECM extracted from Engelbreth-Holm-Swarm
mouse tumor cultures [30–33]. It is commonly used as a
basement membrane matrix to support proliferation of stem
cells while they remain in an undifferentiated state [34]. In
addition, combinations of Matrigel and other ECM mixtures
[35–37] are widely used as external matrix in culturing of 3D
spheroids and organoids.

The Matrigel (Corning® Matrigel®, Growth Factor Reduced,
Basement Membrane Matrix, Phenol Red-free, LDEV-free) was
mixed with the nutrition medium Dulbecco’s Modified Eagle
Medium/Nutrient Mixture F-12 (DMEM) (Gibco™,
GlutaMAX™, Additives: Sodium Pyruvate & Sodium
Bicarbonate). The latter is a medium that has proven to
support growth of several kinds of cells and organoids, such as
the pancreas organoid, providing the addition of small quantities
of additional growth factors [16, 17]. The nutrition medium
contains a high concentration of amino acids, vitamins and
glucose.

Sample chambers, with an inner height between 300 and
500 μm, were prepared by sticking two glass slides together
using vacuum grease and the chambers were then cooled down.
Frozen Matrigel was put on ice to slowly thaw. Since Matrigel
becomes gel-like at above approximately 4°C, the temperatures
of the solutions had to be kept between 0 and 4°C. The
nutrition medium was cooled to the same temperature and
mixed with a 0.96 μm polystyrene bead solution. Matrigel and
the nutrition medium with polystyrene beads were mixed
together using pipettes and injected in the sample

chambers. The chambers were then sealed completely with
vacuum grease. A chamber was placed on the microscope stage
and beads were trapped to conduct a measurement once per
hour during 7 h.

Trapping of Beads Inside Matrigel Sample
Immediately after sample preparation, the samples were taken to
the optical tweezers setup. Beforehand the laser trap was
calibrated to have its focus (Figure 1B) at the same axial
position as the microscope objective’s focus and to have its
lateral center in the center of the field of view of the objective.
At this position, the tracer beads were physically trapped in a
harmonic potential. Before turning on the laser, the dispersed
beads were localized and positioned in the center of the
microscope objective’s focus point. The laser was then
activated, it was operated at relatively low laser powers and
the bead was hence trapped in a weak harmonic potential.
While the bead was trapped and performing thermal
fluctuations, its positions were recorded by QPD. In each
chamber, for each concentration and at each point in time,
five beads were trapped. And for each bead, three micro-
rheology measurements were conducted.

Mouse Pancreatic Organoid Culture and
Measurement
Mouse pancreatic organoids were cultured as previously
described [16, 17]. Briefly, pancreatic progenitors were isolated
from the dorsal pancreatic bud of a litter of mouse embryos at
embryonic day (e)10.5, typically 10 embryos. The epithelial part
of the bud was dissected from the surrounding mesenchyme and
remaining digestive tract with microneedles, dissociated to single
cells and small clusters using Trypsin 0.5% (about 5,000 cells from
10 pooled embryos) and mixed with growth factor-depleted
Matrigel on ice. Drops of 8 μl of the cell:Matrigel mixture were
deposited on culture plates, allowed to gel at 37°C and cultured in
organoid medium [16, 17] for 7 days. In these conditions clusters
of cells proliferate and self-organize to form organoids. Three
concentrations of Matrigel were tested: 75%, 50%, and 25%.
Images of organoid cultures were acquired after day 1, day 2,
day 4, day 5 and day 7 in culture on a Leica AF6000 (HCX PL
FLUOTAR 10x/0.30 Ph1 Dry, Leica DFC365 FX camera) in such
a way that every single organoid could be tracked over time.
Organoid area was measured over time using the freehand
selection tool on ImageJ. The radius (r) of the measured areas
was calculated assuming a spherical shape, and organoid growth
was determined by plotting r3 of organoids over time, normalized
to r3 of the same organoid at day 1. This analysis corrects for the
dependency of the final size of the organoid on the initial seed size
observed at day 1.

