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Programmable metasurfaces have shown great potential in the areas of low-complexity
phase array systems in comparison with the conventional phased array antennas. In this
document, a 1-bit transmissive programable metasurface with high efficiency is proposed
for the cost-effective beam-steering phased array. The designed transmissive metasurface
is made up of reconfigurable cells with perfect 1-bit phase tuning and less transmission
losses. Through dynamically programming the 1-bit code distributions of the metasurface,
real-time scanning pencil beams in desired directions can be created.
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INTRODUCTION

Recently, metasurfaces are widely known as a kind of two-dimensional periodic structures with
subwavelength scale, owing to its independent talent of delicate modulation on electromagnetic
waves [1]. Based on the advantages of low loss, easy integration and simple preparation, metasurfaces
have shown extensive application prospects and become a research hotspot in modern physics,
information science and the related interdisciplinary [2-4].

Within microwave domain, metasurfaces also arouse a wide range of investigation, such as radiation
improvement [5-7], perfect absorbers [8, 9], OAM-EM wave generation [10-13], scattering reduction
[14-16], holographic imaging [17, 18], and energy harvesting [19]. Metasurfaces particularly
demonstrate the unique abilities in waveform shaping through the phase manipulation of the
building units in microwave metasurfaces. Reflective metasurfaces were demonstrated to generate
the high-intensity pencil beams or high-purity vortex waves through the full 2= phase tuning [20, 21].
Polarization-insensitive transmissive metasurface with hexagonal unit configuration is proposed to
stimulate vortex beam at any polarization [22]. The ultra-thin transmissive metasurfaces were designed
for high-efficiency wavefront modulation in circular polarization, based on photon spin Hall effect or
Pancharatnam-Berry phase theory [23, 24]. Nevertheless, for all the foregoing designs, only the fixed
directional or shaped beams can be created once the metasurfaces are constructed, which restrict the
application for dynamic control in electromagnetic wave.

The programmable metasurfaces integrated with lumped components could be very practical for
the fine-grained modulation over electromagnetic waves, which also show great advantages at
improving the incomplexity and cost for dynamic beam forming or scanning, in comparison with
conventional phased array systems that are composed of massive digital or analog phase shifters [25].
Digital or programmable metamaterials are firstly proposed in 2014 to expand the concept of
metamaterials by using dynamic sequences of “0” and “1” bits [26]. Ulteriorly, the metasurface unit
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FIGURE 1 | Topological configuration of the proposed transmissive metasurface (all dimensions are in millimeters) (A) Exploded view of the 1-bit cell on top along
with the metasurface at bottom (B) Transmitting layer (C) Bias layer (D) Receiving layer.

can obtain a clear alteration in resonant property through
integrating lumped components, and the programmable
reflective metasurfaces are thus actually constructed for the
dynamic modulation of the electromagnetic waves [27]. The
digital reflective metasurfaces were constructed by designing
reconfigurable cells combined with the PIN diodes for binary
phase states [28, 29]. Later, two-bit reflective programable
metasurfaces were designed by integrating two PIN diodes or
a voltage-controlled varactor diode to modulate the resonant
characteristics of the reconfigurable units [30, 31]. Since the feed
shielding effects and the phase distortions are usually very serious
for the reflective metasurfaces, the programmable transmissive
metasurfaces are then proposed to avoid these deficiencies [32].
Metasurface unit integrated with C-shaped patch and U-shaped
slot serving as the receiver and transmitter was designed to
construct the digital transmissive metasurface [33].
Metasurface unit with the combination of a couple of
C-shaped patches and ring slots was adopted to achieve 1-bit
phase resolution [34]. Later, the equivalent magnetic dipole unit
was also presented by combining the rectangular patch and side-
shorted patch [35]. However, all these transmissive metasurfaces
are suffering from very high transmission losses due to the

insufficient unit architecture design, which lead to the low
aperture efficiency not exceeding 20.0%.

In this document, a high-efficiency transmissive 1-bit digital
metasurface is designed for the construction of the cost-effective
phased array. Through dynamically programming the 1-bit code
distributions of the metasurface when biasing the integrated PIN
diodes, real-time scanning pencil beams in the desired directions
can be created and the numerical simulation results demonstrate
the availability of the proposed metasurface.

UNIT DESIGN AND CONFIGURATION

The component of the designed transmissive programable
metasurface is a reconfigurable programmable cell with binary
phase modulation. The 1-bit unit is constructed with multilayer
metallic structure along with two dielectric substrates and a
bonding film, the structure of which is shown in Figure 1A.
The two dielectric substrates have the same parameters with the
dielectric constant of 3.55 and the thickness of 1.524 mm, and the
thickness of the bonding film is 0.1 mm. The metallic structure is
composed of the transmitting patch, the ground plane, the bias
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FIGURE 2 | Simulated scattering parameters of the proposed metasurface cell (A) Magnitude for both n/0-states (B) Phases for both 7/0 states.

