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Sandpile models exhibit fascinating pattern structures: patches, characterized by

quadratic functions, and line-shaped patterns (also called solitons, webs, or linear

defects). It was predicted by Dhar and Sadhu that sandpile patterns with line-like

features may be described in terms of tropical geometry. We explain the main ideas

and technical tools—tropical geometry and discrete superharmonic functions—used to

rigorously establish certain properties of these patterns. It seems that the aforementioned

tools have great potential for generalization and application in a variety of situations.
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1. PATTERN FORMATION AND CELLULAR AUTOMATA

Animals show beautiful skin and wing patterns. Explaining how these come about has been a
longstanding puzzle. In line with the Darwinian paradigm, an evolutionary biologist may suggest
that formations of patterns on the skin of animals are visual traces of certain biological mechanisms
that help survival in terms of natural selection.

In his seminal book, however, Thomson [1] argues that the geometry of patterns may be mainly
dictated by chemical forces, albeit it is known that patterns may benefit their owners in certain
cases. In his famous paper on morphogenesis [2], Turing speculated on the mechanism behind
pattern formation on the skin of animals and proposed the famous reaction diffusion system, which
consists of an inhibitor and an activator with different diffusion rates. Historically, this was the first
explicit model of pattern formation, though it is purely theoretical.

An important example of self-oscillating patterns in the real world was discovered soon after, see
the Belousov-Zhabotinsky reaction [3, 4]. Both the Turing model and the Belousov-Zhabotinsky
reaction produce beautiful spatiotemporal patterns with quasi-ordered strips and spots, see a
popular concise exposition of both topics in Ball [5]. A recent discussion about parallels in emerging
complexities and patterns in biological systems and physical glass-like models can be found inWolf
et al. [6].

A possibility to obtain all sorts of patterns starting from local interactions suggests trying
relatively simple models to explore patterns by pure or computer mathematics. Assuming that on a
big scale all coarse grained functions are smooth and continuous, onemay use differential equations
in the study of patterns; see comprehensive reviews [7, 8]. But, appealing to the discrete nature of
pattern formation, we shift our attention to cellular automata.

Historically, cellular automata were introduced to “abstract the logical structure of life” in 1948
by J. von Neumann and S. Ulam [9, 10]. Since then, cellular automata were used with great success
to analyze complexity [11], pattern formation [12], self-organized criticality [13], and segregation
[14]. Recent examples of using cellular automata for pattern prediction in biology include marine
angelfish [15], seashells [16], and lizard skin [17]; see also a survey [18].
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In this article we focus on so-called sandpile models, and firstly,
discuss in section 2 how the patterns in that model were obtained
in experimental computer physics, and secondly, we survey the
main ideas permitting to study these patterns with mathematical
rigor: discrete harmonic analysis (section 3), tropical geometry
(section 4), toppling function (section 5), and the most technical
part of the proofs, the lower bound (section 6). Wemention open
problems and new research directions when appropriate.

2. PATTERN FORMATION IN SANDPILES

2.1. Definitions
A sandpile model, which we consider here, consists of the
standard integer lattice grid inside a compact convex domain
� ⊂ R

2, i.e., the graph Ŵ = � ∩ Z
2.

A state of a sandpile model is a function ϕ(i, j), representing
the number of grains of sand at the vertex (i, j) ∈ Ŵ. A state, thus,
is an integer-valued function ϕ :Ŵ → Z≥0.

A vertex (i, j) is unstable if there are four or more grains of
sand at (i, j), i.e., ϕ(i, j) ≥ 4. The evolution proceeds as follows:
any unstable vertex (i, j) topples by sending one grain of sand to
each of its four neighbors (i+1, j+1), (i+1, j−1), (i−1, j+1), (i−
1, j− 1). The sand, falling outside �, disappears from the system.
Vertices outside of� (formally they do not even belong toŴ) and
stable vertices are never toppled. Equivalently, onemay think that
all the lattice points outside of � are sinks; sand, falling to sinks,
disappears. Given an initial state ϕ, the state ϕ◦ denotes the stable
state reached after all possible topplings have been performed. It
is a classical fact that ϕ◦ does not depend on the order of topplings
[19, 20].