To quantify the branching of the growing organoids, the focus
plane of the objective yielding the largest area for each organoid
was used to determine the area of individual organoids. At this
plane, the length of the outer membrane surrounding the entire
organoid, the perimeter, was quantified by Fiji routines. The ratio
perimeter2/area was calculated for each organoid in order to have
a dimensionless measure of branching, that is, size-independent.
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RESULTS AND DISCUSSION

Viscoelastic Properties of the Matrigel
Changes as a Function of Time and
Concentration
To characterize the viscoelastic properties of each sample, we
retrieved α by fitting Eq 2 to the experimentally obtained power

spectral data (PSD) in the frequency range 2000 Hz < f <
8,000 Hz. The miminum frequency, 2 kHz, was chosen well
above the corner frequency, fc, in order to avoid the frequency
interval where the optical trap had a confining effect. The
maximum frequency, 8 kHz, was chosen well below the cut-off
frequency, f3dB, of the quadrant photodiode [26].

Figure 2A shows two examples of the PSD as a function of
frequency on a double-log plot for a trapped bead in water (a
purely viscous liquid, black in Figure 2A) and in a 25% Matrigel
solution (a viscoelastic medium, blue in Figure 2A). The two
PSDs in Figure 2A) illustrate the difference in scaling properties
of a tracer particle embedded in a purely viscous media as
opposed to embedment in a viscoelastic media. Beads moving
in amixture with only 15%Matrigel solution behave as if they had
been in a normal Newtonian liquid like water as their motion was
characterized by α ∼ 1. Higher concentrations of Matrigel (20%,
25%, 50%, 75%, and 100%) lead to values of α significantly less
than 1, indicating that the mixture of Matrigel and nutrition
medium for these concentrations of Matrigel have both viscous
and elastic properties.

Over time, the fitted value of α decreased from an initial value
α0 to a final asymptotic value, αf (see Figure 2B). This temporal
behavior of α was well fitted by an exponential function, α(t) �
α0e−t/τ + αf , as seen in Figure 2B), where the parameter τ is a

FIGURE 2 | Determination of scaling properties and evaluation of how
these change as a function of time and concentration. (A) Power spectrum of
an optically trapped particle in water (black, α � 1) and in a Matrigel mixture
(ratio 75%medium to 25%matrigel) (blue, α � 0.71) 7 h after preparation
of the sample. The straight lines show fits of Eq. 2 to data, fits were carried out
on data blocked as described in refs. 38 and 39. (B) Values of α as a function
time for tracer particles embedded in different concentrations of matrigel
solution (15% red, 20% magenta, 25% blue, 50% green, 75% orange, and
pure Matrigel solution (100%) purple). Solid lines show exponential fits to the
experimental data which indicate that α reaches an asymptotic value, αf , after
a few hours. (C) The value of αf decreases with Matrigel concentration: αf �
1.00 ± 0.02 for 15% Matrigel, αf � 0.80 ± 0.14 for 20% Matrigel,
αf � 0.71 ± 0.04 for 25% Matrigel, αf � 0.56 ± 0.10 for 50% Matrigel, αf �
0.31 ± 0.09 for 75% Matrigel, and αf � 0.20 ± 0.04 for 100% Matrigel.

FIGURE 3 | Extraction of complex shear moduli for tracer particles in
water or Matrigel solutions. (A) Extracted complex shear moduli for a bead
trapped in water. The black symbols and black line show the storage
modulus. The gray symbols and gray line show the loss modulus, the
results being in agreement with theory (red line) for a viscous liquid. (B)
Extracted storage modulus, G′ (blue), and loss modulus, G″ (light-blue), for a
bead trapped in a Matrigel solution (75 medium:25 Matrigel). Both G′ and G″
increase as a function frequency. At low frequencies, the Matrigel solution
exhibits solid-like behavior. At around 100 Hz the loss modulus equals the
storage modulus, and at frequencies higher than 100 Hz the solution exhibits
liquid like behavior. The orange line shows the loss tangent which is below or
above 1 for solid- or liquid-like behavior, respectively.
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relaxation time. The asymptotic value of the exponent, αf ,
decreases as the concentration of Matrigel increases, thus
indicating that the polymeric mixture becomes more rigid as a
function of time (Figure 2C).

Complex Shear Moduli of Matrigel Change
With Concentration
The viscoelastic properties of the Matrigel were also
investigated through their complex shear moduli as
described in Methods, however, with the extra
consideration that the contribution from the optical trap
should also be considered. For a particle trapped inside the
medium, G′(f ) as calculated directly from the data is an
effective modulus which contains both the contribution
from the elastic modulus of the surrounding medium and
the contribution from the trap [24], G′trap. Therefore, the
contribution from the trap should be subtracted from the
effective value calculated from the raw data. To determine the
storage modulus of the trap, we extracted the elastic modulus
for a bead trapped in water as a purely viscous medium,
otherwise following an identical procedure. The resulting

storage modulus of the trap (G′trap � 6.57 ± 0.9 Pa) is shown
in Figure 3A). The experimental data shows the expected
behavior of the loss modulus for water; in particular, we
observe that G″trap(f ) scales with α � 1 as expected for a
purely viscous medium where G″ � 2πηf (Figure 3A). The
apparent decrease in the shear moduli for the highest
frequencies is an artifact resulting from the finite
experimental maximum frequency when evaluating the
integrals in Eq. 8, as also described in ref. 40.

