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In this paper, we explore the volatility spillovers across different Bitcoin markets. We
decompose the realized volatility into common and idiosyncratic volatilities, as well as the
good and bad volatilities. Then the asymmetry in volatility spillovers between Bitcoin
markets is measured by the DY (Diebold and Yilmaz) index. In addition, we construct
statistics to test the asymmetry in volatility spillovers between different Bitcoin markets. The
results are achieved as follows. The spillovers of systematic and idiosyncratic volatilities
dominate the connectedness among different Bitcoin markets. In addition, the
idiosyncratic volatility spillovers are more easily influenced by policies. Good volatility
spillovers dominate the Bitcoin markets and change over time. The further results suggest
that there is significant asymmetry between systematic and idiosyncratic volatility spillovers
in the Bitcoin markets, while the asymmetries between good and bad volatility spillovers
are heterogeneous in different markets. The findings in this paper can provide some
suggestions for regulators controlling market stability and investors generating investment
strategies.
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1 INTRODUCTION

Both the market value and amount of cryptocurrency have risen greatly since 2016. Meanwhile, the
increased price has been accompanied with strong volatility. For instance, the Bitcoin as the leading
cryptocurrency fell more than 40% to less than $12,000 within a month from more than $20,000 on
December 17, 2017. Some people attribute such a rapid rise to the block chain technology, believing
that Bitcoin can exceed $100,000, while some others deem that cryptocurrencies are speculation
products rather than exchange mediums (10; [17, 37]; and Bitcoin is prone to bubble [20, 31]. In
order to further recognize the price discovery function of Bitcoin in the financial market, meeting the
investors demand on cryptocurrencies, the U.S. financial corporations CME and CBOE have issued
Bitcoin futures, respectively. In addition, Bitcoin is an option for portfolio, asset allocation, and
hedging [28] as it is distinctly different in return, volatility, and correlation from other assets [11].
The Bitcoin, which is a leading cryptocurrency with a long history as well as the largest market
capitalization, has a total amount at the early design stage. The Bitcoin markets, whose pricing data
are available immediately and free of charge to anyone worldwide with internet access, usually
behave differently in prices across different markets. Price volatility as an important indicator
investigating market dynamics, reflects the market reaction to new information, and influences the
trading volume, whose fluctuation reflects different investor understanding on the new information.
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Indeed, connectedness among price volatilities across different
Bitcoin markets provides knowledge on the spread and
absorption of market information flows and extend to which
price reflects the market information. The volatility
connectedness has been explored in stock markets [16, 19, 48,
53], futures markets [36, 58], and commodity markets [3, 4, 21,
34].We believe that it is necessary to pay attention to the volatility
connectedness across Bitcoin markets. Reference [61] analyzed
the cross-correlations of the return-volume relationship across
the Bitcoin markets. Reference [52] identified the price
inconsistencies across the markets. In this paper, the volatility
connectedness across the Bitcoin markets is addressed.

Systematic and idiosyncratic decompositions for financial
variables have been considered important in main stream
finance literature [32]. Reference [50] used the quantile-on-
quantile Granger causality test to investigate extreme risk
spillover from the crude oil market to firm return in China.
They provided evidence of extreme risk spillovers from crude oil
price shocks to firm returns. Their results indicate that the
industrial characteristics of a firm matters. Reference [18]
investigated the relationship between crude oil and stock using
firm-level data and a bottom-up approach. Following the same
logic of Ref. [47]; they explicitly modeled systematic and
idiosyncratic risks using a capital asset pricing model in the
oil-stock relationship for each stock and then aggregated them
for the market-wide results. Reference [45] investigated the inter-
connectedness between WTI oil price returns and the returns of
listed firms in the U.S. energy sector. They focused on the issue of
whether firm-level idiosyncratic information matters. A
generalized dynamic factor model was used to separate
systematic components from idiosyncratic components in
these energy stocks. On the other hand, systematic and
idiosyncratic contagion are underlined in the existing
literature. In a financial system, systematic contagion is driven
by common factors that affect all the participants, while
idiosyncratic contagion is caused by factors that are specific to
the individuals [6]. This distinction contributes to making clear
the potential contagion drivers and the channels by which
contagion occurs. They are essential for regulators and
policymakers to monitor financial stability. Some works
distinguish the systematic and idiosyncratic contagion through
the traditional regression models [9, 25–27]. Reference [6]
applied principal component analysis and a generalized vector
autoregressive framework proposed by Ref. [22]) to differentiate
the systematic and idiosyncratic contagion. Ref. [38] proposed a
network-based framework to distinguish systematic and
idiosyncratic contagion and dealt with the situation that the
number of financial institutes involved in the contagion is
sufficiently large. Most existing literature on systematic and
idiosyncratic decomposition contribute to the oil-stock
relationship and financial crisis. To our knowledge, it has not
been applied in the cryptocurrency market. In this paper, we will
explore systematic and idiosyncratic volatility in the Bitcoin
markets. In addition, network connectedness of systematic and
idiosyncratic volatility in the Bitcoin markets is constructed.

Despite the popularity and versatility of the DY index, which
was developed by Ref. [22] to measure both total and directional

volatility spillovers, it cannot not distinguish potential asymmetry
in spillovers that originate due to both good and bad uncertainty.
A market volatility may be higher as institutes in that market
make it advantageous for firms to take risks that lead to greater
market growth [1, 24, 39]. Alternatively, a market volatility may
also be high because of the market-specific forces, such as political
risks, that impose risks on firms that they can not shed [8]. In the
former case, volatility is good as it results from positive shocks
that enable markets to be more productive. In contrast, the bad
volatility associated with the latter case can destabilize the market
and prevent its growth. As suggested by Ref. [54]; one can
decompose the aggregate volatility into “good” and “bad”
volatility components, which are associated with positive and
negative innovations to market returns. These two volatility
components have opposite impacts on asset prices and market
growth. Ref. [7] decomposed the realized daily volatility
calculated by intraday returns into good and bad volatility,
which separately captured the volatility component associated
with positive and negative movements in oil prices and the
exchange rate, permitting someone to determine whether good
volatility shocks propagate differently across currency and oil
markets compared to bad volatility shocks. Ref. [13] quantified
asymmetries in volatility spillovers that emerge due to bad and
good volatility by using data covering most liquid U.S. stocks in
seven sectors. They provided sample evidence for the asymmetric
connectedness of stocks at the disaggregate level, while they
provided evidence for asymmetric volatility connectedness on
forex markets by showing how bad and good volatility propagate
through forex markets [14]. Reference [15] analyzed total,
asymmetric, and frequency connectedness between the oil and
forex markets using high-frequent intraday data by employing
variance decompositions and spectral representation in
combination with realized semi-variances to account for
asymmetric and frequency connectedness. Reference [2] paid
attention to the potential asymmetries from good and bad
volatility in the causal linkages between the crude oil and
forex markets. Reference [55] examined asymmetric volatility
spillovers between crude and international stock markets. They
provided evidence that bad total volatility spillovers dominate the
system and change over time, suggesting that a pessimistic mood
and uninformed traders who tend to increase volatility dominate
in the markets. However, among the existing literature on
asymmetries from good and bad volatility, as well as their
volatility spillovers, we should note that sufficient attention
has not been paid in the cryptocurrency markets. In this
paper, we will construct a network connectedness of good
volatility and bad volatility among Bitcoin markets and
explore the asymmetric spillovers of good and bad volatility in
Bitcoin markets.

