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Since the financial crisis of 2008, the network analysis of financial systems has attracted a
lot of attention. In this paper, we analyze the global banking network via the method of
Random Matrix Theory. By applying that method on a cross border lending network, it is
shown that while the connectivity between different parts of the network has risen and the
profile of transactions has diversified, the role of hubs remains important in the weighted
perspective. The largest eigenvalue of the transaction matrix as the leading mode of the
system shows sharp growth since 2002. As well, it is observed that its growth has
diminished since 2008. This indicates that the crisis of 2008 has left a long-lasting footprint
on the financial system. Analyzing the mean value of the participation ratio reveals the fact
that the role of countries in forming small modes, has increased since 2002. In our final
analysis, we provide snapshots of the hubs in the network over time. We observe that the
share of countries in total transactions is not equal to their share in shaping the eigenvector
of the largest eigenvalue. In 2018 for example, while the United Kingdom leads the share of
transactions, it is the United States that has the largest value in the leading eigenvector. The
proposed technique in the paper can be useful for analyzing different types of interaction
networks between countries.

Keywords: global banking network, complex systems, random matrix theory, financial contagion, collective
behavior

1 INTRODUCTION

Since the recent global financial crisis, cross-border lending and financial contagions have gained in
importance. The propagated effects [1, 2] of financial crises on political and economic systems [3, 4]
are not to be underestimated. Those developments have prompted a lot of research on the systemic
dependence of the international banking sector [5–13].

The field of complexity can aid in understanding better such systemic dependence [5, 14–22].
Complex networks are useful instruments for describing a large number of financial systems
[23–31].

Most of the networks have different topological properties such as small-world and scale-free
characteristics [24–26, 32–39].

The purpose of complexity science in finance focusses on the analysis of the structure and the
dynamics of entangled systems.
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Many scholars have applied complexity techniques for the
analysis of financial contagion [6, 9, 10, 40–42].

Their findings suggested that the connectivity of financial
institutions is the source of potential contagions.

For example, Glasserman and Young [40] reviewed the
extensive literature on the network’s structures and their
interactions with other key variables such as leverage, size, and
short-term funding. They emphasized that the network
connections expand the firms’ risk exposures, and through
different routes, the shocks can be proliferated via contagion.

Random Matrix Theory is one of the useful methods for
analyzing the behavior of complex systems [16, 43–54].

This theory was developed to describe the energy levels of
quantum systems [55, 56].

It is the universality regime of the eigenvalue statistics which
provides for the success factor of Random Matrix Theory
[57–59]. Based on previous studies, it is shown that when the
size of the matrix is very large, the eigenvalue distribution tends
toward a specific distribution [59].

Random Matrix Theory has been applied to analyze the
behavior of coupling matrices [16]. This technique divides the
contents of the coupling matrix into noise and information parts.
The noise part of the coupling matrix conforms to the Random
Matrix Theory findings, and the information part deviates from
them. This concept stems from the idea of solving the problem of
non-stationary cross-correlation and measurement noise which
result from market conditions and the finite length of time series
[57, 59].

A system which can be analyzed by the complexity approach is
the global banking network [60].

Minoiu and Reyes [60] have analyzed the global banking
network from 1978 to 2009. They have applied network
metrics such as centrality, connectivity, and clustering for
analyzing financial interconnectedness. They have shown that
during and after systemic banking crises (and sovereign debt
crises), the connectivity drops. Also, it was shown that the
2008–2009 financial crisis provided for an unusually large
perturbation to the global banking network. For more research
on this, please see [61–69].

In this paper, by applying Random Matrix Theory on
bilateral locational statistics data provided by the Bank for
International Settlements (BIS) [70] from 1978 until 2019, we
aim to analyze the global banking network. This data includes all
‘core’ countries (the qualifier ‘core’ is used by many researchers
such as [60], for countries which regularly report their financial
data to BIS).

Our paper is organized as follows. In Section 2 we present our
methods and, in Section 3 we apply Random Matrix Theory on
the global banking network and present our findings. Then, in
Section 4 we conclude.

2 METHODS

Random Matrix Theory has been presented by some scholars in
nuclear physics such as Mehta [55, 56], for analyzing the energy
levels of complex quantum systems. Subsequently, the method

has helped to address specific issues in other fields, such as finance
[45, 57–59, 71, 72].

From random matrix theory, we know that the eigenvalues–in
the real matrix–which deviate from the range of the
eigenvalues–in the random matrix–possess relatively more
complete information from the system [51, 58, 59]. It can be
shown that the majority of the eigenvalues of coupling matrices,
agree with the random matrix predictions, but the largest
eigenvalue has deviations from those estimations [50, 57, 58,
73]. In essence, this eigenvalue develops an energy gap that
separates it from the other eigenvalues [45]. The largest
eigenvalue is related to a strongly delocalized eigenvector that
represents the collective evolution of the system. This is called
market mode. From this perspective, the largest eigenvalue’s
magnitude reflects the coupling strength of the system [45].

