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The vibrational dynamics in a linear triatomic molecule is emulated by a quantum
information processing device operating in parallel. The quantum device is an
ensemble of semiconducting quantum dot dimers addressed and probed by ultrafast
laser pulses in the visible frequency range at room temperature. A realistic assessment of
the inherent noise due to the inevitable size dispersion of colloidal quantum dots is taken
into account and limits the time available for computation. At the short times considered
only the electronic states of the quantum dots respond to the excitation. A model for the
electronic states quantum dot (QD) dimers is used which retains the eight lowest bands of
excitonic dimer states build on the lowest and first excited states of a single QD. We show
how up to 82 � 64 quantum logic variables can be realistically measured and used to
process information for this QD dimer electronic level structure. This is achieved by
addressing the lowest and second excited electronic states of the QD’s. With a narrower
laser bandwidth (� longer pulse) only the lower band of excited states can be coherently
addressed enabling 42 � 16 logic variables. Already this is sufficient to emulate both energy
transfer between the two oscillators and coherent motions in the vibrating molecule.

Keywords: quantum dots, computing by observables, lie algebra,molecular dynamics, size dispersion, 2D electronic
spectroscopy, electronic coherence

INTRODUCTION

We describe the theoretical background for an experimental setup, an ensemble of quantum dot
dimers that can and has been realized in the laboratory. We show explicitly how this device is used to
emulate the quantum vibrational dynamics of a linear triatomic molecule and discuss possible
extensions. In 1985 Deutsch defined a quantum computer as a device that could simulate effectively
an arbitrary physical system [1]. Our aim here is much more modest. We seek to describe a device
that can be realized with currently available laboratory techniques. Furthermore, the device needs to
provide computational answers only for a limited set of variables of the physical system. The
computation is realized by mapping of the dynamics of the physical variables of this limited set using
a set of observations of the time-evolution of the device. The set of possible observations of the device
is the set of our N2 logic variables. The number N is less than or equal to the number of accessible
quantum states of the logic device. N2 is larger than the number of variables of interest for the
physicochemical system that is emulated.

The quantummechanical device is characterized by a set of observables and that is why we call the
logic done by the device “computing by observables” [2, 3]. With such a device one can emulate a
physical system that requires up to this number for simulating a closed set of physical variables.
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Increasing levels of resolution provided by the description of a
physicochemical system can be characterized by an increasing
numbers of variables. An example used in this paper is that of two
coupled harmonic oscillators. For each oscillator there is a
denumerable number of bound states. So, in principle, a fully
complete characterization of each oscillator can require up to a
denumerably infinite number of variables. An opposite extreme is
a thermal state of the oscillator. Its complete description requires
two physical variables, a normalization of the probabilities and
the mean energy. For the coupled oscillators we will describe
several physical levels of resolution that are intermediate between
these two limits.

The variables that we deal with can be regarded as vectors in a
linear space. They can, if so desired, be made orthogonal etc. As
vectors, the variables seem to behave like classical variables but
they are a quantum mechanical description of the system. In
textbooks one is more used to a linear vector space of wave
functions, what is sometimes called a Hilbert space. The
observables are also defined in a space with a scalar product
and a Mathematician may choose to call it a Hilbert space. But if
the Hilbert space of the wave functions has N dimensions, the
corresponding linear vector space of observables has N2

dimensions. If {|i〉} is a set of basis vectors in the Hilbert
space of wave functions, i � 1, 2, ..,N , a basis set for the
observables can be written as {Xij � |i〉〈j∣∣∣∣}, i, j � 1, 2, ..,N .
The N2 expectation values of these are our variables. We will
refer to the expectation values when i≠ j as coherences. The N
diagonal elements are populations. By taking linear
combinations, e.g., |i〉〈j∣∣∣∣ + ∣∣∣∣j〉〈i|, we can arrange all the
variables to be Hermitian and all the variables to be real.

In this paper we use two distinct linear vector spaces. One is
suitable to describe the dynamics of the computing device and
one the dynamics of the physical system we aim to emulate. We
do not consider the device as providing an analog for the physical
system. To emphasize this point we use a device that operates on

the dynamics of purely electronic states pumped and read by
ultrafast laser pulses. A schematic description of the device and
the physical system is shown in Figure 1. The dynamics in the
electronic Hilbert space of the quantum dot dimers is mapped to
simulate the time evolving physical variables in the nuclear
Hilbert space. We will therefore need a separate discussion of
the logic variables provided by the computing device and those
required to describe the physical system.