2.2. Line-Shaped Patterns in the Literature
Line-shaped patterns [which can also go under different names:
solitons, linear defects, and (p, q)-webs] can be found in the
pictures in Liu et al. [21] and Ostojic [22], but the main subject
of the latter article was quadratic patches, recently explained
in Pegden and Smart [23, 24] and Levine at al. [25, 26] using
Apollonian circle packings.

Let us put three grains in all the vertices of the intersection
between the standard grid Z

2 and a planar domain �. Let us
choose several vertices and add one more grain to each of them.
An example of the relaxation of such a state for � being a square
is shown in Figure 1. We sequentially drop grains to blue points,
performing a relaxation after each dropping (thus we have one
blue point on the first pictures and four blue points on the fourth
picture, where blue points indicate the positions of additional
grains). One may easily guess a graph with straight edges along
non-white parts of the pictures. With each new blue point such a
graph changes, but its edges always pass through the blue points.
In Figure 2 we added grains to all blue points simultaneously
and took snapshots of the subsequent relaxation (since the order
of topplings does not influence the final picture, we might add
grains sequentially).

Line-shaped patterns, clearly recognizable in Figures 1, 2

along straight edges of the imaginable graph, explicitly came
in the sight of researchers in Dhar et al. [27] and Dhar
and Sadhu [28] with an emphasis on a proportional growth
phenomenon, and later, in Caracciolo et al. [29] (see also [30,

31]). These papers performed the analysis from the point of
view of theoretical physics and explained the pictures based on
experimental evidence.

The use of tropical geometry was predicted in Sadhu and Dhar
[32] and later implemented with rather involved mathematical
proofs in a series of articles [33–35]. A certain limit of the
sandpile model gives a continuous limiting piece-wise linear
model that also exhibits power-law behavior [36]; the statistical
properties of the latter model can be found in Kalinin and Prieto
[37]. Line-shaped patterns may be viewed as spacetime diagrams
of two incoming particles that join to form one particle. It turns
out that we can associate the “energy of the particle” with each
world line such that total energy is conserved in these collisions.
As it was recently shown (experimentally), quadratic patches may
be thought of as a limit of many line-shaped patterns coming
together during a relaxation [38].

2.3. Our Main Problem: Small Perturbation
of the Maximal Stable State
Let us formalize the observations in Figure 1 in the following
way. Let � be a non-degenerate compact domain with non-
empty interior and P be a finite non-empty subset of �. For each
N ∈ N consider a set ŴN = � ∩ 1

NZ
2, i.e., the intersection of �

with the lattice of mesh 1
N . Define the state ϕN = (3+

∑

p∈P δp)
◦

on ŴN , i.e., we put three grains everywhere on ŴN and dropped
one additional grain to each of the points p ∈ P or to a near vertex
in ŴN if p /∈ ŴN , and then we performed a relaxation. Define the
deviation set

CN = {v ∈ ŴN |ϕN(v) < 3} ⊂ �.

Experimental evidence suggests that when N grows, the sets
CN ⊂ � converge to a thin balanced graph (see Figure 1).

Theorem 1. announced in [33] and proven in [33–35] The
sequence of sets CN ⊂ � converges (in the Hausdorff sense) to a
set C̃�,P. The set C̃�,P is a planar graph passing through the points
P. Each edge of C̃�,P is a straight segment with a rational slope.

At least in this setting, we have proven that the
limiting/asymptotic patterns exist, though there is no close
description of the shape and exact amount of grains for the
pattern in the direction (p, q) ∈ Z

2.
More intricate instances of the line-shaped patterns, namely,

in the identity element of the sandpile group of �, await an
explanation. Recall that the recurrent states of a sandpile model
on a given graph form an Abelian group, the sandpile group of
a graph [19, 39]. In Figure 3, the identity of the sandpile group
for a cylinder consists of linear-shaped patterns. In Figure 4,
we see similar patterns (along with quadratic patches) on the
identity of the sandpile group for a non-convex domain. It has
not yet been mathematically proven that the sandpile identity of
such graphs indeed contains these linear patterns. A remarkably
simple pattern for the identity on a circular base was found by
Melchionna [40] [see Figures 7, 10 in [40]], the sandpile identity
on ellipses of certain type consists of a unique pattern, up to
“linear defects.”