In RandomMatrix Theory, there is a parameter named Inverse
Participation Ratio IPR [74]. Its inverse provides a measure for
the number of components which significantly participate in each
eigenvector. This notion shows the effect of components of each
eigenvector and specifically indicates how the largest eigenvalues
deviate from the bulk region which is densely occupied by
eigenvalues of the random matrix. Based on previous papers
[45, 75], IPR can be applied as an indicator for measuring the
collective behavior of the networks. The formula of this concept is
as follows:

IPR(k) � ∑
n

l�1
(uk

l )
4
; (1)

where l � 1, . . . , n and ukl is the l
th element of the kth eigenvector

(lk). To further clarify the concept, one may consider examples
below:

i. In case all elements of a certain eigenvector are equal to
1/

��
N

√
, IPR will be equal to 1/N . This implies that whole

elements are significantly influential on the systems’
behavior.

ii. On the other hand, if just a single element is equal to one and
the others are equal to 0, IPR would be equal to 1. This
implies that only this component is effective in the
corresponding eigenvector. Hence, one can perceive that
IPR clarifies the number of influential elements in a
certain eigenvector.

3 ANALYSIS OF GLOBAL BANKING
NETWORK BY RANDOM MATRIX THEORY

The banking industry is one of the most important sectors in
finance. Given this importance, it is not surprising that a
significant aspect of financial contagion shows that the
banking network is the conduit, through which the emergence
and transmission of crises occurs. In this paper, we create a
weighted and directed financial transaction network
corresponding to each quarter from 1978 until 2018. Each link
corresponds to a loan given by a certain country to another one.
Previous studies have shed light on a country’s dependency
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FIGURE 1 | The evolution of the global banking network is demonstrated for three snapshots of 1978-Q3, 1998-Q3, and 2018-Q3. Left) shows the dendrogram
structure of communities for trading weighted matrices. Right) the network topology is graphed. The size of each node represents the degree.
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network and they showed an increase, over time, of the
dependency structure of the network [7, 60].

In Figure 1, the evolution of the global banking network in
three snapshots (1978-Q3, 1998-Q3, and 2018-Q3) has been
depicted. The left panel in Figure 1 shows the dendrogram
structure of communities for trading weighted matrices.
Furthermore, the right panel shows the evolution, over time,
of the network topology and the size of nodes stands for the

degree. As depicted, not only the size of the network has grown
but also transactions have become more diversified. It is obvious
that, over time, the degree of all countries has grown and has
become more homogeneous. If the size of degrees is considered,
a few countries can be distinguished as hubs, and this will be

FIGURE 2 | Temporal evolution of: (Left) the degree, and (Right) the volume of each country over time. The sorting order of countries is based on the average of the
last 10-year period.

FIGURE 3 | The evolution of the largest eigenvalue, λmax , of the global
banking network and its shuffled, λshmax , are depicted.

FIGURE 4 | The average of the Inverse participation ratio of all
eigenvectors 〈IPR〉 and IPRλmax has been depicted. The decline of the 〈IPR〉
implies that the contribution of countries in all modes has been increased
which can be a consequence of the growth of the connectivity in the
banking network.
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discussed later in the paper. For the continuous monitoring of
networks during the period of study, Figure 2 is plotted. The
results show the same outcomes as Figure 1. The left panel of
Figure 2 represents the evolution of the degree for each country
over time. As can be seen at the beginning of the period, only a
small portion of countries has a high degree. But over time, both
the degree across more countries and the average degree rise. It
means that the sparseness has declined and connectivity has
risen. The right panel of Figure 2 shows this fact, i.e., that only a
small number of countries are in charge of a big portion of
transactions.

To move further into our analysis, we now apply random
matrix techniques. The global banking network possesses an
adjacency matrix. In randommatrix theory, we have learned that
the largest eigenvalue is important and addresses the global trend
of a system [45, 57, 58, 76]. In Figure 3 we have depicted the
evolution of the largest eigenvalue (λmax) overtime. As can be
seen, λmax has grown significantly before the financial crisis of
2008. To figure out whether the growth of the eigenvalue is a
mere consequence of either the growth of the transaction or the
change of the structure of the network, we have compared the
growth of the λmax of the original matrix with λmax of the shuffled
network. If the growth of the largest eigenvalue is a consequence
of the growth of transactions, then we expect that its value will be

close to its counterpart in the shuffled network. In the shuffling
technique, we rewire the network. We do so as follows. Pairs of
links are chosen randomly and their values are exchanged. Over
the course of such a process, the information concerning the
structure of the network is lost. All remains are the size of the
network and the profile of transactions.