Quantum computing algorithms have been developed for
problems of chemical interest. This includes not only
electronic structure [4–13] but also quantum enhanced
machine learning algorithms [8] and algorithms for dimension
reduction including Principal Component Analysis, Canonical
Correlation Analysis and other algebraic methods used for
dimension reduction such as surprisal analysis [6, 15–17] A
preliminary report on our quantum computation has been
published [18].

THE COMPUTING DEVICE

Our computing device is an array of CdSe quantum dot QD
dimers. Addressing the device is by a sequence of laser pulses and
read-out is performed simultaneously on many dots [19–24] as in
2D electronic spectroscopy [25, 26]. Measuring over a classical
ensemble of dots importantly means that we directly read the
mean values and that there is no interference between
measuring different observables that individually do not
commute. In the short time interval during which the time
and probe are performed the primary source of noise is the
variability in the size of the quantum dots. This means that the
two dots making the dimer are not quite identical so strictly
speaking we have heterodimers. We therefore need to average
the read-out over the distribution of dimer sizes. The states of
different dimers are at slightly different energies so that the

FIGURE 1 | Representation of the computing device (A) and the physical system (B). The four bands of excited electronic states of the device that are used are
indicated as well as the ten pairs i, j whose twenty corresponding coherences Xij are used as logic variables. The physical system we emulate is a vibrating triatomic
molecule in a non-stationary quantum mechanical state. We will simulate the mean position and momentum of each of the two coupled oscillators as well as the
respective widths, σR and σP.
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coherences between different pairs of states beat at slightly
different frequencies. This reduces the frequency resolution
or, equivalently, the time available for read-out [13] to faster
than the dephasing time of the mixture of not fully identical
dimers. So we do not read individual quantum states but bands
of closely adjacent states belonging to different dimers. In our
computations we use an experimentally realizable size of the
dots and their size dispersion.

In this paper we employ rather elementary dynamics of the
computing device. Using a sequence of laser pulses we bring each
dimer to a multicoherent state. From then on the device is
unperturbed and it is the oscillations of different coherences
that are used to simulate the time dependence of the physical
system. The coherence between the ground state and any
electronic excited state oscillates quite fast so it dephases faster
then the dephasing of the coherences between the electronically
excited states. The very fast beating coherence, few fs’s or less,
between the ground state and an electronic excited state cannot
therefore be reliably detected. So very fast oscillations cannot be
simulated by our device due to the currently available dispersion
in sizes of colloidal quantum dots. It is expected that a lower
dispersion will be experimentally possible in the near future.

This paragraph is a sketch of the counting of electronically
excited states in a CdSe dot of nanometric mean size between 2
and 5 nm in diameter and of a dimer of two dots drawn from an
ensemble of dots of the same mean size. The two dots making up
the dimer are of about the same but not identical size. The first
electronically excited state of a dot is a band of 12 states, as
follows. The spin of the hole is coupled to a p (l � 1) orbital of Se
to give rise to two spin orbit components, 1/2 and 3/2. The s
orbital on Cd contributes only a spin of 1/2. The total orbital
angular momentum F of the excitonic 3/2 state has the
projections Fz � ± 2, ± 1, 0 and Fz � ± 1, 0 for the hole and
the electron respectively, eight states all together. There are four
states, (Fz � ± 1, 0 and 0) for the 1/2 excitonic state. The two
excitonic bands of states, (of eight and four states, respectively),
can be experimentally resolved [23]. There are similarly two
resolvable bands of states for the second electronically excited
state of CdSe. All together, four bands of electronically excited
states per dot. In the dimer, or dots with short ligands, the dots
are interacting by Coulomb and exchange coupling. Thereby
each one of the four bands of states of the monomer is split into
two. In the visible range a dimer has eight resolvable bands of
states, four bands that correspond primarily to the lower
electronic state and four to the higher excited state of a
monomer. Since the dimers are made of two dots that are
not quite identical, all eight bands are optically active from
the common dimer ground state, see Supplementary Materials,
section 1.1 for more details.