The contribution of the current paper can be summarized as
follows. First, we explore the time-varying characteristic of
leading roles played by systematic and idiosyncratic volatilities
in different Bitcoin markets. The time-varying dominance of
common volatility and characteristic volatility spillovers in the
Bitcoin markets helps to identify the influencing factors of Bitcoin
price changes, that is, whether the Bitcoin price changes are
caused by the evolution of Bitcoin itself or by changes in market
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policy attitudes and investor sentiment. The leading roles
between Bitcoin markets enable global investors to use Bitcoin
assets for the purposes of diversification and to reduce risks. The
leading roles also allow the possibility of forming portfolios to
increase returns, which can generate clear benefits for financial
market investors and risk management. Second, we continue to
explore the time-varying characteristic of leading roles played by
good and bad volatilities in different Bitcoin markets. In this way,
we complete the construction of network connectedness of
Bitcoin markets. This dominant time variability helps investors
identify the impact of policy news on Bitcoin price volatility.
Concretely, volatility is good in that it results from positive policy
news that enables Bitcoin price to be more productive. In
contrast, the bad volatility associated with negative policy
news can destabilize the market and prevent its growth. Third,
we examine the asymmetric spillovers of systematic and
idiosyncratic volatility in Bitcoin markets and lastly,
asymmetric spillovers of good and bad volatility are addressed
as well. This could shed light on whether spillovers are higher or
lower during a specific period. Asymmetric spillover in volatility
on Bitcoin markets indicates that past returns are highly
correlated with present volatility. As volatility is transferred
across markets by spillovers, it is reasonable to believe that
volatility spillovers exhibit asymmetries as well and that such
asymmetries might stem from qualitative differences due to
different information. Our evidence supports this prediction.
In this way, we construct the asymmetric network
connectedness of Bitcoin markets.

The paper is organized as follows. In Section 2, we present the
network connectedness of systematic and idiosyncratic volatility
in Bitcoin markets, involving the measurement of systematic and
idiosyncratic volatility, and static and dynamic analysis of the
network connectedness. Similar results for good and bad volatility
in Bitcoin markets are presented in Section 3. The asymmetric
network connectedness in Bitcoin markets is addressed in
Section 4. In Section 5, we conclude the paper with some
policy implications.

2 NETWORK CONNECTEDNESS OF
COMMON AND IDIOSYNCRATIC
VOLATILITY IN BITCOIN MARKETS
2.1 The Measurement of Realized Volatility
The realized volatility can better reflect the Bitcoin price volatility.
On the one hand, different from traditional financial assets, as it
does not admit price limit, together with the globalization and
convenience, the Bitcoin price can fluctuate strongly in a short
time. Accordingly, we measure the Bitcoin price volatility by
using highly frequent data. On the other hand, the price of
Bitcoin, which is one of speculative assets, can be influenced
by information acquisition and propagation rate. Considering the
instantaneity of information, highly frequent data may better
reflect the effects of information on the Bitcoin price volatility
[33, 57]. Accordingly, we use the realized volatility, proposed by
Ref. [5]; to measure the price volatilities in different Bitcoin
markets.

Denote by rit,j the return rate in the Bitcoin market i:

rit,j � 100 p (ln pit,j − ln pit,j−1).
where i � 1, 2, . . . , 6 represents different Bitcoinmarkets, which are
USD, EUR, JPY, PLN, IDR, and KRW. t represents the time while j
represents the time period. In this paper, we use the data with 5-min
frequency, which suggest that j � 1, 2, . . . , (1440/5) � 288. lnpit,j
and lnpit,j−1 represent the Logarithmic prices of Bitcoin market i at
time j and j-1 in trading day t.

Accordingly, for the market i and a specific business day t, the
realized volatility RVi

t can be calculated as the sum of the squared
intraday returns rit,j:

RVi
t � ∑

288

j�1
ri,2t,j , t � 1, 2, . . . ,T ,

where T is the sample period.
In this paper, we decompose the realized volatility into

systematic and idiosyncratic volatilities, to explore the
asymmetry between systematic and idiosyncratic volatility
spillovers. To identify the role of idiosyncratic information in
the spillover among the Bitcoin markets, this paper employs
generalized dynamic factor models (GDFM), proposed by Ref.
[12]; to decompose the realized volatility into both systematic and
idiosyncratic components. The method is also used by Ref. [30].
Consider a six-dimensional vector of realized volatility
{Yit} � (RV1

t ,RV
2
t , . . . ,RV

6
t )′, which can be decomposed into a

systematic volatility Xit and an idiosyncratic volatility Zit , such as:

Yit � Xit + Zit �: ∑
Q

k�1
bik(L)ukt + Zit .

where, {Xit} � (RVS1
t ,RVS2

t , . . . ,RVS6
t ) is systematic volatility,

{Zit} � (RVI1
t ,RVI2

t , . . . ,RVI6
t ). Q is the number of systematic

volatility factors, which is determined by the variance contribution
rate. Additionally, ukt stands for orthonormal white noise, L is the
lag operator and bik(L) are one-sided square-summable filters.

2.2 The Measurement of Network
Connectedness
In this paper, we measure the connectedness among different
Bitcoin markets by the DY spillover index. Most existing
literature measures connectedness by the DCC-GARCH model
[46, 56] and copula model (41; [35, 44]. On the one hand, these
models focus on the connectedness of two or three markets rather
than measuring the connectedness among many markets. On the
other hand, the delay effect of Bitcoin price volatility and the
interplay among the Bitcoin markets motivate us to investigate
the volatility spillovers. Recently the connectedness model, which
is based on a VAR model approach proposed by Ref. 23, has been
widely used to measure system spillover in the finance and
commodity market [40–43, 59, 60]. Using forecasting error
variance decomposition (FEVD) of the VAR model and a
rolling-windows approach, the method provides a simple yet
effective way for understanding the static and dynamic spillovers
among different Bitcoin markets.

Start from a p -th order, the VAR(p) model is as follows:
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RVt � ∑
p

i�1
ϕiRVt−i + εt . (1)

RVt � ∑
∞

i�1
Aiεt−i, (2)

where, RVt � (RV1
t ,RV

2
t , . . . ,RV

6
t ), i is the delay order, obtained

by the AIC or BIC criterion. εt is the vector of disturbances and are
assumed to be independently and identically distributed. Given the
assumption of stationarity of the VARmodel, Eq. 1 can be converted
into Eq. 2 in an infinite order vector moving average (VMA)
representation, where Ai is the 6 × 6 coefficient matrix, defined as

Ai � ϕ1Ai−1 + ϕ2Ai−2 +/ + ϕpAi−p.

Standard FEVD results tend to be sensitive to the ordering of variables
in VAR models. Reference 23 suggested to use the generalized FEVD
approach [51] to solve this problem. They define θij(H) as the
contribution from market i to market j, which is written as

θij(H) �
σ−1
ii ∑H

h�0
(e′iAhΣej)

2

∑H
h�0

(e′iAhΣA′hei)
2
,

where Σ is the variance-covariance matrix of the error term, σii is
the standard deviation of εt ; ej is a selection vector, which equals
one for the jth element and 0 otherwise. The contributions of
θij(H) can be normalized in the form of
~θij(H) � θij(H)/∑N

j�1θij(H), whereas it is easy to prove that
∑N

j�1~θij(H) � 1 and ∑N
i,j�1~θij(H) � N .

By excluding self-contributions in the system, the total
spillover index (TSI), denoted by S(H), can be written as:

S(H) � 100 × ∑N
i,j�1,i≠ j ~θij(H)
∑N

i,j�1 ~θij(H) � 100 ×∑N
i,j�1,i≠ j ~θij(H)

N
.

We calculate the from and to spillovers among different Bitcoin
markets by Formulas (3) and (4)

Toi(H) � 100 × ∑
N

j�1,i≠ j
~θji(H), (3)

Fromi(H) � 100 × ∑
N

j�1,i≠ j
~θij(H). (4)

Furthermore, we calculate the net spillover

Si,net(H) � Toi(H) − Fromi(H).
Similarly, the net pairwise measure can be written as

NPSij(H) � (~θji(H) − ~θij(H)) × 100.