In the further text we briefly explain the main ideas behind
the proof of Theorem 2. All the details of the actual proofs,
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FIGURE 1 | � is a square [0, 100]× [0, 100], we put 3 grains at every vertex of the lattice inside � and drop 1 additional grain to each blue point (sequentially). The

result of the relaxation after one additional grain is on the top-left picture. Then we added a grain of sand to the second blue point and performed a relaxation, the

result of which is the top-right picture. The third picture is the bottom left one, and the last one is the bottom right one. White is three grains, green is two, yellow is

one, and red is zero. Crosses mark the sinks in the model.

exact notation, omitted conditions, etc., can be found in Kalinin
and Shkolnikov [33–35]. We believe that our tools are worth
generalizing for other situations and can be used to prove the
aforementioned appearance of linear patterns in different setups.

3. DISCRETE HARMONIC ANALYSIS

The laplacian 1F of a function F :Z
2 → Z is defined as

(1F)(i, j) = −4F(i, j)+ F(i+ 1, j)+ F(i− 1, j)+ F(i, j+ 1)

+ F(i, j− 1).

A function F :Ŵ → Z is harmonic (resp., superharmonic) if
1F = 0 (resp., 1F ≤ 0) at every point of Ŵ ⊂ Z

2 where
1F is defined. Recall the Liouville theorem: a non-negative
harmonic function on Z

2 must be a constant (for several proofs
see Theorem 9.24 in [41]).

Assume that Ŵ is an intersection of a big convex subset � ⊂

R
2 with Z

2. Fix an arbitrary linear function L :Z2 → Z. The
following lemmata are close in spirit to Buhovsky et al. [42] where
an improvement of the Liouville theorem is presented.

Lemma 1. A positive integer-valued harmonic function F which
is less than L on a large enough subdomain Ŵ′ of Ŵ, is linear itself
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FIGURE 2 | � is a square [0, 100]× [0, 100], and we put 3 grains at every vertex of the lattice inside � and drop 1 additional grain to each blue point. On the left we

see the initial phase of the relaxation. The central picture shows an intermediate phase. On the right we see the final result.

FIGURE 3 | The identity of the sandpile group on a skewed cylinder is presented, that is, we took the standard lattice in the rectangle [0, 200]× [0, 12] and identified

each point (x, 0) with (x + 5, 12) for x ∈ [0, 195]. Let sinks be the vertices with less than four neighbors. The picture presents the identity of the sandpile group of this

graph. White is three, green is two, red is one, and blue is zero. If we would take a flat cylinder, i.e., we would identify (x, 0) with (x, 12), then, in the picture for the

identity of the sandpile group, we would have 3 everywhere except several green vertical lines, i.e., columns with two grains.

on a (smaller, but still large) subdomain Ŵ′′ of Ŵ′, i.e., there exists
Ŵ′′ ⊂ Ŵ′ such that

F(x, y)|Ŵ′′ = ix+ jy+ aij, where i, j, aij ∈ Z.

Lemma 2. Fix a constant c > 0. Consider a positive integer-
valued superharmonic function F such that the sum of its
laplacian at points in Ŵ′ ⊂ Ŵ linearly depends on the diameter
of Ŵ′ with an a priori bound c, i.e.,

∑

v∈Ŵ′

1F(v) < c · diam(Ŵ′).

Then, if F is less than L and the domain is large enough then F is
linear itself on a large subdomain Ŵ′′ ⊂ Ŵ′.

In other words, given an upper estimate of a natural-valued
function F by a linear function L, we may deduce that F is
linear on a large subdomain provided F is harmonic or almost
harmonic. Precise formulations can be found in Kalinin and
Shkolnikov [34]. The two main ideas used in the proofs are
as follows.

• The green function (harmonic at all points except one) on the
plane grows as the logarithm.