Once the storage moduli of water are known, the shear moduli
corresponding to the Matrigel solution can be extracted. As
discussed above, in a solution with a 15% concentration of
Matrigel, the bead experiences a medium with properties very
similar to water, see also Figure 2B), which is probably due to the
very low concentration of polymers. For a 20% Matrigel mixture,
the loss modulus dominates the storage modulus in the entire
measured frequency interval, thus implying that the solution has
a dominantly liquid like behavior (tan(δ)> 1). The mixtures with
25% Matrigel concentration and higher show solid like behavior
(tan(δ)< 1) at low frequencies whereas the behavior changes to a
liquid-like phase (tan(δ)> 1) after the crossover point (G″ � G′),
see Figure 3B).

Figure 4A) demonstrates that the storage modulus of
Matrigel mixtures increases with Matrigel concentration
over the entire frequency range, the inset in a) shows the
value of the loss modulus at f � 100 Hz as a function of
concentration. The same conclusion can be drawn from
inspecting the loss tangent as a function of frequency for
different Matrigel concentration; the loss tangent clearly
increases with Matrigel concentration over the entire
frequency range (Figure 4B). The inset in Figure 4B) shows
the cross over frequency, i.e., the frequency at which
tan(δ) � 1, as a function of Matrigel concentration, further
cementing the observation that the higher the polymer
concentration, the more solid-like the matrix.

Effect of Matrigel Concentration on
Organoid Expansion
To test whether variations of the mechanical properties of a
Matrigel polymer matrix affects pancreas organoid growth and
branching patterns, we seeded pancreatic progenitors isolated
from e10.5 embryos in Matrigel-based matrices with Matrigel
concentrations in the range of 25–75%. As previously reported
for 75% Matrigel, we observed that organoids grew during the
entire 7-day period of observation. After day 4 they started to
form bulges reminiscent of the branching patterns seen in the
body (Figure 5A). While the growth (measured by normalized
volume) was in the same range for organoids embedded in 25%,
50% or 75% Matrigel matrices (Figure 5B), their branching
visually appeared greater in higher Matrigel concentrations
(Figure 5A).

To further analyze the branching of organoids as a function of
time, the morphology of the growing organoids was determined
by measuring their area and perimeter. If the perimeter compared
to area is large, compared that of a disk, there is a high degree of
organoid branching. In order to have a measure for branching,

FIGURE 4 | Analysis of how the elastic properties of the matrix change
with polymer concentration. (A) Storage moduli of mixtures with different
Matrigel concentrations (20% magenta, 25% blue, 50% green, 75% orange,
and pure Matrigel solution (100%) purple). At all frequencies, the storage
moduli increase with Matrigel concentration. The inset shows the value of the
storage modulus at f � 100 Hz as a function of Matrigel concentration. (B)
Loss tangents as a function of frequency for different Matrigel concentrations.
The insert shows the value of the crossover frequency, the frequency at which
tan(δ) � 1, as a function of concentration. The cross-over frequency marks
the frequency at which the solution shifts from solid- to liquid-like behavior.
The data were collected 7 h after the sample preparation.

Frontiers in Physics | www.frontiersin.org October 2020 | Volume 8 | Article 5791686

Borries et al. Visco-Elastic Properties of Polymer Matrix

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


that is, independent of the overall size or the organoid, the
perimeter2/area ratio, which is dimensionless, was calculated
for each organoid at each Matrigel concentrations at day 4
and at day 7. This ratio was normalized by 4π, which is the
value of the ratio for a perfect disk. Hence, the measure depicted
in Figure 5C) is perimeter2/area for an organoid divided by the
same ratio for a disk. If the measure exceeds 1, the organoid has
some degree of branching. This measure of branching is plotted
in Figure 5C) as a function of time elapsed since seeding of the
organoids in theMatrigel matrix. Notice that even at the first time
point (D4), the elastic properties of the matrix have reached their
static behavior (cf Figure 2B).