2.3 Asymmetric Network Connectedness of
Common and Idiosyncratic Volatility
In this paper, we chose six Bitcoin markets according to their
trading volume, which were USD (BitStamp), EUR (Kraken), JPY
(Coincheck), PLN (BitBay), IDR (Infomax), and KRW (Korbit),
where the largest trading platforms in corresponding Bitcoin

markets are pointed out in the brackets. According to the
availability, the data range from March 6, 2016 to March 15,
2020. The measurement for spillover is through R-3.6.3, while the
network figure is through Gephi-0.9.2.

The empirical results show the static and dynamic spillovers of
systematic volatility and idiosyncratic volatility among different
Bitcoin markets. According to the AIC criterion, we applied the
VAR model with a delay order of three to measure the realized
volatility in Bitcoin markets while the VAR model with a lagged
value of four was applied to measure the systematic and
idiosyncratic volatility in Bitcoin markets. Accordingly, we
calculated the static volatility spillovers among Bitcoin
markets. With regard to dynamic spillovers, in this paper, we
set the roll-windows by 60 according to the duration of Bitcoin
volatility. We set the n. ahead describing dynamic spillovers of
systematic volatility among the Bitcoin markets by 20, while it
was set by 10 to describe dynamic spillovers of idiosyncratic
volatility among the Bitcoin markets. The numbers 20 and 10
reflect the periods when the volatility shocks in the Bitcoin
markets become stable. Table 1 shows the static volatility
spillovers among different Bitcoin markets.

The spillovers between systematic volatility and idiosyncratic
volatility dominate the connectedness across different Bitcoin
markets. The volatility spillovers among Bitcoin markets after
volatility decomposition are significantly stronger than that
before decomposition. We can see from the rows “Net” in
Table 1 that the most significantly enhanced volatility
spillover after volatility decomposition compared with the total
realized volatility spillover before volatility decomposition is

TABLE 1 | Static spillover in realized, common, and idiosyncratic volatility.

USD EUR JPY PLN IDR KRW From

Panel a: Realized volatility
USD 75.98 16.60 5.41 0.82 1.14 0.05 4.00
EUR 10.69 83.22 4.33 0.52 1.20 0.03 2.80
JPY 11.52 5.29 77.16 0.69 5.31 0.02 3.81
PLN 12.70 5.76 3.68 74.49 3.34 0.02 4.25
IDR 13.58 5.81 16.17 0.99 63.41 0.03 6.10
KRW 0.76 0.31 0.46 0.04 0.40 98.02 0.33
To 8.21 5.63 5.01 0.51 1.90 0.03 21.29
Net 4.21 2.83 1.2 –3.74 –4.2 –0.3 —

Panel B: Systematic volatility
USD 40.72 42.34 7.20 1.92 7.59 0.23 9.88
EUR 40.46 42.28 7.17 1.88 7.98 0.23 9.62
JPY 41.04 41.07 6.98 1.95 8.71 0.25 15.50
PLN 41.50 41.58 6.52 2.47 7.64 0.28 16.25
IDR 41.20 41.25 7.32 1.81 8.20 0.22 15.30
KRW 33.67 19.98 12.87 1.32 22.19 9.96 15.01
To 32.98 31.04 6.85 1.48 9.02 0.20 81.57
Net 23.1 21.42 –8.65 –14.77 –6.28 –14.81 —

Panel c: Idiosyncratic volatility
USD 16.75 3.52 32.82 30.84 10.07 6.00 13.87
EUR 9.47 10.66 32.95 31.85 10.18 4.90 14.89
JPY 6.71 5.30 32.92 32.29 6.61 16.17 11.18
PLN 7.00 5.66 30.95 37.81 6.71 11.87 10.37
IDR 8.14 8.29 37.07 32.73 11.41 2.36 14.76
KRW 6.12 6.73 17.27 42.36 4.93 22.59 12.90
To 6.24 4.92 25.18 28.35 6.42 6.88 77.98
Net –7.63 –9.97 14 17.98 –8.34 –6.02 —
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captured in the KRWmarket, which are given as 14.81/0.3 � 49
and 6.99/0.3 � 20. It is followed by the JPY market, which is
8.65/1.2 � 7 and 14/1.2 � 11. The most insignificantly enhanced
volatility spillover after volatility decomposition compared
with the total realized volatility spillover before volatility
decomposition is captured in the IDR market, which is 6.28/
4.2 � 1.5 and 8.34/4.2 � 2. With regard to spillover direction, the
systematic volatility spillover direction is almost consistent
with the overall volatility spillover direction, while the
idiosyncratic volatility spillover direction is significantly
different from that of overall volatility spillover. The
volatility spillovers change their directions in the USD, EUR,
JPY, and PLN markets, but they stayed the same in the IDR and
KRW markets, which can be seen by the signs of values in the
rows “Net” in Table 1.

The difference of Bitcoin market efficiency determines the
asymmetry between systematic volatility spillover and
idiosyncratic volatility spillover. On the one hand, the market
efficiency determines the level variation of volatility spillover. The
market efficiency determines market ability replying to shocks.
Considering the speculative nature of Bitcoin, the higher market
efficiency leads to stronger market ability replying to shocks, that
is a Bitcoin market can well eliminate spillover effects from other
Bitcoin markets. Hence, for those entities who have more
comprehensive financial markets like USD and EUR, their
cryptocurrency markets, like Bitcoin, are more likely to show a
stronger ability when replying to market shocks. Due to China’s
policies on the Bitcoin market, the barycenter of the Bitcoin
market has begun to shift to the KRW and JPY markets. Many
investors are attracted to invest on these markets, resulting in new
challenges for market efficiency. However, the market efficiency
cannot realize regulation and control, which results in a larger
variation of volatility spillovers in the KRW and JPY markets.
Besides, considering aims of speculators to pursue excess return,
the development of emerging Bitcoin markets affects the
investing decisions of speculators. Accordingly, spillovers from
markets like IDR vary weakly.

On the other hand, the market efficiency determines the
variation of spillover directions. The markets with higher
efficiency, like USD and EUR, play leading roles in the
development of Bitcoin. Hence, both USD and EUR show
positive spillover directions of systematic volatility, namely
that USD and EUR transmit volatilities to other markets. The
idiosyncratic volatility reflects the particular roles played by
different markets in the development of Bitcoin. The USD and
EURmarkets usually attract investor attention from other Bitcoin
markets, which may affect their price evolution. Thus, the
efficiency of Bitcoin markets determines their roles in the
price evolution of Bitcoin. This implies the importance of
systematic and idiosyncratic volatility spillovers among the
Bitcoin markets. We will further analyze the net pairwise
spillovers of systematic and idiosyncratic volatility among
different Bitcoin markets.