• For a positive discrete harmonic function F on a ball of radius
R with the center O, the discrete derivative of F at O (i.e.,

F(O)− F(O′) for a neighbor O′ of O) is at most the maximum
of F on the ball, divided by R. If F has only integer values, then
|F(O)− F(O′)| < 1 implies that F(O) = F(O′).

We conjecture that the line-shaped patterns show up in the
relaxation of a perturbation of the maximal stable state in the
sandpile model on a certain graph, if there is a notion of a
linear function on such a graph and both lemmata above hold.
To perform a “scaling” one needs a graph that is self-similar on
different scales, such as Z2. A natural candidate is a Cayley graph
of a group.

Recall that given a group G and a set S of its generators, one
may construct the so-called Cayley graph of G, whose vertices
are elements of G and two vertices u, v ∈ G are connected by an
edge if u−1v or v−1u belongs to S. If G = Z

2, S = {(1, 0), (0, 1)},
then the Cayley graph is the standard grid Z

2 with all vertices
of valency four. If G = Z

2, S = {(1, 0), (0, 1), (1, 1)} then the
Cayley graph is Z2 and each vertex (i, j) is connected by edges
to (i± 1, j), (i, j± 1), (i+ 1, j+ 1), (i− 1, j− 1).

On a Cayley graph, the generators of the group play the
role of coordinates [modulo relations, as (1, 0) + (0, 1) =

(1, 1) in the example above] so the notion of a linear
function can be easily extended. The discrete harmonic
function theory is quite developed for several classes of groups
[43–46].

Question. Do Lemmata 1,2 hold for the harmonic and
superharmonic functions on Cayley graphs of amenable groups?
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FIGURE 4 | The blue points mark the sinks. The identity of the remaining part of the lattice is presented. Note the presence of the linear patterns, the same as in the

previous pictures. Colors are the same as in Figure 1.

If yes, then, under an appropriately chosen scaling procedure,
one should be able to prove convergence of the deviation sets of
the relaxations of a slightly perturbed maximal stable states (on
a big bounded polygonal-shaped part of the Cayley graph) to the
corner locus of a piecewise linear function on the scaling limit
of these polygonal shaped parts of the Cayley graphs. The first
thing to prove is that the toppling function has a piecewise linear
estimate from above.

The Cayley graphs of abelian groups are composed of Zk and
cylinders as in Figure 3. The simplest non-abelian group, which
is not much different from Z

3, is the Heisenberg group.
Question. Are there any patterns in the sandpile for the

Cayley graph of the Heisenberg group H?

H = {Ha,b,c|a, b, c ∈ Z} where Ha,b,c =





1 a b
0 1 c
0 0 1



 .

Two generators H1,0,0,H0,1,0 of the group commute; the Cayley
graph of H therefore looks like a collection of standard lattices

Z
2 with additional edges corresponding to the third generator

H0,0,1. Consider the intersection of this Cayley graph with a
large cube, e.g., let Ŵ = {Ha,b,c|0 ≤ a, b, c ≤ 100}. Then, all
vertices v ∈ Ŵ have a valency of six, since they are connected to
v ·H±1,0,0, v ·H0,±1,0, v ·H0,0,±1, and all the vertices of Z

3 outside
of Ŵ are treated as sinks.

Consider a maximal stable state (i.e., 5 grains at every vertex)
and add one grain to several vertices. One expects that the
relaxation of such a state on Ŵ should be not a very complicated
“extension” of a relaxation of a perturbation of themaximal stable
sandpile on domains in Z

2.

4. TROPICAL CURVES

A tropical polynomial is a piecewise linear function f :R2 → R

of the form

f (x, y) = min{ix+ jy+ aij|(i, j) ∈ A},
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where A is a finite subset of Z2 and aij ∈ R are coefficients.
Each term ix + jy + aij is called a monomial and should be
thought of log(taijxiyj), f should be thought of the limit of a
certain logarithmic rescaling of

ft(x, y) =
∑

(i,j)∈A

taijxiyj.

To each tropical polynomial f there is a corresponding tropical
curve C(f ), which, by definition, is the corner locus of f , i.e.,
the set of points (x, y) where f is not smooth. An equivalent
definition follows.

