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In this paper, we study network coherence characterizing the consensus behaviors with

additive noise in a family of book graphs. It is shown that the network coherence is

determined by the eigenvalues of the Laplacian matrix. Using the topological structures

of book graphs, we obtain recursive relationships for the Laplacian matrix and Laplacian

eigenvalues and further derive exact expressions of the network coherence. Finally, we

illustrate the robustness of network coherence under the graph parameters and show

that the parameters have distinct effects on the coherence.
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1. INTRODUCTION

With the discovery of deterministic small-world [1] and scale-free [2] networks, deterministically
growing networkmodels have gained increasing attention because they can provide exact results for
topology and dynamics. As a special type of deterministic networks, fractal networks constructed by
fractal structures, such as Koch fractals [3], Sierpinski fractals [4], and Vicsek fractals [5], have been
widely studied. Presently the main issues that require consideration in fractal networks include
random walks [6–9], consensus dynamics [10, 11] and percolation [12]. It is proved that fractal
networks are good candidate network models for verifying the results of random graphs.

Calculating the Laplacian spectrum of a network plays an important role in the study of network
characteristics. For example, the Kirchhoff index and global mean first-passage time of a network
are related to the sum of reciprocals of non-zero eigenvalues [13–15]. The synchronizability [16]
of a network refers to the ratio of the second smallest eigenvalue to the largest eigenvalue of
the Laplacian matrix. In addition, the effective graph resistance is connected with the Laplacian
spectrum [17]. Recently, network coherence [10] was introduced to characterize the extent of
consensus of coupled agents under the noisy circumstance and was determined by the Laplacian
spectrum in an H2 norm. This concept of the network coherence helps to study the relationship
between the Laplacian eigenvalues and network consistency. Great progress has been made for
some special networks such as Vicsek fractals [10], tree-like networks [11], Sierpiński graphs [18]
and weighted networks [19]. Many works have been devoted to studying the network coherence.
Hong et al. studied the role of Laplacian energy on the coherence in a family of tree-like networks
with controlled initial states [20]. Patterson and Bamieh investigated the leader-follower coherence
and proposed optimal algorithms to select the leaders [21]. Later, Sun et al. proposed a leader
centrality to identify more influential spreaders using the optimal coherence [22].

It is known that the topology of a graph dominates the Laplacian eigenvalues [23]. Thus,
calculating the Laplacian eigenvalues is a technical challenge and it is theoretical and practical
interest to find new ways to calculate them. In this paper, a family of book graphs is chosen as our
network models. The topological indices, e.g., randic index, sum connectivity index, geometric-
arithmetic index, fourth atom-bond connectivity index, and edge labeling, have been analytically
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FIGURE 1 | Book graphs Bm.

FIGURE 2 | Stacked book graphs Bm,n with m = 3, n = 6.

obtained [24, 25]. However, the dynamics of the book graphs
remains less understood, in spite of the facts that studying the
dynamical processes leads to a better understanding of how the
underlying systems work.

The rest of this paper is organized as follows. Book graphs
and network coherence are presented in section 2. Section 3
gives detailed calculations of network coherence. Conclusions are
given in section 4.

2. MODEL PRESENTATION AND
NETWORK COHERENCE

2.1. Book Graphs
Book graphs Bm are defined as the graph Cartesian product [26],
i.e., Bm = Sm+1�P2, where Sm(m ≥ 1) is a star graph and
P2 is the path graph on two nodes, see Figure 1. The stacked
book graphs Bm,n of order (m, n) are Bm,n = Sm+1�Pn, where
Pn(n ≥ 2) is the path graph on n nodes, see Figure 2.

2.2. Network Coherence
The network coherence was introduced to characterize the
steady-state variance of the deviation from consensus. The
relationship [10] between network coherence and Laplacian
eigenvalues was established. The consensus dynamics with the
additive noise are given by

ẋi(t) = −
∑

j∈�i

Lijxj(t)+ ηi(t),

where xi(t) is the state of node i and subject to the stochastic noise
ηi(t). L is the Laplacian matrix. �i is the neighboring node set of
node i, and ηi(t) is a delta-correlated Gaussian noise.