Figure 1 shows the net pairwise spillovers of systematic and
idiosyncratic volatility among different Bitcoin markets. The size
of the node represents the self-spillover of Bitcoin markets. The
lines between two nodes represent the net pairwise spillovers

between two Bitcoin markets, while the arrows represent the
spillover direction. We can see from Figure 1 that the spillover
direction of systematic volatility is significantly different from
that of idiosyncratic volatility. With regard to systematic
volatility, it mainly spills from markets with large
capitalization to those with small capitalization. More
precisely, the systematic volatilities spill significantly from the
USD, EUR, and JPYmarkets to the KRW, PLN, and IDRmarkets.
With regard to idiosyncratic volatility, it spills from markets with
small capitalization like KRW, PLN, and IDR to those with large
capitalization like USD, EUR, and JPY. These phenomena result
from the heterogeneity of different Bitcoin markets in leading the
price volatility characteristics of Bitcoin. The systematic volatility

FIGURE 1 | Net pairwise spillover in different Bitcoin markets. Note: I.
The lines between two nodes represent the net pairwise spillovers between
two Bitcoin markets, while the arrows represent the spillover direction. II. (A)
stands for net pairwise spillover for systematic volatility, while (B) stands
for idiosyncratic volatility.
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depicts the roles played by different markets in the price volatility
characteristics. Markets with small capitalization usually learn
from markets with large capitalization on Bitcoin price. More
investors are attracted to catch more information on price from
markets with large capitalization and generate investment
strategies in other Bitcoin markets. Thus the systematic
volatility spills from markets with large capitalization to those
with small capitalization. The idiosyncratic volatility mainly
embodies the heterogeneity of market efficiency. The Bitcoin
markets with small capitalization usually admit low market
efficiency, which result in a weak ability when replying to
price volatility. Markets with large capitalization have strong

ability when replying to price volatility. Therefore, as the
Bitcoin price fluctuates, the markets with small capitalization
show higher market risks due to their weak stability, while those
markets with large capitalization show stronger stability. At this
time, investors disperse their investment risks by investing across
different Bitcoin markets. Accordingly, the idiosyncratic volatility
spills from markets with small capitalization to those with large
capitalization.

The idiosyncratic volatility spillovers among different Bitcoin
markets are more easily influenced by policies. With regard to
systematic volatility spillover, the spillover directions almost stay
the same in the sample period. In addition, spillovers fluctuate

FIGURE 2 | Dynamic net spillover among different Bitcoin markets. (A) stands for the dynamic spillover for systematic volatility; (B) reports the dynamic spillover for
idiosyncratic volatility.
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moderately. We can see from Figure 2A that the net spillovers
between USD and other markets are almost positive, which is also
the case in the EUR market. However, it is not the case in the
KRW, PLN, IDR, and JPY markets. With regard to idiosyncratic
volatility, the spillover directions change more frequently and the
spillover fluctuates strongly. This implies the effects of major
events on the idiosyncratic volatility spillovers among different
Bitcoin markets. For instance, since September 2017, China has
forbidden the issue and trading of cryptocurrencies like Bitcoin.
The global Bitcoin market has shifted to the JPY and KRW
markets. At this moment, the systematic volatility spillovers
among Bitcoin markets fluctuate moderately, while the
idiosyncratic volatility spillovers in the JPY and KRW markets
fluctuate strongly. Besides, volatility spillovers from other
financial markets like stock markets to Bitcoin markets are
almost dominated by idiosyncratic volatility spillovers. At the
beginning of 2018, regular stock markets around the world were
in a state of stagnation. More and more investors began to pay
attention to Bitcoin, which resulted in the strong price volatility of
Bitcoin. Similarly, the systematic volatility spillovers fluctuated
moderately, while the idiosyncratic volatility spillovers among the
Bitcoin markets showed stronger fluctuations. As the attitudes to
Bitcoin positively grew in different countries, the idiosyncratic
volatility spillovers as well as the spillover fluctuations became
weaker.

3 NETWORK CONNECTEDNESS OF GOOD
AND BAD VOLATILITY IN BITCOIN
MARKETS
3.1 The Measurement of Good and Bad
Volatility
The transmission of good and bad information among different
Bitcoin markets also catches the attention of investors. In fact, the
bad volatilities of Bitcoin are related to negative information, such
as earnings, spending, and investor sentiment, while the good
volatilities are related to the positive information of these
variables. Accordingly, we further explored the spillovers
between good and bad volatilities in Bitcoin returns. Recently,
Ref. [7] decomposed the realized volatility into estimators of
realized semi-variance (RS) that captured the variance due to
negative or positive movements in bad and good volatility of
Bitcoin markets. The technique was quickly adopted in several
recent contributions (29; [49, 54]. This method can better
measure the evolution of good and bad volatilities in the
sample period. Concretely, the good volatility of Bitcoin is
measured by the positive return of Bitcoin, while the bad
volatility is measured by negative return. Accordingly, this
method can better reflect the good and bad volatilities of
Bitcoin. In addition, it can better capture the relationship
between the Bitcoin volatilities in the future and the Bitcoin
returns in the past. Thus, we used the realized semi-variance in a
similar manner. The negative and positive realized semi-
variances (RSi,+ and RSi,−) of the Bitcoin market are defined as
follows:

RSi,−t � ∑
M1i

j�1
I(rit,j < 0)ri,2t,j .

RSi,+t � ∑
M2i

j�1
I(rit,j ≥ 0)ri,2t,j .

where M1i represents the time period when the return is less
than 0 in the market i, M2i represents the time period when the
return is larger than 0 in the market i. In each Bitcoin market,
there holds M1i +M2i � 288. Thus, the relationship among
realized volatility, and good and bad volatilities can be
written as follows:

RVi
t � RS−t + RS+t

and can serve as a measure of downside and upside risk. For
instance, negative semi-variance corresponds to bad
information causing the return volatility of Bitcoin, and we
can use the measure as the empirical proxy for bad volatility
as in Ref. [54]. Similarly, positive semi-variance corresponds
to good information causing the return volatility of Bitcoin
and serves as a proxy for good volatility. In this section, we
substitute RVt � (RV1,+

t ,RV2,+
t , . . . ,RV6,+

t ) and RVt �
(RV1,−

t ,RV2,−
t , . . . ,RV6,−

t ) into (1) and analyze the static
and dynamic volatility spillovers among different Bitcoin
markets.

TABLE 2 | Static spillover in realized, good, and bad volatility.

USD EUR JPY PLN IDR KRW From

Panel a: Realized volatility

USD 75.98 16.60 5.41 0.82 1.14 0.05 4.00
EUR 10.69 83.22 4.33 0.52 1.20 0.03 2.80
JPY 11.52 5.29 77.16 0.69 5.31 0.02 3.81
PLN 12.70 5.76 3.68 74.49 3.34 0.02 4.25
IDR 13.58 5.81 16.17 0.99 63.41 0.03 6.10
KRW 0.76 0.31 0.46 0.04 0.40 98.02 0.33
To 8.21 5.63 5.01 0.51 1.90 0.03 21.29
Net 4.21 2.83 1.2 –3.74 –4.2 –0.3 —

Panel B: Good volatility

USD 74.83 13.63 8.38 0.30 2.83 0.03 4.19
EUR 15.22 76.09 5.96 0.15 2.56 0.01 3.98
JPY 19.03 7.21 64.06 0.36 9.32 0.01 5.99
PLN 16.37 7.59 3.34 67.46 5.21 0.02 5.42
IDR 19.12 9.12 10.87 0.45 60.43 0.01 6.59
KRW 1.16 0.64 0.66 0.03 0.64 96.88 0.52
To 11.82 6.37 4.87 0.21 3.43 0.01 26.71
Net 7.63 2.39 –1.12 –5.21 –3.16 -0.51 —

Panel c: Bad volatility

USD 71.55 24.46 2.77 0.72 0.45 0.05 4.74
EUR 4.84 91.93 2.28 0.43 0.48 0.04 1.35
JPY 6.20 5.31 85.64 0.63 2.19 0.03 2.39
PLN 5.46 9.23 1.68 81.85 1.75 0.02 3.03
IDR 7.28 2.90 20.92 1.26 67.61 0.03 5.40
KRW 0.34 0.10 0.31 0.03 0.22 98.99 0.17
To 4.02 7.00 4.66 0.51 0.85 0.03 17.07
Net –0.72 5.65 2.27 –2.52 –4.55 –0.14 —
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3.2 Static Analysis of Asymmetric Network
Connectedness
Considering the heterogeneity in investor reactions to good (bad)
information, we discuss the static asymmetry of good and bad
volatility spillovers among different Bitcoin markets. Table 2
shows the static spillovers of good and bad volatility. Figure 3
shows the net pairwise spillover of good and bad volatility.