Using the counting as above the CdSe dots enable a choice of
four or eight bands of states in the visible range. Addressing
coherently the states of all the eight bands requires shorter laser
pulses. Smaller QD have larger energy difference between their
two lower excited electronic states and therefore one needs a
larger energy bandwidth of the pulse or a higher carrier frequency
to simultaneously address them. On the other hand, for larger
dots, the energy difference between the two lowest excited states

may become smaller or comparable to strength of the spin-orbit
coupling, which leads to a loss of resolution between the different
bands [23, 24]. Commercially available fast lasers in the visible
can easily address coherently all the states of the four lowest
bands. The minimal capability of our device is therefore 52 logic
variables, the five populations of the ground and four excited
states and the 5 × 4 coherences. Four (times two, complex values)
coherences of the transitions between the ground state and the
four excited states and 12 coherences between the four excited
states. After the laser pulses are over, each coherence will oscillate
with a fixed frequency determined by the differences in energy of
the two states. The highest frequencies are for the transitions up
from the ground state. These are rather fast. So in this paper we
consider the coherences between pairs of excited states.

To describe the dynamics of the device we take it that initially
it is in the ground electronic state. We assume that the addressing
lasers are weak enough so that only one photon transitions are
possible. The lasers are in the visible so that transitions between
the excited states are way out of resonance and so are excluded.
Indeed and as we shall discuss, the frequencies of the transitions
between the excited states are in the range of molecular
vibrational frequencies so that we can use the coherences
between excited states to emulate the time scales relevant to
the physical systems. The range of timescales is determined by the
size of the quantum dot dimers as is discussed above and by the
coherence width of the excitation lasers. The bandwidth of a 6 fs
pulse is about 2,100 cm−1.

The excitation scheme is that typically used in 2D electronic
spectroscopy [25, 26]. The first fast laser pulse generates the
absorption from the ground state. Next, with some delay, is a
second laser pulse. One frequency axis that we will use is the
Fourier transform with respect to this time delay. The system is
next allowed to evolve for a time interval that is typically denoted
T. After the second pulse, the system can be back in the ground
state, in one of the excited states, or in a coherence between two
excited states. After the time T the third laser pulse stimulates
emission that is monitored in time and the second frequency axis
is a Fourier transform with respect to this time. So for each value
of the time T we generate a 2D frequency map. In the echo phase
matching direction of emission, the populations of the excited
states appear on the diagonal of the 2D maps and the coherences
are on the off-diagonal at a position determined by the excitation
frequency of the two excited states they connect. At different
values of the time interval T, the intensities at the off-diagonal
positions on the map will vary according to the time-evolution of
the respective coherences, and this is how we can simulate the
time dependence of the physical variables. As emphasized above,
due to the size dispersion the coherence beating frequencies will
have a finite spread. The ability to resolve coherences between
different pairs of states depends on this spread to be limited
enough. From the complementary time-dependent point of view,
the coherence contributions decay in time as a Gaussian with a
width that is governed by the width of the frequency distribution
of the coherence [3]. On the plus side, the finite spread of the
frequency of every coherence means that the computing device
can simulate finite spans of values, roughly the width of the
Gaussian, about different frequencies.
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Deterioration of the signal due to dephasing has been an issue for
quantum computing from its early beginning [27, 28]. Often it is
dephasing due to interaction with the environment. Here too, the
limiting factor is dephasing but it is a dephasing due to an
inhomogeneous broadening caused by the size dispersion of the
QD’s. In the short times that we probe, the electronic states of each
dimer practically are not yet perturbed. The dephasing is due to the
probe averaging over many dimers, dimers with slightly different
frequencies [3]. We pay special care to make the dephasing realistic.
The mean diameter of the CdSe QD’s, 4.4 nm, that we use to
compute the spectrum and the size dispersion, 5%, have been
realized experimentally [23, 29]. We emphasize the considerable
improvement in performance that can be achieved by an even
modest reduction in the dispersion in sizes. Yet even the already
accessible 5% size variability is sufficient to enable a quite
powerful device. We also stress that the 2DES measurements
that we rely upon are performed at room temperature, in solution
[23] or on a solid state device [24].

We can emulate dynamics by measuring 2D coherence maps
at a range of values for the time interval T. With current chemical
synthetic capabilities the dephasing due to the size dispersion of
the dot is the primary limitation on how long T can be. At longer
times, say beyond 100 fs, coupling to the phonons also sets in.