Definition 3. C(f ) = {(x, y) ∈ R|the minimum among ix+ jy+
aij is attainedat least twice}.

More on algebra-geometric aspects of tropical curves can be
found in Brugallé et al. [47], Itenberg and Mikhalkin [48], and
Maclagan and Sturmfels [49] along with recent applications
in symplectic topology [50–53]. In this set-up, tropical curves
should be thought of Riemann surfaces, and each vertex A of
a tropical curve corresponds to a small surface SA with the
boundary, the valency of A is equal to the number of the
boundary components of SA, and each edge AB of the tropical
curve corresponds to a very long thin cylinder connecting small
surfaces SA and SB. Unfortunately, we found no connection
between tropical curves in sandpiles and tropical curves in
algebraic or symplectic geometry.

4.1. Tropical Series
Pick a convex compact set � ⊂ R

2 with non-empty interior. Let
P be a finite subset of �.

Definition 4. Kalinin and Shkolnikov [35] an �-tropical series
is a piecewise linear function in � given by the following:

F(x, y) = inf
(i,j)∈A

(aij + ix+ jy), (1)

where the set A is not necessarily finite and F|∂� = 0. See an
example in Figure 5.

Consider the family FP of �-tropical series that are not
smooth at every point of P.

Note that all functions in FP are concave and thus
superharmonic. Let FP be the pointwise minimum of functions
in FP. In Kalinin and Shkolnikov [35] it is proven that this
pointwise minimum exists (that is easy) and belongs to FP (a
bit more involved, because it may be not continuous or not a
tropical series).

For each F ∈ FP we may consider the set

C(F) = {(x, y) ∈ �|(1F)(x, y) 6= 0}.

It is easy to see that C(F) is the corner locus of the function F, i.e.,
exactly those points where F is not linear but changes its slope.
The set C(F) is called the�-tropical curve defined by F, and C(F)
is a planar graph with straight edges of rational directions, the
sum of directions of outgoing edges is zero for every vertex, and
this is called the balancing condition.

Theorem 2. (elaboration) The sequence of sets CN ⊂ �

converges (in the Hausdorff sense) to the�-tropical curve C(FP).

Let � be a disk {x2 + y2 ≤ 1}. An example of an �-tropical series
is min{ix + jy+ aij|(i, j) ∈ Z

2} with |aij| =
√

i2 + j2 is presented
on the left in Figure 5, and its corresponding �-tropical curve,
which is an infinitely branching tree, is presented on the right.
See details in Kalinin and Shkolnikov [54].

Question. The sum of the values of the above�-tropical series
for a circle (or other plane curve) gives interesting formulae in
number theory [54] which are related to Mordell-Tornheim and
Witten zeta functions [55, 56]. These formulae take as input
the coefficients of the equations of the tangent lines to a given
plane curve, and they are thus easy to compute and may provoke
interesting questions in the experimental computer mathematics.
However, no analogs of these formulae for three dimensional
bodies are known.

5. TOPPLING FUNCTION

To understand the appearance of tropical geometry in sandpiles,
consider the toppling function H(v) defined for every v in ŴN as
follows: given an initial state ϕ on Ŵ and its relaxation ϕ◦, the
value H(v) equals the number of times that the vertex v toppled
in the process taking ϕ to ϕ◦.

The toppling function is clearly non-negative on Ŵ and
vanishes at the boundary of Ŵ. The Laplacian 1H of H
completely determines the final state ϕ◦ by the formula [22]:

ϕ◦(v) = ϕ(v)+ 1H(v). (2)

It can be shown by induction that the toppling function H
satisfies the Least Action Principle [57, 58]: if ϕ(v)+1F(v) ≤ 3 is
stable, then F(v) ≥ H(v). Ostojic noticed thatH(i, j) is a piecewise
quadratic function if we drop a lot of sand in the origin of the
otherwise empty plane [22].