The good volatility dominates the spillovers among different
Bitcoin markets. With regard to good volatility spillover, the self-
spillovers of individual markets are all weaker than that of the full
sample, which suggests that in the environment of good

information, the connectedness across different Bitcoin
markets is stronger than that in the full sample. On the
contrary, for bad volatility spillover, the self-spillovers of
individual markets are stronger than that of the full sample,
which suggests that in the environment of bad information, the
connectedness across different Bitcoin markets is weaker than
that in the full sample. This results from the heterogeneity of
investor expectation in good and bad volatility spillovers.
Therefore, we further analyze the asymmetry between good
volatility spillover and bad volatility spillover.

The asymmetry between good and bad volatility spillover
among the Bitcoin markets is captured by the self-spillovers of
individual markets and mutual spillovers among different
markets. The diagonal elements in Panel b and c of Table 2
depicts the self-spillovers of individual Bitcoin markets, while the
net spillover depicts the spillovers among the markets. With
regard to the self-spillover, except the U.S. market, other markets
show stronger bad volatility spillovers. With regard to mutual
spillovers among the markets, the spillover directions of both
good and bad volatility are almost the same, while the spillover
degrees are significantly different. More precisely, we can see
from the rows of “Net” that the spillover levels in the USD, PLN,
and KRWmarkets decrease, while they increase in the EUR, JPY,
and IDR markets compared with good volatility. This may result
from the heterogeneity of investor expectation in different
markets. Good information leads to positive investor
expectation on the Bitcoin price. Due to heterogeneous
conveniences catching information of investors, besides
assimilating good information in the autologous markets, the
Bitcoin investors usually obtain information from other markets
to generate their investment strategies. Thus, good volatility
spillovers among different Bitcoin markets are stronger. On
the contrary, bad information not only decreases the investor
expectations on Bitcoin, but also challenges the market system.
On the one hand, for those markets with more comprehensive
market systems like USD, considering the regulation complexity
caused by spillovers as well as protecting investors, they usually
reduce the spillovers to other markets, reaching a balance status.
On the other hand, the migration of primary Bitcoin markets
influences the development of the market system. With regard to
bad information, for those weakly stable markets like the PLN
and KRWmarkets, investors decide their investor expectation by
looking at the price trend of Bitcoin in other markets and then
generate their investment strategies. Besides, the markets reduce
spillovers from other markets by setting relevant admittance
criterion. Thus, relative to good volatility spillovers, the bad
volatility spillovers in the USD, PLN, and KRW markets are
significantly reduced. The digestive ability of the market itself also
determines the asymmetry of spillover. To reply to bad
information, the market implements the digestion of
information by enhancing autologous efficiency and perfecting
an autologous system. At this moment, the self-spillovers of the
Bitcoin markets are strong. However, for those markets where
investors are diversiform, like EUR, JPY, and IDR, increasing the
autologous spillovers cannot better digest bad information. They
have to strengthen the connectedness with other markets.
Accordingly, relative to good volatility spillovers, the bad

FIGURE 3 | Net pairwise spillover in good and volatility. Note: I. The lines
between two nodes represent the net pairwise spillovers between two Bitcoin
markets, while the arrows represent the spillover direction. II. (A) stands for net
pairwise spillover for good volatility, while (B) stands for bad volatility.
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volatility spillovers in the EUR, JPY, and IDR markets are
significantly enhanced.

The asymmetry of spillover direction between good volatility
and bad volatility is not evident.We can see from the arrows in (a)
and (b) of Figure 3 that except the USD, EUR, and KRWmarkets,
both the good volatility and bad volatility spill from markets with
large capitalization to markets with small capitalization. It also
deserves to be noted that good volatility spills from USD to EUR,
while the bad volatility spills from EUR to USD. Besides, KRW
receives both good and bad volatility spillovers.

As the markets with large capitalization play the leading roles
in the development of Bitcoin price, investors from markets with
small capitalization generate rational investment strategies to
earn more profits by looking at the price trend of Bitcoin. For
the USD and EUR markets, the similarity and superiority of the
market system determine the asymmetry of good and bad
volatility spillover directions between these two markets.
Meanwhile, the policy attitude on financial assets like Bitcoin
in the USD and EUR markets also determines the asymmetry of
spillover directions. In addition, the particularity of the KRW

FIGURE 4 |Dynamic net spillover between different Bitcoin markets. (A) stands for the dynamic spillover for good volatility; (B) reports the dynamic spillover for bad
volatility.
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market creates opportunities for Bitcoin investors to transfer
risks. Due to China’s policy attitude toward Bitcoin, the KRW and
JPY are gradually becoming primary Bitcoin markets, which
attract a great deal of investors. But as the JPY market follows
some superior design of the market system, it can better reply to
good and bad volatility spillovers of Bitcoin. The instability of the
KRW market creates opportunities for speculators to earn
excessive profits. Meanwhile, as the attitude of KRW on
Bitcoin and the advance of internet technology, the KRW
market has been an accepter of volatility spillover.

3.3 Dynamic Analysis of Asymmetric
Network Connectedness
Figure 4 shows the dynamic net spillovers of good and bad
volatility among different Bitcoin markets, where a) shows the
good volatility spillovers and b) shows the bad volatility
spillovers. The leading roles of good and bad volatility
spillovers are time-varying and heterogeneous in different
markets. The good and bad volatility spillover levels determine
their leading roles. We can see from the figure that good volatility
spillover played a leading role in the USDmarket before 2017 and
after 2018, while the bad volatility spillover played the leading role
in other time periods. The bad volatility spillovers played a
leading role in the EUR market before 2017, while both good
and bad volatility spillovers played the leading roles in the market
after then. For the JPY market, both good and bad volatility
spillovers played leading roles before 2018 while the bad volatility
spillover played the leading role after 2018. The good volatility
spillover played the leading role in the KRW market during the
whole period of the sample. For the IDR market, before 2017 the
bad volatility spillover played the leading role. The good volatility
spillover played the leading role during the periods of 2017II-
2018I and 2019II-2019III. Both good and bad volatility spillovers
played the leading roles the rest of the time. With regard to the
PLN market, the bad volatility spillover played the leading role
during the periods of 2017IV-2018I and 2019III-2020I, while
both the good and bad volatility spillovers played the leading roles
in other time periods.

The difference of market system determines the
heterogeneity in leading roles of good and bad volatility
spillovers among the Bitcoin markets. The policy attitude
from the USD market on new assets like cryptocurrencies
and the developing trend of Bitcoin in the USD market
provide a favorable environment for investors to generate
investment strategies. The good information from the USD
market enhances the investor expectations. Thus, the leading
role of good volatility in the USD market persists during the
whole sample period. However, the development of other
cryptocurrencies challenged Bitcoin during 2017 to 2018. At
this moment, the Bitcoin price volatility induced by bad
information had begun to contaminate different Bitcoin
markets, resulting in the joint leading roles played by good
and bad volatility spillovers in the USD market. Protecting
investors in the USD market enhances the market efficiency.
The increase of the Bitcoin market efficiency gradually digests
price volatility caused by bad information. Therefore, after 2018,

the good volatility spillover recovered the leading role in the
USD market.

The different perfection levels of the Bitcoin markets
determine the heterogeneity in leading roles of good and bad
volatility spillovers among different markets. This may result
from the effects of major events on the Bitcoin markets. Bitcoin
futures were born in December 2017 and were welcomed into the
USD and EUR markets. This provided an opportunity for the
EUR market. With a similar system to the USD market, EUR
attracts many investors into the market, changing the leading role
of EUR in volatility spillover. On the other hand, although JPY
followed the system from other markets, it cannot perfect the
market to adapt to the increase of investors. The JPY market
highlighted the legality of Bitcoin by issuing some relevant laws in
2018. However, as the investor heterogeneity, the issued laws
cannot well serve the market perfection. Thus, JPY mainly spilled
bad volatility after 2018. Due to the instability of the KRW
market, it has been the main receiver of both good and bad
volatility spillovers. Besides, as the newly developing Bitcoin
markets, IDR and PLN, the origins leading to market
imperfection and investor complexity are still unclear. The
investor expectations fluctuate strongly. Thus, the leading roles
of good and bad volatility spillovers in the IDR and PLN markets
do not show evident characteristics.