For each experiment there will be a sequence of transitions
leading to the same coherence between two excited states during
the delay time T between the second and the third pulse. For weak
pulses so that first order time-dependent theory and the impulsive
limit transition applies at each interaction with the pulse, the two
coordinates of the 2D maps are the absorption frequency from the
ground state (GS) and the emission frequency to GS. When two
excited states, i and j, can be reached by one photon transitions from
the ground state (GS) there are four positions in the 2D maps, two
diagonal ones at (ω0i, ω0i) and (ω0j,ω0j) and two off-diagonal ones
(ω0i, ω0j) and (ω0j, ω0i) where ω0i and ω0j are the excitation
frequencies of states i and j from the GS. In the rephasing phase
matching (echo) direction, eight Liouvillian paths contribute to these
four positions. They are spelled out explicitly in Supplementary
Figure S3 in the notation of ref. [26], see also refs. [2, 30].

Four paths fall on the diagonal of the 2D map at the excitation
frequencies of the two excited states: one ground state bleaching
(GSB) path for which the system is the GS during the time
interval T and one stimulated emission paths (SE) for which the
system is in excited state i during T at (ω0i, ω0i) and a GSB and a
SE path for which the system is in excited state j at (ω0j, ω0j). At
the short times below 200 fs considered here, there is no exchange
of population between the GS and the two excited states during T
and the contribution of these four paths to the 2D response is
time-independent. Two time-dependent GSB paths contribute to
the two off diagonal positions, (ω0i, ω0j) and (ω0j, ω0i),
respectively. Two paths that are the signature of the electronic
coherence between the two excited states also contribute at the
same off diagonal positions. The two coherence paths are beating
during T with the transition frequency ωij of the coherence
between the excited states i and j.

The eight paths, see Supplementary Figure S3, contribute
simultaneously to the time evolution of the density matrix and
therefore to the 2D map, hence “parallel” in our title. When the

system has more than two excited states, each pair of excited
states contributes 8 paths to the time evolution of the density
matrix. For example, there are 16 coherences between excited
states for the five level system (GS + 4 excited states) discussed
above, meaning that 16x8 paths contribute in parallel. Of these,
only the 16x2 paths that lead to a distinct off diagonal position on
the 2D maps are used to map observables of the system that is
emulated. There are also 8 paths per pair of excited states in the
non rephasing phase matching direction. So in principle, the
larger the number of states in the band that can be accessed by one
photon transition from the GS, the larger the number of
observables that can be emulated.

As explained above, colloidal QD’s are synthesized with a
finite size dispersion which leads to a distribution of transition
frequencies for each coherence, both from the GS, the ω0i type and
between excited states (the ωij type). At the level of the ensemble,
the inherent size dispersion of the QD’s leads to a Gaussian
distribution in energy of the addresses (ω0i, ω0j) of coherences
between excited states and to their Gaussian dephasing along T
and therefore limits the number of coherence positions that can
be resolved on the map. When controlled and limited to a few
percent in diameter, the size dispersion can also be used to
advantage. Scanning positions on the 2D maps around the
address corresponding to the mean transition frequencies from
the GS gives slightly different periods of the coherence along T
which provides flexibility in mapping the periods of the
observables of the emulated systems.

Figure 1 shows a scheme where there are four bands of excited
states that are accessed by the laser pulses. The four coherences at
a relatively high frequency when the ground state is one of the two
states are not detected in 2D spectroscopy. There are the twelve
lower frequency coherences that, as mentioned, will be used to
emulate the vibrational motions of the physical system. Note that
there is a spread in the frequencies and the very lower ones will be
used to emulate splittings due to coupling of two
vibrational modes.

FIGURE 2 | The algebra characterizing the device (A) and the physical
system (B). The coherences Xij � |i〉〈j| between excited levels i and j of the
quantum dot dimer are our logic variables. After the laser pulses are over, the
coherences oscillate in time with a frequency that is the difference
between the energies of the two states that they connect. We aim to simulate
the time dependence of observables of the coupled oscillators system. For
example, as shown in Eq. 7, we need the time dependence of 〈a2〉 to
compute the variance of the bond displacement of the first oscillator.
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THE PHYSICAL SYSTEM: LINEAR
VIBRATING TRIATOMIC MOLECULE

In this paper we track the electronic dynamics in the QD dimers
to emulate the vibrational motion in non-stationary states of a
triatomic molecule, Figure 2.

The system we emulate is two coupled harmonic local
vibrations, each representing a bond. The coupling is due to
the motion of the central atom and it depends on its mass and its
displacement from equilibrium [31]. By expanding the potential
of the system and keeping only up to quadratic terms in the
deviation of the bond displacements from equilibrium, the
Hamiltonian for two harmonically coupled harmonic modes,
denoted a and b, is, using Z � 1,

Ĥ � ωaâ
†â + ωbb̂

†
b̂ + (α/2)(â†b̂ + b̂

†
â) (1)

Here we use the standard notation for the creation and
annihilation operators for the two local vibrational modes. The
vibrational quantum number mismatch is determined by 〈â†â −
b̂
†
b̂〉 and the frequency mismatch is δω � ωa − ωb. The harmonic

coupling is âb̂
† + â†b̂ and the strength is α/2. Due to this

coupling, the creation and annihilation operators of the two
oscillators are correlated.