Then, the first-order network coherence is defined as the
mean, steady-state variance of the deviation from the average of
all node values, i.e.,

H : =
1

N

N
∑

i=1

lim
t→∞

var






xi(t)−

1

N

N
∑

j=1

xj(t)






,

where var is the expectation of the squared deviation of a random
variable from its mean.

Let 0 = λ1 < λ2 ≤ . . . ≤ λN be the Laplacian eigenvalues.
The network coherence is given by

H =
1

2N

N
∑

i=2

1

λi
. (1)

When the network has a smaller variance, it has a higher network
coherence, meaning that it is more robust to the noise.

3. CALCULATIONS OF NETWORK
COHERENCE

In this section, we present the detailed calculations of the sum
of reciprocals of the Laplacian eigenvalues and obtain exact
expressions of network coherence. According to the structure of
Bm,n, its Laplacian matrix reads as

Lm,n =













Lm + Im+1 −Im+1 0 · · · 0 0

−Im+1 Lm + 2Im+1 −Im+1 · · · 0 0

0 −Im+1 Lm + 2Im+1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · Lm + 2Im+1 −Im+1

0 0 0 · · · −Im+1 Lm + Im+1













,

where Lm is the Laplacian matrix of a star graph Sm, that is,

Lm =








m −1 · · · −1
−1 1 · · · 0
...

...
...

...
−1 0 · · · 1







.

Then, we need to solve the characteristic equation Lm,nx = λx,
which is given by

(Lm + Im+1)x1 − Im+1x2 = λx1,
−Im+1x1 +(Lm + 2Im+1)x2 − Im+1x3 = λx2,

...
...

...
−Im+1xn−1 + (Lm + Im+1)xn = λxn,

(2)

where x = (xT1 , x
T
2 , . . . , x

T
n )

T and the dimension of xi(1 ≤ i ≤ n)
ism+ 1.
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Suppose Lmxi = λjxi, i = 1, 2, . . . , n, where
λj(j = 1, 2, . . . ,m + 1) are the eigenvalues of Lm. Then,
Equation (2) becomes

(

λj + 1
)

x1 − x2 = λx1,
−x1 +

(

λj + 2
)

x2 − x3 = λx2,
...

...
...

−xn−1 + (λj + 1)xn = λxn.

(3)

We then rewrite Equation (3) as

(

R
j
n(λ)− λj

)

x1 = 0, n ≥ 2,

where

R
j
n(λ) = λ − 1−

1

λ −
(

λj + 2
)

−
1

λ −
(

λj + 2
)

−
1

· · · λ −
(

λj + 2
)

−
1

λ − (λj + 1)

.

Further, we have

R
j
n(λ) = λj, j = 1, 2, . . . ,m+ 1. (4)

We rewrite R
j
n(λ) in a recursive form as

















R
j
n(λ) = λ − 1−

1

R
j
n−1(λ)−

(

λj + 1
) ,

R
j
2(λ) = λ − 1−

1

λ − (λj + 1)
=

λ2 − (2+ λj)λ + λj

λ − (λj + 1)
.

From Equation (4), each eigenvalue λj produces to n eigenvalues
and Bm,n has n(m+1) eigenvalues, denoted by3n = {λni |1 ≤ i ≤
n(m + 1)} = 31

n ∪ 32
n . . . ∪ 3m+1

n . For convenient calculations,
we denote the smallest eigenvalues λn1 = 0. In the following
subsections, we divide λj into two cases: λj 6= 0 and λj = 0 to
obtain the network coherence.