4 TEST ASYMMETRIC DYNAMIC
NETWORK CONNECTEDNESS IN BITCOIN
MARKETS
Using the results of dynamic spillovers in Sections 2 and 3, in this
section, we test the asymmetry between systematic (good)
volatility and idiosyncratic (bad) volatility. In the first
subsection, we construct statistical magnitudes to test the
asymmetry. In the second subsection, we test the asymmetry
between systematic and idiosyncratic volatility spillovers, while in
the third subsection, we test the asymmetry between good and
bad volatility spillovers.

4.1 Conducting Test Statistics of
Asymmetric Dynamic Network
We now describe how to test asymmetries in volatility spillovers.
This procedure is addressed by two steps. In the first step, we
propose a hypothesis, while in the second step, we construct
statistical magnitudes.

A comparison of the spillover values opens the following
possibilities. If the systematic (good) volatility spillovers equal
to the idiosyncratic (bad) volatility spillovers, the spillovers are
symmetric, and we expect the spillovers to be of the same
magnitude as spillovers from RV. The test for dynamic net
pairwise spillover among the markets also follows this
principle. These properties enable us to test the following
hypotheses:

H1
0 : S

1
net � S2net against HA : S1net ≠ S

2
net .

H2
0 : S

1
netpair � S2netpair against HA : S1netpair ≠ S2netpair.
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where S1net represents the dynamic systematic (good) volatility
spillovers, S2net represents the dynamic idiosyncratic (bad)
volatility spillovers. S1netpair represents the dynamic net pairwise
spillovers of systematic (good) volatilities, S2netpair represents the
dynamic net pairwise spillovers of idiosyncratic (bad) volatilities.

If the null hypothesis holds, it suggests that the spillover levels are
coincident in the time dimension among different Bitcoin markets.
Accordingly, we construct four statistical magnitudes as Eqs 5–8:

TAM1i � SSneti − SIneti. (5)

TAM1ij � SSNPSij − SINPSij, i≠ j. (6)

TAM2i � SGneti − SBneti (7)

TAM2ij � SGNPSij − SBNPSij, i≠ j. (8)

where Eqs 5 and 6 are statistical magnitudes testing the dynamic
spillovers and net pairwise spillovers of systematic and
idiosyncratic volatilities, while Eqs 7 and 8 are statistical
magnitudes testing the dynamic spillovers and net pairwise
spillovers of good and bad volatilities. i, j � 1, 2, . . . , 6
represent the number of Bitcoin markets. Accordingly, SSneti
represents the dynamic spillover of systematic volatility in the
market i, while SIneti represents the dynamic spillover of
idiosyncratic volatility in the market i. SSNPSij represents the net

pairwise spillover of systematic volatility between the market i
and market j, and SINPSij represents the net pairwise spillover of
idiosyncratic volatility between the market i and market j. SGneti,
SBneti, S

G
NPSij, and SBNPSij are similar statistical magnitudes for good

and bad volatilities.
According to the hypothesis and statistical magnitudes, the

hypotheses in this paper are as follows:

Test (1) : TAM1i(j) � 0. vs TAM1i(j) ≠ 0. (9)

Test (2) : TAM1i(j) < 0. vs TAM1i(j) > 0. (10)

Test (3) : TAM2i(j) � 0. vs TAM2i(j) ≠ 0. (11)

Test (4) : TAM2i(j) < 0. vs TAM2i(j) > 0. (12)

where (1) and (2) test the asymmetry of dynamic spillovers (net
pairwise spillovers) between systema-tic and idiosyncratic
volatilities, while (3) and (4) test the asymmetry of dynamic
spillovers (net pairwise spillovers) between good and bad
volatilities. In addition, i≠ j.

In this paper, we first address test (1) and test (3), namely that
the comparison of dynamic spillovers or net pairwise spillovers
between systematic (good) and idiosyncratic (bad) volatilities.
After rejecting the null hypothesis, we further test the spillover
levels, namely test 2) and test (4).

FIGURE 5 | Test results of net spillover between systematic and idiosyncratic volatilities (p < 0.05). Note: I: The boxplot show the dynamic net pairwise spillovers of
systematic and idiosyncratic volatilities among the Bitcoinmarkets. II: The t-value is the value of t-statistics. The p-value1 is the p-value of test (1). The p-value2 is the p-value of
test (2). If both the p-value1 and p-value2 are smaller than 0.05, then it is replaced by p-value. III: Test (1): TAM1i � 0. vs TAM1i ≠0. Test (2): TAM1i <0. vs. TAM1i > 0.
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Test the Asymmetric Connectedness of
Common and Idiosyncratic Volatility
In this section, we report the asymmetry of systematic and
idiosyncratic volatility dynamic spillovers among different
Bitcoin markets. On the basis of the static spillovers of
systematic and idiosyncratic volatilities in Section 3, Figure 5
shows the dynamic spillovers of systematic and idiosyncratic
volatilities among the Bitcoin markets. Table 3 discusses the
dynamic net pairwise spillover of systematic and idiosyncratic
volatilities among the Bitcoin markets.

The asymmetry between systematic and idiosyncratic volatility
spillovers is captured. In Figure 5, t-value is the value of t-statistics,
p-value1 represents the p-value of test (1), while p-value2 represents
the p-value of test (2). If the p-value1 and p-value2 are both smaller
than the confidence level 0.05, then it is replaced by the p-value. From
the p-value or p-value1, we can find the significant asymmetry
between the dynamic spillovers of systematic and idiosyncratic
volatilities. Furthermore, we test and compare the dynamic
spillover levels of systematic and idiosyncratic volatilities. We can
see that in the USD, EUR, and IDR markets, the p-value2 is smaller
than 0.05, while in the JPY, KRW, and PLNmarkets, p-value2 is larger
than 0.05. According to the null hypothesis and alternative hypothesis
of test (2), in the USD, EUR, and IDRmarkets, the dynamic spillovers
of systematic volatilities are significantly stronger than that of
idiosyncratic volatilities. Inverse results hold in the JPY, KRW, and
PLN markets.

On the one hand, the asymmetry between systematic and
idiosyncratic volatility spillovers is induced by the
heterogeneity of the influencing mechanism. The systematic
volatility is influenced by the autologous information and price
evolution of Bitcoin, while the idiosyncratic volatility is influenced
by the idiosyncratic information in different markets. From the
perspective as a financial asset, the effect of systematic information
on the Bitcoin price depends on the autologous security,
convenience, and particularity. Decentralization is the most
significant characteristic in the development of Bitcoin. The
blockchain is the primary technique support. This particularity
provides convenience for investors to generate investment

strategies, which attracts many investors to consider Bitcoin as
a financial asset. Meanwhile, due to the rapid development of the
internet, Bitcoin thefts happen all the time. Its security is another
problem that should be paid attention to. From the perspective of
markets, the effect of idiosyncratic information on the Bitcoin
price depends on the shocks of major events and policy attitudes.
The idiosyncratic policy attitude determines the legality and
security of Bitcoin transactions in the market as well as the
protection for investors, which can enhance the investment
expectation of Bitcoin investors. The development of financial
integration results in that one market may receive spillovers of
policy attitudes from other markets, which may make differences
to the investment expectations of investors. Accordingly, there
shows significant asymmetry between systematic and
idiosyncratic volatility spillovers among different Bitcoin markets.