The difference between λmax of the network itself and its
shuffled counterpart, implies the existence of information
content which is embedded in the largest eigenvalue of the
banking interaction matrix. This will be discussed further
below. The fast growth of the λmax of the shuffled network
from 2002 to 2004, is the consequence of the fast pace of
transaction volumes.

The fact that the largest eigenvalues of both the banking
network and the shuffled network, have lost their growth
trends after 2008, means that the financial crisis has left a
long-lasting footprint on the network. Since the obtained
eigenvalue does not describe all the details and properties of
the collective behavior, one should investigate other quantities in
the network.

As already discussed in the method section, one should keep in
mind that the IPR possesses the ability of information extraction
from the collective the behavior of systems. Figure 4 represents
the evolution of the 〈IPR〉 and IPRλmax . In this context, by

FIGURE 5 | The percentage of the participation of each country in the eigenvector of λmax vs. the percentage of the transaction of each country from the total
transaction (%volumej/∑N

i Volumei). (Note: Countries possessing more than 5% of total volume are annotated by name.)
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focusing on the mean inverse participation ratio of all
eigenvectors, 〈IPR〉, and also, the inverse participation ratio of
the largest eigenvalue corresponding to the largest eigenvector, we
investigate banking behaviors of countries and their influences on
the network structure and the market trend.

In a network of size N, IPR could have a value within
[1/N − 1]. Values close to the lower end will imply that
almost all nodes play a role in the leading mode. Values close
to one, indicate that a few nodes play an important role in shaping
the eigenvector. As can be seen, for the largest eigenvalue, IPR has
kept a value much higher than its possible minimum, i.e., 1/N .
This means that a few countries lead the network. Disparities
have been even stronger in small modes in the early years of the
studied period. However, from 2002 to 2004, following the fast
growth of global transactions, the average of IPR of all modes, has
tended to the IPR of the largest mode. This means that the
participation of countries in shaping the small modes has grown.

The sustainability of the relatively high rate of IPR in the largest
eigenvalue leads us to investigate the share of countries in shaping
its eigenvector. We expect the countries which have a higher share
of transactions, to play a more important role in shaping the trend
of the system embedded in this eigenvector. Figure 5 visualizes the
contribution of countries in the structure of the leading mode vs.
their contribution to trading volume in five snapshots since 1978. A
couple of interesting results can be inferred from the figure.

In all snapshots, the share of hubs in the leading mode has
been higher than their share in transactions. For example, in 1978
while the share of the United Kingdom in total transactions has
been 21.5 percent, its share in the leading eigenvector has been
31.73 percent. Hence, this means that the role of the
United Kingdom in shaping the leading eigenvalue has been
larger than its share in total transactions. The same scenario
works for other hubs such as France and the United States.

The interesting observation of 1988 is that, while the
United Kingdom holds the lead in the share of transactions,
Japan has the largest component of the leading eigenvector. On
the eve of the economic downturn, Japan has not repeated its
leading role in any other snapshots.

Within the last 2 decades, the United States has become closer
to the United Kingdom in shaping the eigenvector of the largest
eigenvalue. However, for both countries, their share in the largest
eigenvalue is bigger than their share in the total transactions. Such
an effect could be a matter of the country’s role in the structure of
the leading mode in the network.

4 CONCLUSION

In this paper, by applying Random Matrix Theory, the global
banking network is analyzed. For this purpose, we consider the
matrix of the interaction of the banking sectors of BIS
countries. We first focus on the largest eigenvalue which
defines the leading mode in a system. We observe that the
largest eigenvalue grows over time. By making a comparison
with the largest eigenvalue of the network itself and the shuffled
network, we conclude that the growth of the largest eigenvalue
originates from two sources. The first source is the growth of
the transaction volume and the other source is the network
structure. We observe that the growth of the largest eigenvalue
has vanished after 2008.

By focusing on the temporal behavior of the IPR of the largest
eigenvalue, we observe that it has kept a sustainable value far above
its possible minimum. This emphasizes the role of a few countries
as hubs in the system. In comparison, the mean value of the IPR of
all eigenvectors has declined sharply after 2002. This leads us to
conclude, that the contribution of countries to shape small modes
and possibly local structures, has grown. This phenomenon has
occurred in tandem with the fast growth of transactions from 2002
to 2004. In comparing the share of countries in total transactions
with their share in the leading mode, we observe that usually the
share of the leading countries in shaping themarket mode, is larger
than their share in total transactions.

In this work, we analyzed the network of the international
banking system. Our work sheds light on some features of this
network.We suggest future research where financial networks are
studied along with other variables such as commercial
interactions in a multi-layer scheme.
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