We characterize vibrational motion of the local modes by the
mean values of the bond distance, momenta and dispersion of
both quantities. Computation of the values of the mean bond
distance andmeanmomenta involves description of the evolution
of both creation and annihilation operators:
〈R̂a〉 � 〈â + â†〉/ ������

2maωa
√

. A simple application of the
Heisenberg equation of motion leads to a set of equations of
motion:

d
dt

( â
b̂
) � −i( ωa α/2

α/2 ωb
)( â

b̂
) (2)

and an adjoint equation:

d
dt

( â†

b̂
† ) � i( ωa α/2

α/2 ωb
)( â†

b̂
† ) (3)

One can write these as one equation for a vector of four
components using a Liouvillian operator L̂: dv/dt � iLv, where
v+ � (â, b̂, â†, b̂†) and Liouvillian:

L � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−ωa −α/2 0 0
−α/2 −ωb 0 0
0 0 ωa α/2
0 0 α/2 ωb

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

As is well known, one can diagonalize the Hamiltonian leading to
an antisymmetric and a symmetric vibrational modes. Here this
corresponds to diagonalizing the Liouvillian, Eq. 4, leading to the
frequencies:

(1/2)(ωa + ωb ± Ω) (5)

where Ω2 � α2 + (δω)2.
We use as an example vibrational dynamics in the CS2

molecule, where ωa � ωb � ω and Ω � α. The eigenfrequencies,

Eq. 5, become ω ± α/2 for the â ± b̂ eigenvectors and similarly for
their complex conjugate analogs. Taking expectation values it is
useful to note that equations imply that the mean values at the
time t can be computed given their initial values, for example:

〈â + b̂〉(t) � 〈â + b̂〉(0)exp( − i(ω + α/2)t )

〈â† + b̂
†〉(t) � 〈â† + b̂

†〉(0)exp(i(ω + α/2)t)
(6)

The mean values of the bond displacement,
(〈â〉(t) + 〈â†〉(t))/ ����

2mω
√

or the momentum
i(〈â†〉(t) − 〈â〉(t)) · ���

mω
√

/
�
2

√
can thereby be computed.

To describe the dispersion of the nuclear wave packets in
coordinate space and in momentum space we need to extend our
algebra. In the basis of the vibrational states the dispersion in the
displacement of a local oscillator can be written as follows:

σ2
R(t) � 〈R2〉(t) − (〈R〉(t))2

� 1
2mω

〈(â + â†)2〉(t) − 1
2mω

(〈(â + â†)〉(t))2 (7)

And similar for the dispersion in the momentum space:

σ2
P � 〈P2〉 − 〈P〉2 � −mω

2
〈(â† − â)2〉 +mω

2
〈(â† − â)〉2 (8)

Therefore we need to describe the dynamics of the {â2, (â†)2, â†â}
and {b̂2, (b̂†)2, b̂†b̂} for the dispersion in R and P of the two
coupled local bonds. Note connection between the dispersion of
the wave packets in different representations to the energy
transfer between the two coupled oscillators, 〈â†â〉 or 〈b̂†b̂〉
mean values. Therefore we need a hardware computing device
that can emulate 10 logic variables. The computing hardware
described above can emulate 16 logic variables when only the
lowest four exciton bands are addressed and 64 when shorter laser
pulses are used.

RESULTS

We use the device as discussed in section above to simulate the
time dependence of the physical variables as revealed by the
algebras for the coupled vibrations that are discussed in section
III. Each coherence of the device is a point on the 2D frequency
map generated by the 2D spectroscopy. The size dispersion of the
quantum dots means that each point is actually a cloud of points
at nearby frequencies. This dispersion in the frequency associated
with each coherence is what enables one device to simulate
different but similar physical systems. In this section we show
how different coherences can simulate the time evolution of
different physical variables of the system.