On the other hand, the asymmetry between systematic and
idiosyncratic volatility spillovers among different Bitcoin markets
results from the heterogeneity of roles played by different markets
in deciding the price evolution of Bitcoin. The USD and EUR, as the
markets with large capitalization, focus more on the advantages
brought by the development of Bitcoin, especially the development
of blockchain technology. The attitude of IDR, who focuses more
on technology, toward Bitcoin determines the impact of the IDR
market on the Bitcoin price evolution. Due to China’s policy
attitude toward Bitcoin, the weight shifts to the JPY and KRW
markets, such that more speculators flood into their markets, which
results in the weakening of market stability. Meanwhile, that
supervision is supplemented sparingly is another reason for the
weakening of market stability. Even though one market focuses
more on technology, the idiosyncratic characteristics of individual
markets still impact the Bitcoin price evolution. These markets
reflect the roles of different markets in the Bitcoin price evolution.
More precisely, USD, EUR and IDR influence the Bitcoin price by
spreading public information, while JPY, KRW, and PLN spread
idiosyncratic information.

This shows asymmetry between systematic and idiosyncratic
volatility spillovers. Panel a in Table 3 reports the dynamic net
pairwise spillovers among different Bitcoin markets. On the basis
of asymmetry in panel a, in this paper, we further test the dynamic

TABLE 3 | Test results of net pairwise spillover between systematic and idiosyncratic volatility.

USD EUR JPY PLN IDR

Panel a Test (1)

EUR 1.53 (0.13) — — — —

JPY –61.85 (0.00) –80.60 (0.00) — — —

PLN –101.57 (0.00) –123.84 (0.00) –13.45 (3.32e-39) — —

IDR –52.46 (0.00) –72.76 (0.00) 47.08 (0.00) 69.71 (0.00) —

KRW –72.56 (0.00) –95.51 (0.00) 12.56 (5.88e-35) 57.07 (0.00) –35.69 (6.35e-227)

Panel b Test (2)

EUR — — — — —

JPY –61.85 (1.00) –80.60 (1.00) — — —

PLN –101.57 (1.00) –123.84 (1.00) –13.45 (1.00) — —

IDR –52.46 (1.00) –72.76 (1.00) 47.08 (0.00) 69.71 (0.00) —

KRW –72.56 (1.00) –95.51 (1.00) 12.56 (2.94e−35) 57.07 (0.00) –35.69 (1.00)

Note: I. This table shows t-value and p-value. The p-value was shown in parentheses. II: Test (1): TAM1ij � 0. vs TAM1ij ≠0. Test (2): TAM1ij < 0. vs TAM1ij > 0.
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net pairwise spillover levels of systema-tic and idiosyncratic
volatilities in different markets, see panel b in Table 3. From
panel a in Table 3, it can be seen that among the fifteen net
pairwise spillovers, only the pair USD-EUR accepts the null
hypothesis on the inexistence of asymmetry, which reflects the
almost asymmetry of dynamic net pairwise spillovers. Further
looking at panel b in Table 3, among the fourteen asymmetric net
pairwise spillovers, ten pairs show that the dynamic spillovers of
systematic volatility are weaker than that of idiosyncratic
volatility. Accordingly, from the net pairwise spillovers among
the markets, the idiosyncratic volatility spillover plays a leading
role among the Bitcoin markets.

The effect of idiosyncratic information on the Bitcoin price
evolution highlights the leading roles of idiosyncratic volatility
spillover among the Bitcoin markets. The development of
Bitcoin has driven the development of emerging technology
such as blockchain technology. The development of this
technology attracts much attention from different countries
and regions. However, the security of Bitcoin challenges the

design of financial systems and the supervision of financial risk
in the countries and regions. The difference between
cryptocurrency assets like Bitcoin and traditional assets leads
to different policy attitudes of markets on the Bitcoin. The
difference of policy attitudes gives rise to barriers for investors
and speculators to earn profits. Meanwhile, one market may be
infected by policy attitudes from other markets, leading to the
fluctuation of investor expectations and change of market
stability, resulting in the price volatility of Bitcoin in the
market. However, as with the similar market systems of
USD and EUR, there does not appear to be any asymmetric
net pairwise spillovers between systematic and idiosyncratic
volatilities in these two markets.

4.2 Test the Asymmetric Connectedness of
Good and Bad Volatility
In this section, we report the asymmetry between good and bad
volatility dynamic spillovers among different Bitcoin markets. On
the basis of the dynamic net spillovers of good and bad volatilities

FIGURE 6 | Test results of net spillovers between good and bad volatilities (p < 0.05). Note: I. The boxplot show the dynamic net spillovers of good and bad
volatilities among different Bitcoin markets. II. The t-value is the value of t-statistics. The p-value1 is the p-value of test (3). The p-value2 is the p-value of test (4). If the
p-value1 is larger than 0.05, it is replaced by p-value. III: Test (3): TAM2i � 0. vs TAM2i ≠ 0. Test (4): TAM2i <0. vs.TAM2i >0.
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in Section 4, Figure 6 shows the dynamic net spillovers of good
and bad volatilities among different Bitcoin markets. Table 4
shows the dynamic net pairwise spillovers of good and bad
volatilities among different Bitcoin markets.

The asymmetry of good and bad volatility spillovers is
heterogeneous in different markets. In Figure 6, the t-value is the
value of statistics t. The p-value1 is the p-value of test (3). The
p-value2 is the p-value of test (4). If the p-value1 is larger than 0.05,
then it is replaced by p-value. From the p-value or p-value1 in
Figure 6, we can see the significant heterogeneity of asymmetry
between good and bad volatility dynamic spillovers in different
markets. More precisely, the p-value suggests accepting the null
hypothesis on the inexistence of asymmetry in the EUR and IDR
markets. The p-value2 is less than 0.05 in theUSDandKRWmarkets,
while it is more than 0.05 in the JPY and PLNmarkets. According to
the null hypothesis and alternative hypothesis of test (4), we can see
that the good volatility dynamic spillovers are significantly stronger
than the bad volatility dynamic spillovers in the USD and KRW
markets, while the inverse case holds in the JPY and PLN markets.

The market information brought into the public determines the
heterogeneity of asymmetric spillovers between good and bad
volatilities among different markets. If more market information is
brought to the public, the investors can better grasp the Bitcoin price
and generate correct investment strategies, which may strengthen the
market stability. Thus, the Bitcoin price admits positive returns. On the
contrary, if less market information is brought into the markets, the
uncertainty of investor expectations may be higher and the market
stability is lower, resulting in stronger volatility. At this moment, the
Bitcoin price admits negative returns. For the USD andKRWmarkets,
influenced by the necessity to protect investor interests and construct
financial market systems, the good volatility spillovers are significantly
stronger than the bad volatility spillovers. From the perspective of
protecting investor interests, the investor can better grasp the Bitcoin
price by themarket information brought into the public.Moreover, the
marketmay release advantageous information to prevent the instability
of other markets from influencing the price in the autologous markets.
At this moment, the investors may show good expectations and
generate rational investment strategies. In addition, the insecurity of
Bitcoin markets, such as events like hacker attacking and Bitcoin theft,

requires the markets to enhance the perfection of autologous market
systems. This enhancement shows positive effects on the Bitcoin price.
Therefore, the good volatility contributesmore to theBitcoin price than
the bad volatility in theUSDandKRWmarkets. The inverse case arises
in the JPY and PLN markets. Influenced by the shift of key Bitcoin
markets, there is a high proportion of speculators in the JPY and PLN
markets. At this moment, themarket stability is lower and the investor
expectations are unstable. This causes some issues for investors when
generating investment strategies. Thus, the bad information produces a
negative effect on the Bitcoin price. In the EUR and IDR markets, the
good and bad information shows almost equivalent effects on the
Bitcoin price volatility. Furthermore, we analyze the spillover effects of
price volatility across different Bitcoin markets.