layer and the receiving patch. The transmitting patch is designed
in front with a rectangular patch loaded by an O-slot and two PIN
diodes, while the same-sized receiving patch is set on the reverse
side and integrated by an U-slot, and the two patches constitute
an integral whole by a metallized central via-hole through the
ground. In addition, the transmitting patch is connected with the
ground through a pair of symmetric via-holes, while the receiving
patch is connected with a pair of rectangular distributed
capacitors in the bias layer in similar way for biasing purpose.
To reduce the influence of the bias lines on the designed unit, the
bias lines are designed using extremely narrow linewidths and
located near the ground plane. Detailed structure and dimensions
of the proposed metasurface cell are also given in Figure 1.
The PIN diode M/A-COM Flip Chip MA4FCP305 is chosen to
construct and modulate the unit, and the parameter modelling of
the PIN diode is characterized as lumped components for the
binary ON/OFF states [36]. When biasing the PIN diode with a
forward current, the ON state along with a series of a resistance
Ron =2.1 @ would be employed; and for a reverse bias voltage, the
OFF state along with a parallel of a capacitance Copr = 0.05 pF
would be applied for the PIN diode. The 1-bit phase modulation
of the unit can be accomplished through biasing the integrated
PIN diodes. The simulated scattering parameters of the designed
metasurface cell are plotted in magnitude and phase for both /0
states, as shown in Figure 2. When PIN diode I is at the ON state
and PIN diode IT is at the OFF state, the metasurface cell would be
operating at the r-state; the simulated S;; is less than -10 dB from
7.23 to 7.82 GHz, and the simulated S, is above -2 dB from 7.17
to 7.89 GHz. When PIN diode I is at the OFF state and PIN diode
I is at the ON state, the metasurface cell would be working at the
0-state; now the simulated S;; is less than -10 dB from 7.21 to
7.79 GHz, and the simulated S, is above -2 dB from 7.13 to
7.86 GHz. The phase displacement of the binary cell states could
maintain constant at nearby = with relatively small variations.

METASURFACE CONFIGURATION AND
BEAM-SCANNING VERIFICATION

In the actual metasurface design, the transmissive programable
metasurface is constructed with 400 units and an overall
dimension of 400 x 400 mm?, and the overall structure of the
designed metasurface is also shown in Figure 1A. The focal
source of a standard waveguide horn is placed in front of the

FIGURE 3 | Spatially-fed geometry and the relevant vector coordinates.
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FIGURE 4 | Optimal quantized phase code distributions for four beam directions (A) 6 = 0° (B) 6 = 15° (C) 6 = 30° (D) 6 = 45°.

central axis of the metasurface with a focal length of F = 51 =
200 mm, and the cells on the metasurface serve as the 1-bit phase
shifters for the incoming wave and are modulated through the
bias layer.

To generate a scanning pencil beam in the desired direction,
the phase compensation aA¢, , for the metasurface cells should
satisfy the formula,

ko(r;nn—ﬁ)m,,-?(,)—A(bmn =2nn nez (1)

where ky is _t)he wavenumber, 7y is the position vector of the
mnth unit, R, is the position vector of the mnth unit relative to
(0,0,f), and 7 is the desired direction of the pencil beam. All
these parameters are defined as shown in Figure 3.

To get the overall code distribution on the metasurface, the
binary phase states for each unit could be obtained by furtherly
quantizing the continuous phase shift A¢,,,,

{ 0, A, €[0+2nmm+2nm) 2

7w, A, € [m+2nm,2m + 2nm)

¢Q:

To furtherly validate the effectiveness of the transmissive
programmable metasurface, steering pencil beams with a wide
scanning range of at least 45° and an angular spacing of 15" are

then numerically generated. The optimal quantized code
distributions for the four directional beams are generated
using Equation (2) and implemented as shown in Figure 4,
which can be simply controlled by the modulation of the ON/
OFF states of the PIN diodes. The simulated far-field radiation
patterns for the scanning pencil beams in four directions are
plotted in Figure 5. For the broadside radiation, a directional
beam is obtained with a simulated gain over 25.3dB,
corresponding to an aperture efficiency over 27% by using the
following definition:

G

- 47'[A//\2 3)

n

where G is the simulated gain and A is the metasurface aperture
area. When furtherly considering the quantization loss of about
3 dB for a typical 1-bit phase resolution, the metasurface aperture
efficiency could be expected to exceed 50% theoretically. As the
scanning angle of the steering beam increases, the main-lobe
maximum gain would decrease due to the diminution of the
effective metasurface aperture area, which is in accordance with
the traditional phased array antenna. For all the four directional
scanning beams, the side-lobe levels are —10 dB lower than that of
the main lobes.
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CONCLUSION

In summary, a high-efficiency transmissive programable
metasurface with 1-bit phase modulation is presented for the
construction of a cost-effective phased array. The expected
performances with real-time dynamic scanning beams are
investigated, and scanning pencil beams in four directions
with low side-lobe levels are generated through dynamically
programming the 1-bit code distributions on the metasurface,
which verify the effectiveness of the presented transmissive
programable metasurface design.
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