5.1. Piecewise Linearity of the Toppling
Function in Our Main Problem
Consider a state ϕP, which consists of three grains of sand at every
vertex, except at a finite family of points P = {p1, . . . , pr} where
we have four grains of sand:

ϕ : = 〈3〉 + δp1 + · · · + δpr = 〈3〉 + δP. (3)

The state ϕ◦ and the evolution of the relaxation can be described
bymeans of tropical geometry. This was discovered in Caracciolo
et al. [29]. The crucial (experimental) observation is that the
toppling functionH of the state ϕ is almost harmonic everywhere
since ϕ◦ = ϕ almost everywhere (see Figure 1). Even better,
in this case the toppling function H is piecewise linear on the
most part of � and the line-shaped patterns belong to a finite
neighborhood of the corner locus of H (in the next section we
give a more detailed statement). It is easy to observe but tricky
to prove.

We provide an upper bound Hu and a lower bound Hl for H,
which are close to H. These tight bounds force the set

{v ∈ Ŵ|ϕ(v)+ 1Hu(v) 6= 3}
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FIGURE 5 | An �-tropical series and the corresponding �-tropical curve.

to belong to a small neighborhood of the set

{v ∈ Ŵ|ϕ(v)+ 1H(v) 6= 3}.

The upper bound Hu is a piece-wise linear function, ϕ is equal
to 3 everywhere except a small set P of points, the laplacian of a
function is zero on the domains of its linearity. The set1Hu(v) 6=
0 (the corner locus of a piece-wise linear function) is thus close
to the set 1H 6= 0, the deviation locus of ϕ◦. This concludes the
proof of the theorem.

5.2. Upper Bound for the Toppling Function
Denote by H(ϕN) the toppling function of the state ϕN =

〈3〉 +
∑

δpi on ŴN . Abusing notation we will write H(x, y) =
1
NH(ϕN)(x, y) :� → R for the rescaled toppling function
without specifying N. Consider the pointwise minimal function
FP in FP. Then FP ≥ H(ϕN) by the Least Action Principle (since
1FP ≤ 0,1FP(pi) < 0 for each i). Thus, FP ≥ H.

Corollary. The total defect
∑

v∈ŴN
(3 − ϕ◦(v)) grows linearly

in N.
Indeed, the total defect is equal to the amount of the sand

fallen outside of the system, which, in turn, is equal to the
sum of H(ϕN) near the boundary, which can be estimated as
N ·

∫

∂�1/N
NFP, i.e., N times the integral of FP over the 1/N-

neighborhood of the boundary of �.
In order to study the dependence of the deviation set {ϕ◦ 6=

3} on � and P (positions of points where we added grains),
one may study FP because it determines the tropical curve.
The dependence of FP on P is in no sense continuous: when
P passes through degenerate configurations (e.g., several points
on a vertical line), FP and the corresponding tropical curve
drastically change. Similar phenomenon appears when we keep
P fixed and change�: no meaningful results about stability of the
resulting picture are known.

6. LOWER BOUND. WAVE OPERATORS

Let ϕ be a sandpile state on a graph Ŵ. Given a fixed vertex p ∈ Ŵ,
we define thewave operatorWp acting on a sandpile state ϕ as the
following:

Wp(ϕ) : = (Tp(ϕ + δp)− δp)
◦,

where Tp is the operator that topples once the state ϕ at p if it
is possible ([59–61]) (see Figure 6). In a computer simulation,
the application of this operator looks like one wave of topplings
spreading from p, while each vertex topples at most once.

The first important property ofWp is that, for the initial state
ϕ : = 〈3〉 + δP, we can achieve the final state ϕ◦ by successive
applications of the operator Wp1 ◦ · · · ◦ Wpr a large but finite
number of times (we write∞ in spite of the notation):

ϕ◦ = (Wp1 · · ·Wpr )
∞ϕ + δP.

This is not a deep theorem but a rather useful description of a
relaxation. We thus decompose the total relaxation ϕ 7→ ϕ◦ into
layers of controlled avalanching

ϕ → Wk1
p1

ϕ = ϕ1 → Wk2
p2

ϕ1 → . . .

These layers, in turn, can be described by means of tropical
geometry. We only need to prove that the linear-shaped patterns,
visible in the pictures, move toward the point where we apply a
wave operator.