The bad volatility spillovers play leading roles in the Bitcoin
markets with large capitalization. Panel a in Table 4 reports the
asymmetry of dynamic net pairwise spillovers among the Bitcoin
markets. On the basis of asymmetry existing in themarkets in panel a,
we further test the levels of dynamic net pairwise spillovers of good
and bad volatilities in different markets, see panel b in Table 4. From
panel a in Table 4, among the fifteen pairs of net pairwise spillovers,
only the pairs EUR-PLN and EUR-IDR accept the null hypothesis on
the inexistence of asymmetry. Therefore, the dynamic net pairwise
spillovers among different Bitcoin markets are almost all asymmetric.
By looking at panel b in Table 4, among the thirteen asymmetric net
pairwise spillovers, there are six pairs showing that good volatility
spillovers are weaker than bad volatility spillovers, where five of them
are relevant to the USD market. Accordingly, the results of net
pairwise spillovers suggest the heterogeneity in dynamic spillovers
of good and bad volatilities among different Bitcoin markets.

The Bitcoin market system design leads to the heterogeneity in
asymmetric spillovers of good and bad volatilities. The efficiency and
perfection of theUSDmarket are both higher than othermarkets. This
market superiority can well protect the profits of investors. The
investor expectations are also higher. At this moment, the investors
and policy makers aim to decrease the market volatility, through
releasing advantageous information. Therefore, the good volatility
spillover plays a leading role from the USD market to other markets.
The difference between virtual assets like Bitcoin and traditional
financial assets means that the Bitcoin can be shocked greatly by

TABLE 4 | Test results of net pairwise spillover between good and bad volatilities

USD EUR JPY PLN IDR

Panel a Test (3)

EUR –3.11 (0.002) — — — —

JPY –10.40 (6.89e−25) –5.16 (2.51e−07) — — —

PLN –8.12 (6.76e−16) –0.88 (0.37) 5.81 (7.03e−09) — —

IDR –4.59 (4.43e−06) –0.31 (0.75) 4.57 (5.02e−06) 2.62 (0.008) —

KRW –4.69 (2.80e−06) 1.82 (0.06) 4.28 (1.85e−05) 2.69 (0.007) 3.91 (9.35e−07)

Panel b Test (4)

EUR –3.11 (0.99) — — — —

JPY –10.40 (1.00) –5.16 (0.99) — — —

PLN –8.12 (1.00) — 5.81 (3.51e−09) — —

IDR –4.59 (0.99) — 4.57 (2.51e−06) 2.62 (0.004) —

KRW –4.69 (0.99) 1.82 (0.034) 4.28 (9.27e−06) 2.69 (0.003) 3.91 (4.67e−05)
Note: This table shows t-value and p-value. The p-value was shown in parentheses. Test (3): TAM2ij � 0. vs TAM2ij ≠ 0. Test (4): TAM2ij <0. vs TAM2ij > 0.

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 58281714

Chen and Dong Dynamic, Connectedness, Bitcoin, Relaized Volatility

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


major events, which challenges the design of Bitcoin market systems.
At present, most markets are in the stage of exploring Bitcoin. There
shows higher uncertainty of investor expectations in themarkets. This
uncertainty enhances the instability of markets and then the Bitcoin
price volatility. Thus, the bad volatility spillovers play leading roles in
the connectedness of other Bitcoin markets.

5 CONCLUSIONS AND POLICY
IMPLICATIONS

Information transmission is an important link of Bitcoin price
volatility spillovers. In this paper, the sample data were from six
Bitcoin markets whose capitalizations are within the top ten. The
sample period was from March 6, 2016 to March 15, 2020. First, we
measured the realized volatilities of Bitcoin in each market with the
data frequency of 5min. Second, we decomposed the realized volatility
into systematic and idiosyncratic volatilities (good and bad volatilities),
and then analyzed the static and dynamic spillovers. Finally, we tested
the asymmetry between systematic and idiosyncratic volatility
spillovers (good and bad volatility spillovers) by constructing
statistics. The conclusions are summarized as follows:

The spillovers between systematic and idiosyncratic volatilities
in different Bitcoin markets play leading roles. In addition, the
idiosyncratic volatility spillovers are more easily influenced by
policies. The most enhancement on volatility spillover after
decomposition of the realized volatility was found in the KRW
market, which was given as 14.81/0.3 � 49 and 6.99/0.3 � 20,
which was followed by the JPY market, given as 8.65/1.2 � 1 and
14/1.2 � 11. The least enhancement on volatility spillover after
decomposition of the realized volatility was found in the IDR
market, which was given as 6.28/4.2 � 1.5 and 8.34/4.2 � 2. The
spillover directions changed after decomposition in the USD,
EUR, JPY, and PLN markets, while they did not change in the
IDR and KRW markets. Besides, the systematic volatility
spillovers almost did not change their signs during the sample
period. The signs of the idiosyncratic volatility spillovers among
different markets showed strong relationship to policies.

Good volatility spillovers dominated the Bitcoin markets and
changed over time. More precisely, comparing the good and bad
volatility spillovers, the spillover levels decreased in the USD, PLN,
and KRW markets, while they increased in the EUR, JPY, and IDR
markets. Good volatility spillovers played leading roles in the USD
market before 2017 and after 2018, while bad volatility spillovers
played leading roles in other time periods. Bad volatility spillovers
played leading roles in the EUR market before 2017, while both the
good and bad volatility spillovers played leading roles after 2017. Both
the good and bad volatility spillovers played leading roles in the JPY
market before 2018, while the bad volatility spillovers played the
leading roles after 2018. Good volatility spillovers played leading roles
in the sample period. In the IDR market, bad volatility spillovers
played the leading roles before 2017. The good volatility spillovers
played leading roles during the periods from 2017II to 2018I and
2019II to 2019III. Both the good and bad volatility spillovers played
the leading roles in other time periods. In the PLN market, the bad
volatility spillovers played the leading roles during the periods from

2017IV to 2018I and 2019III to 2020I. Both the good and bad
volatility spillovers played the leading roles in other time periods.

There was significant asymmetry between systematic and
idiosyncratic volatility spillovers among different Bitcoin
markets. The asymmetries between good and bad volatility
spillovers were heterogeneous in different markets. More
precisely, the dynamic spillovers of systematic volatility were
significantly stronger than that of idiosyncratic volatility in the
USD, EUR, and IDR markets. With regard to good and bad
volatility spillovers, there was no asymmetry in the EUR and IDR
markets. The dynamic spillovers of good volatility in the USD and
KRW markets were significantly stronger than that of bad
volatility. The inverse results hold in the JPY and PLN markets.

Indeed, the empirical results in this paper can provide some policy
suggestions for regulators and investors. For the regulators, on the
one hand, it should strengthen the establishment of market systems
and information public degrees. The Bitcoin price volatility results
from the difficulties for investors to obtain information, the strong
hysteresis, and the imperfection of market systems. We should be
familiar with the Bitcoin price evolution and its internal logic by
strengthening the establishment of market systems, which is
important to take the advantages of Bitcoin and protect the legal
interests of investors. On the other hand, it should prevent
information shocks from other markets. The regulators should
guide the investors to invest rationally. Markets should learn form
those markets with higher perfection like USD and EUR to prevent
idiosyncratic information from other markets from causing strong
volatility of the Bitcoin price. For the investors, the heterogeneity of
information volatilities among cryptocurrencies should be paid
attention to for the generation of investment strategies.
Information and major events have large impacts on the Bitcoin
price volatility. The investors should grasp the information of Bitcoin
price by various ways and invest rationally. The investors should well
filter the information and generate investment strategies. The analysis
on the asymmetry of volatility spillovers among different Bitcoin
markets provides some help for investors to estimate event shocks.
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