D’Agostino tests performed on the distributions shown in
Figure 5C showed that a fair fraction of the distributions were
not normally distributed. Hence, to evaluate whether the
distributions were statistically significantly different, Mann-
Whitney U tests were performed. At day 4 after seeding,
organoids embedded in Matrigel matrices at all tested
concentrations showed minimal branching with an average
normalized perimeter2/(4πarea) value between 1.06 and 1.08.
At this early developmental stage there is, however, already
significantly more branching in the 75% Matrigel concentration
than in the 50% Matrigel concentration (p � 5.7e-3). At day 7,
organoids embedded in the 75% Matrigel matrix have visibly
and statistically significantly more branching than those
embedded in the 50% (p � 2.9e-04) and the 25% Matrigel
matrices (p � 1.8e-3). The average values of normalized
perimeter2/(4πarea) at day 7 for the 25%, 50%, and 75%
Matrigel concentrations are 1.27 ± 0.17, 1.36 ± 0.27, and
1.53 ± 0.29, respectively, with median values of 1.20
interquartile range (IQR) 0.22, 1.28 IQR 0.33, and 1.47 IQR
0.34, respectively.

These results show a correlation between the biophysical
properties of the medium that organoids are seeded in and the
developing morphology of organoids. When the Matrigel
concentration is higher, the matrix becomes stiffer, as
measured both by the power spectral method and through
shear- and storage moduli. A higher degree of branching
during pancreas organoid growth is observed for matrices of
higher stiffness.

While one may have expected that the stiffness of the
environment may either promote growth [41] or limit it by its
resistance to compression, this was not observed in the range
tested. Instead, the more rigid matrix affects the degree of
organoid branching, with more branching observed at higher

FIGURE 5 | Quantification of organoid branching in Matrigel matrices of
different concentrations. (A) Representative pictures of organoid growth over
time in 75%, 50%, and 25% Matrigel matrices at Day 4 and Day 7,
respectively. If more objects are present in an image, arrows point to
examples of organoids used for data analysis. (B) Quantification of organoid
growth in Matrigel matrices with different concentrations (25%, 50%, 75%).

(Continued )

FIGURE 5 | The organoid growth is monitored over time. The average of the
normalized volumes r/(r Day 1) and the standard deviations are plotted for
each condition and each time point. n � 12, 33, and 29 organoids grown in
25%, 50%, and 75% Matrigel, respectively, distributed in two independent
experimental repeats. (C) Effect of Matrigel concentration on branching
quantified by the dimensionless measure: Normalized perimeter2/area which
is plotted as a function of time and for different Matrigel concentrations (25%,
50%, and 75%). At Day 7, there is a significant increase in branching as the
Matrigel concentration is increased. n � 12, 66, and 49 organoids for 25%,
50%, and 75% Matrigel, respectively, distributed in two independent
experimental repeats.
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Matrigel concentrations. It is possible that when an organoid has
penetrated a certain region of a rigid medium, the organoid
expands more easily at this position and hence creates branches
here. More of the organoid’s growth will then appear at this
position compared to the case of a less rigid growth medium
where a more uniform expansion is easier. This may be alike what
was reported during the formation of cortical gyri where a
mechanical instability due to tangential expansion of cells has
non-linear consequences [42].

CONCLUSION

Optical tweezers-based micro-rheology provides a simple
method to quantify visco-elastic properties in a highly
localized manner and potentially deep within a sample over a
large frequency range. Here, we tracked thermal fluctuations of
tracer particles inside Matrigel solutions while systematically
varying polymer concentrations. This allowed for extraction of
the visco-elastic properties of the polymer matrix at different
polymer concentrations; the visco-elastic properties were
quantified though the scaling properties of the tracer
particle’s positional power spectrum and by calculating the
complex shear moduli.

The visco-elastic properties of a Matrigel-based polymer
matrix were found to be highly dependent on polymer
concentration, the higher the polymer concentration, the more
elastic (less viscous) the matrix. Also, we found that the visco-
elastic properties of the Matrigel matrix change over time, with
the matrix being more viscous when it is first made and after a few
hours it becomesmore elastic and settles to a permanent degree of
elasticity.

Organoids embedded in a higher Matrigel concentration
developed a larger degree of branching, however, their
overall size did not change with Matrigel concentration.
Being aware of the fact that organoid growth morphology
is dependent on Matrigel concentration will be important
for bioengineering of proper growth matrices and for
understanding how tissues mechanically interact with
their environment.
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