6.1. Construction of Solitons
For each direction (p, q) ∈ Z

2, gcd(p, q) = 1 we construct a
function Fp,q whose laplacian coincides with the linear pattern
in the direction (p, q). To do that, consider a function

F̃ :Z
2 → Z, F̃(x, y) = min(0, qx− py).
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FIGURE 6 | For a given sandpile state we apply several times the wave operator at the blue point p. One can see that the line-shaped pattern around p point creeps

toward p until it belongs to one on them. Recall that white cells contain 3 grains, so the deviation set is the green, yellow, and red cells, which belong to a small

neighborhood of a certain tropical curve. Let us present this tropical curve as a corner locus of a pointwise minimum of several linear functions (cf. Figure 5), i.e., as

an �-tropical series F. The planar graph is then the projection of edges of a three-dimensional polytope (the graph of F ). Then the action of the wave operator

corresponds to shifting one of the faces of this polytope, i.e., increasing by one the constant coefficient of the linear function, defining this face. On the level of planar

graphs, we take the linear function in F (see Equation 1), which is the minimal at p, and increase its constant coefficient until p belongs to the corner locus of the new

piecewise linear function.

Note that the corner locus l (the set of points in R
2 where

min(0, qx − py) is not smooth) of F̃ is a line of direction (p, q).
Next, consider all the integer-valued superharmonic functions on
Z
2, which coincide with F̃ outside of a finite neighborhood of l.

A non-trivial fact is that there exists a pointwise minimum Fp,q
among this family of functions [34].

The idea of the proof is as follows: instead of taking the
pointwise minimum at once, we first prove that we can achieve it
by “smoothings,” namely, by a sequence of steps F̃ = F0 → F1 →
F2 → . . . ; in each step Fk → Fk+1 we subtract the characteristic
function of a certain set in a finite neighborhood of l (thus, a kind
of inverse operator to the wave operator) and 0 ≤ Fk−Fk+1 ≤ 1.
Then, since F̃ is periodic, we may factor the plane by the action of
the vector (p, q) and reduce the problem to a cylinder.

Then we use lemmata about superharmonic functions: if it
would be possible to perform smoothings an infinite number
of times, then Lemma 1 would imply that Fk is linear with
integer slope in a compact neighborhood of l, hence there exists
a linear function with integer slope which is less than F̃ only on a
finite neighborhood of the corner locus. This function would be
periodic with respect to the shift on (p, q) and would therefore
be like k(qx − py) + c (since gcd(p, q) = 1), but any such
function (with an integer k) is less than F̃ outside of a finite
neighborhood of l, which is a contradiction. Then we cannot
perform smoothings an infinite number of times, and thus there
is a pointwise minimum in the aforementioned family.

Once proved that the pointwise minimum exists, we may
define solitons.

Definition 4. A soliton [a linear-shaped pattern in the direction
(p, q)] is ϕpq = 〈3〉 + 1Fp,q.

Then, from the Least Action principle and the minimality of Fp,q
it easily follows that sending a wave from one side of the deviation
set of ϕpq translates it [i.e., for certain p′, q′ we haveWxϕpq(i, j) =
ϕpq(i+p′, j+q′) for all (i, j)], otherwise not changing. This is why
we call them solitons.

The same can be done for three solitons of direction
(p1, q1), (p2, q2), (p3, q3), meeting at a point, provided that
∑

pi =
∑

qi = 0 and the triangle (p1, q1), (p2, q2), (p3, q3)
does not contain lattice points except vertices. The ideas of the
proof are the same, we use Lemma 2 and the final step is that
if a linear function px + qy is less than min(p1y − q1x, p2y −

q2x, p3y − q3x) only in a compact neighborhood of the apex of
the latter function, then (p, q) ∈ Z

2 must belong to the triangle
(p1,−q1), (p2,−q2), (p3,−q3), which is a contradiction.

We summarize the results as follows: there are certain
functions fp,q,... (“at infinity” being described by piecewise
functions, i.e., tropical functions), pointwise minimal in special
families of superharmonic functions, such that 〈3〉 + 1fp,q,...
models solitons, and three or four solitons coming to a point.