3.1. When λj 6= 0, j = 2, . . . ,m+ 1
Let R

j
n(λ) = T

j
n(λ)/P

j
n(λ), where T

j
n(λ) and P

j
n(λ) are two

polynomials satisfying gcd[T
j
n(λ), P

j
n(λ)] = 1, the term gcd is the

greatest common divisor. Then, we obtain the following recursive
relationships as

T
j
n(λ) = [T

j
n−1(λ)−

(

λj + 1
)

P
j
n−1(λ)]λ − T

j
n−1(λ)+ λjP

j
n−1(λ),

P
j
n(λ) = T

j
n−1(λ)−

(

λj + 1
)

P
j
n−1(λ), (5)

where the initial conditions are

T
j
2(λ) = λ2 − (2+ λj)λ + λj ,

P
j
2(λ) = λ − (λj + 1).

From Equation (5), we have

{

t
j
n(0) = −t

j
n−1(0)+ λjp

j
n−1(0),

p
j
n(0) = t

j
n−1(0)−

(

λj + 1
)

p
j
n−1(0).

(6)

where t
j
n(0) and p

j
n(0) are the constant terms of T

j
n(λ) and P

j
n(λ).

It follows from Equation (6) that

p
j
n(0)+

(

λj + 2
)

p
j
n−1(0)+ p

j
n−2(0) = 0. (7)

Solving Equation (7) with initial conditions of p
j
2(0) = −(λj + 1)

and p
j
3(0) = λ2j + 3λj + 1 yields

p
j
n(0) = c

j
1(r

j
1)

g + c
j
2(r

j
2)

g , (8)

where r
j
1 and r

j
2 are the roots of the characteristic equation λ2 +

(λj + 2)λ + 1 = 0. The constants r
j
1, r

j
2, c

j
1 and c

j
2 are



















r
j
1 = −(λj+2)+

√
λj(λj+4)

2 ,

r
j
2 = −(λj+2)−

√
λj(λj+4)

2 ,

c
j
1 = 1

(r
j
1)

2−1

[

(λj)
2 + 3λj + 1+ (λj + 1)r

j
2

]

,

c
j
2 = 1

(r
j
2)

2−1

[

(λj)
2 + 3λj + 1+ (λj + 1)r

j
1

]

.

Substituting Equation (8) into Equation (6) yields

t
j
n(0) = −

[

c
j
1(r

j
1)

n−2
(

1+ r
j
1

)

+ c
j
2(r

j
2)

n−2
(

1+ r
j
2

)]

.

Next, we need to calculate the first-order terms t
j
n(1), p

j
n(1) of

T
j
n(λ) and P

j
n(λ). Using the relationship between T

j
n(λ) and P

j
n(λ)

of Equation (5) gives

t
j
n(1) = t

j
n−1(0)−

(

λj + 1
)

p
j
n−1(0)− t

j
n−1(1)+ λjp

j
n−1(1),

p
j
n(1) = t

j
n−1(1)−

(

λj + 1
)

p
j
n−1(1),

where the initial values are t
j
2(1) = −(λj + 2), p

j
2(1) = 1, p

j
3(1) =

−(2λj + 3). Then, we obtain

t
j
n(1) =

{

ej(r
j
1)

2 +
[

ngj +
(

λj + 1
)

ej
]

r
j
1

+ (n− 1)
(

λj + 1
)

gj
}

(r
j
1)

n−2

+
{

fj(r
j
2)

2 +
[

nhj +
(

λj + 1
)

fj
]

r
j
2

+ (n− 1)
(

λj + 1
)

hj
}

(r
j
2)

n−2,

p
j
n(1) = ej(r

j
1)

n−1 + fj(r
j
2)

n−1 + (n− 1)
[

gj(r
j
1)

n−2 + hj(r
j
2)

n−2
]

,
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where


























gj = −
c
j
1

[

(λj+2)r
j
1+1

]

2(r
j
1)

2+(λj+2)r
j
1

,

hj = −
c
j
2

[

(λj+2)r
j
2+1

]

2(r
j
2)

2+(λj+2)r
j
2

,

ej = [1−(gj+hj)]r
j
2+2(gjr

j
1+hjr

j
2)+(2λj+3)

1−(r
j
1)

2
,

fj = [1−(gj+hj)]r
j
1+2(gjr

j
1+hjr

j
2)+(2λj+3)

1−(r
j
2)

2
.

We introduce a new polynomial as

D
j
n(λ) = T

j
n(λ)− λjP

j
n(λ),

=
(

λ − λn(j−1)n+1

) (

λ − λn(j−1)n+2

)

. . .

(

λ − λnjn

)

. (9)

Using the Vieta’s formula [26, 27] for D
j
n(λ) = 0, we obtain its

constant and first-order terms, denoted by d
j
n(0), d

j
n(1), that is,



























d
j
n(0) = t

j
n(0)− λjp

j
n(0)

= −c
j
1(r

j
1)

n−2
[

1+
(

1+ λj
)

r
j
1

]

− c
j
2(r

j
2)

n−2
[

1+
(

1+ λj
)

r
j
2

]

,

d
j
n(1) = t

j
n(1)− λjp

j
g(1)

= (r
j
1)

n−2
[

ej(r
j
1)

2 +
(

ngj + ej
)

r
j
1 + (n− 1)gj

]

+(r
j
2)

n−2
[

fj(r
j
2)

2 +
(

nhj + fj
)

r
j
2 + (n− 1)hj

]

.

(10)
3.2. When λj = 0

When λj = 0, R1n(λ) = 0 has only one root λn1 = 0. To

obtain all the non-zero roots of R
j
n(λ) = 0, we introduce a new

polynomial, i.e.,

Z1
n(λ) =

1

λ
R1n(λ).

Further,

T1
n(λ) = (λ − 1)T1

n−1(λ)− P1n−1(λ),

P1n(λ) = λT1
n−1(λ)− P1n−1(λ),

where the initial conditions are T1
2 (λ) = λ − 2, P12(λ) = λ − 1.

In the same way, we obtain the following coefficients, which are
given by

{

t1n(0) = (−1)n−1n,

t1n(1) = (−1)n−2 · n(n2−1)
6 ,

{
p1n(0) = (−1)n−2,

p1n(1) = (−1)n−2 · n(n−1)
2 ,

It follows from Equation (9) that















d1n(0) = (−1)n−1λn2λ
n
3 . . . λnn,

= (−1)n−1n,
d1n(1) = (−1)n−2

[

λn3λ
n
4 . . . λnn + λn2λ

n
4 . . . λnn + . . .

+ λn2λ
n
3 . . . λnn−1

]

,

= (−1)n−2 · n(n2−1)
6 .

(11)

3.3. Exact Solution of Network Coherence
for Bm,n

We introduce a polynomial Dn(λ) to obtain the exact solution
of the network coherence, i.e.,

Dn(λ) =
m+1
∏

j=1

D
j
n(λ) =

n(m+1)
∏

i=2

(λ − λni ).

According to Equations (10) and (11), the constant and first-
order terms of Dn(λ) are

dn(0) =
m+1
∏

j=1

d
j
n(0),

dn(1) = d1n(1)d
2
n(0) . . . d

m+1
n (0)

︸ ︷︷ ︸

m+1

+ d1n(0)d
2
n(1) . . . d

m+1
n (0)

︸ ︷︷ ︸

m+1

+ . . . + d1n(0)d
2
n(0) . . . d

m+1
n (1)

︸ ︷︷ ︸

m+1

.

Based on the Vieta’s theorem [26, 27], the network coherence
reads as

H =
1

2N

N
∑

i=2

1

λi
= −

1

2N

dn(1)

dn(0)
.