The crucial property of the wave operatorWp is that its action
on a state ϕ = 〈3〉 + 1fp,q,... has an interpretation in terms of
tropical geometry; see the next section.

6.2. Tropical Wave Operators and the
Lower Bound
Whenever, “at infinity” f is a piecewise linear function with
integral slopes that, in a neighborhood of p, is expressed as
ai0j0 + i0x+ j0y, then

Wp(〈3〉 + 1f ) = 〈3〉 + 1W(f ),

where W(f ), another piece-wise linear “at infinity” function, has
the same coefficients aij as f , except one, namely a′i0j0 = ai0j0 + 1.

This is to emulate the fact that the support of the wave (the set
of vertices that toppled during the wave) is exactly the part of the
plane where ai0j0 + i0x+ j0y is the leading part of f .

Consider an �-tropical series f . We will write Gp : = W∞
p

to denote the operator that “applies Wp to 〈3〉 + 1f until p lies
in the corner locus of f ”; i.e., Gp increases the coefficient aij,
corresponding to a neighborhood of p, by lifting the plane lying
above p in the graph of f by integral steps until p belongs to the
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corner locus ofGpf . Thus,Gp has the effect of pushing the tropical
curve closer toward p until it contains p (see Figure 6).

From the properties of the wave operators, it follows
immediately that (recall that FP is the upper bound):

FP =
(

Gp1 · · ·Gpr

)∞
0,

where 0 is the function which is identically zero on �.
Now we are ready to provide a lower bound in the main

theorem.
Note that the upper bound can be obtained by (possibly

infinite) series of applying tropical wave operators (which are
nothing else but repetitive increasing of coefficients on linear
parts in a piecewise linear function). Then, by the properties of
the solitons, this can be emulated in the sandpile model, where
wave operators are performed on the sandpile level, and instead
of piecewise linear functions we have pictures as in Figure 6.

In other words, we choose an approximation of FP by a finite
composition Gp1Gp2 . . . of tropical wave operators, and we then
choose an N big enough before starting from a state on ŴN with
a tropical series and a collection of solitons, representing the
corresponding �-tropical curve. Then we perform the sandpile
wave operators Wp1Wp2 . . . as prescribed by tropical wave
operators (see Figure 6). Since N is big enough we have full
control on the picture and know that the solitons move exactly
as edges of the tropical curve on the tropical pictures. By the
nature of the construction, this will give us a lower bound for
the relaxation of ϕ (constructed by the wave decomposition),
which is close to the upper bound (given by an �-tropical
series) with any prescribed accuracy. The deviation set of
ϕ◦
N consequently converges to the �-tropical curve defined

by FP.

7. DISCUSSION

We surveyed several mathematical tools which have been used
for a concrete problem of sandpiles on a part of Z

2. These
tools may be generalized in several directions. One may consider
sandpiles on other graphs, e.g., parts of the Cayley graphs
for amenable groups. Also, one can take a part of hyperbolic
tessellation [62] or other tiling of the plane [63] and ask similar
questions about patterns and rescaling procedures.

It seems that the only tool to describe explicitly the picture
for the sandpile identity is to compute the toppling function with
high precision and controlled error. Above, we explained that
the “smoothing” procedure allows us to show that there exists a
pointwise minimal function in certain classes of superharmonic
functions, and certain localization techniques (tropical geometry)
could then be applied based of the properties of harmonic or
almost harmonic functions on big domains with an explicit linear
upper bound.

Tropical series for planar domains are connected to certain
zeta functions. It would be nice to (at least, experimentally)
compute series, similar to Kalinin and Shkolnikov [54], for
higher dimensions with a good precision and guess what kind of
numbers (e.g., polynomials in π if we start with a round sphere)
will be obtained.

It would be interesting to find another decomposition of
a relaxation into waves of higher magnitude, i.e., such a
decomposition will allow us to control the change of not only
linear-shaped pattern but the quadratic patches too.

Similar to Sadhu and Dhar [32] it would be nice to run
the same research, and in particular, to establish continuity
properties for the toppling functions of sandpiles on Cayley
graphs and see whether one can get a kind of balancing
conditions out of that.
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