When m = 3, the Laplacian matrix Lm has four eigenvalues,
that is, λ1 = 0, λ2 = λ3 = 1, λ4 = 4. Using the above-
mentioned calculations, we obtain the analytical expression of
network coherence, i.e.,

H(n) =
1

8n

{ n2 − 1

6

− 20
[α1 + g2(nr

2
1 + n− 1)](r21)

n−2 + [α2 + h2(nr
2
2 + n− 1)](r22)

n−2

β1(r
2
1)

n−2 + β2(r
2
2)

n−2

− 2
[θ1 + g4(nr

4
1 + n− 1)](r41)

n−2 + [θ2 + h4(nr
4
2 + n− 1)](r42)

n−2

η1(r
4
1)

n−2 + η2(r
4
2)

n−2

}

,

(12)

where α1 = − 5−2
√
5

25 , α2 = − 5+2
√
5

25 , β1 = 15 − 7
√
5,β2 =

15 + 7
√
5, θ1 = − 10−7

√
2

32 , θ2 = − 10+7
√
2

32 , η1 = 24 − 17
√
2,

η2 = 24 + 17
√
2, g2 = − (5−

√
5)(3r21+1))

10r21(2r
2
1+3)

, h2 = − (5+
√
5)(3r22+1))

10r22(2r
2
2+3)

,

g4 = − (2−
√
2)(6r41+1))

8r41(r
4
1+3)

, h4 = − (2+
√
2)(6r42+1))

8r42(r
4
2+3)

, r21 = −3+
√
5

2 ,

r22 =
−3−

√
5

2 , r41 = −3+ 2
√
2, r42 = −3− 2

√
2.

3.4. Exact Solution of Network Coherence
for Bm

To investigate the effect of the parameters m on the network
coherence, we propose another method to obtain the solution
regarding the parametersm. When n = 2, the Laplacianmatrix is

Lm,2 =
(

Lm −Im+1

−Im+1 Lm

)

.
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FIGURE 3 | Network coherence regarding the parameters n and m.

Then, the characteristic polynomial P(λ) of Lm,2 is

P(λ) =
∣
∣
∣
∣

Lm − λIm+1 −Im+1

−Im+1 Lm − λIm+1

∣
∣
∣
∣

=
∣
∣Lm − (λ + 1)I

∣
∣ ·

∣
∣Lm − (λ − 1)I

∣
∣

= λ(λ − 2)(λ −m− 1)(λ −m− 3)(λ − 1)m−1(λ − 3)m−1.

The roots of this polynomial P(λ) are as follows,






0, 2,m+ 1,m+ 3, 1, . . . , 1

︸ ︷︷ ︸

m−1

, 3, . . . , 3
︸ ︷︷ ︸

m−1






.

By the definition (1), we finally obtain the network coherence
with regard to the parametersm, which is given by

H(m) =
1

4m+ 4

[
1

2
+

1

m+ 1
+

1

m+ 3
+

4(m− 1)

3

]

. (13)

From the expressions (12) and (13), we plot the relationships
between network coherence and the parameters m and n, see
Figure 3. It shows that the values of network coherence linearly
increase with n, while the network coherence will achieve a steady
constant state for a large m, i.e., H(m) → 1

3 , meaning that the
consensus displays worse with increasing values of n. In a word,
the number of nodes n in the path graph has more influence than
the number of nodesm in the star graph.

4. CONCLUSIONS

In this paper, we have studied the consensus problems in
noisy book graphs. Using the graph’s constructions, we have

obtained the recursive relationships for the Laplacian matrix and
Laplacian eigenvalues and proposed a method to derive exact
expressions of the sum of reciprocals of these eigenvalues. We
then have presented exact solutions of network coherence with
regard to graph parameters and investigated their effects on the
coherence. It is shown that the larger size of star graphs results
in better consensus, while the larger size of path graphs leads to
worse consensus. The obtained results showed that the structure
difference produces distinct performance on the coherence. Our
method for the book graphs could be applied to study their
random walks and Kirchhoff index.
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