The results for the mean bond displacement 〈R〉(t) and its
dispersion σ2R(t), Eq. 7, are shown in panels (a) and (c) of
Figure 3. The computations are for a symmetric system that is
not stationary in time because of an asymmetry in the initial
conditions. One oscillator starts with low energy and the other,
the one shown, is initially energy richer. On the right side of the
figure we show relevant segments of 2D frequency maps
computed at different values of the time interval T that enable
the device to simulate the two functions of time 〈R〉(t) and σ2R(t).

Frontiers in Physics | www.frontiersin.org October 2020 | Volume 8 | Article 5906995

Komarova et al. Parallel Quantum Computation of Vibrational Dynamics

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Shown for each are three values of T that correspond to extreme
displacement and dispersion. One can, of course, measure at
intermediate values as well.

The mean bond displacement of a local oscillator, frequency ω,
in a symmetric molecule such as CO2, Figure 3A, is seen to be
faster varying in time than the width, 3(c), of the wavepacket
describing the oscillator. This reflects the difference in magnitude
between the eigenfrequencies ω ± α/2 and the coupling parameter
α. In the absence of coupling between the oscillators, α � 0 in the
Hamiltonian, Eq. 1, the width of a coherent state of the harmonic
potential will not vary with time. The coupling induces a slow,
frequency α, energy transfer between the two oscillators as
reflected in the variation of the width of the wavepacket
localized on one of the two bonds.

It might seem from Figure 3 that one has to assemble a new
device for each different triatomic molecule. This is because for
each one of the two frequencies ω + α/2 and α one would need a
different electronic level structure in the dimer of the two
quantum dots. The same size dispersion of the quantum dots
that hitherto limited our abilities is here an advantage. The
somewhat different sizes of the monomers means that there is
a finite range of frequencies for each coherence. The range should
not be too broad as otherwise we will lose resolution in frequency.
Moreover, since the distribution of spacings of a particular
coherence is, at low dispersions, Gaussian [3], we should not
probe too far toward the wings. Complementary, when the range
is broad we can only measure at short times before serious
dephasing sets in. But the times cannot be too short because
we want to measure only after the laser pulses are over. Practical
implications of the distribution of spacings can be seen in
Figure 4. Shown is a 2D frequency map for both regions used
to compute the time-evolution of the bond distance (region A of
Figure 4) and its dispersion (region B, Figure 4). Slightly

different time-evolution of the coherences for the neighboring
positions on the map enables fine-tuning of the period of the
oscillations as is shown on the side panels of Figure 4.

A coherence is a complex valued observable so each coherence
can describe two conjugate physical variables as shown
in Figure 5. Equation 6 shows that the expectation values,
〈R〉(t) � (〈â〉(t) + 〈â†〉(t))/ ����

2mω
√

and 〈P〉(t) � i(〈â†〉(t)−
〈â〉(t)) · ���

mω
√

/
�
2

√
of the bond displacement and of the

momentum can both be computed at the same point of the
map, by reading the real and imaginary values. The two values
are shifted by a phase difference of π/2 as is to be expected. There
is an uncertainty with the momentum, σP, and position, σR, as
shown in Eqs. 7 and 8. Time-evolution of the uncertainty in the
position, related to the width of the wavepacket in coordinate
representation, is shown in Figures 3C,D. As discussed therein
these uncertainties are time-dependent because of the coupling
between the two oscillators so that they are more slowly varying
and reflect the energy transfer between the two oscillators. The
time-evolution of the uncertainty in the momentum
representation is following the same time-dependence as σR

therefore no additional computation is needed.

CONCLUDING REMARKS

A versatile quantum mechanical computing device that operates
on a laser addressed solid array of quantum dots dimers has been
discussed. Experimental data shows that such a device can
operate at room temperature [23, 24]. The device was
effectively used to simulate the quantal dynamics of non-
stationary states of coupled vibrations. We show how the
read-out of the coherences engineered in the device following
interaction with a sequence of the laser pulses enables parallel

FIGURE 3 | Time-evolution of the physical variables (A, C) and their computation (B, D) using 2D frequency maps for the device of the QD dimers. The response of
the quantum device, panels (B) and (D), can simulate the time dependent observables of the physical system such as the mean bond displacement, panel (A), and the
dispersion in the bond displacement, panel (C). The physical system shown is a symmetric triatomic molecule. Shown are the real part of the 2D maps. See
Supplementary Material, Section 1.2, for details about the computation of the 2D maps.
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computation of the two conjugated variables, mean position and
momentum of the local oscillators. Extension to the more detailed
dynamics is shown by simulating also the dispersion in coordinate
representation of the quantum wave packets of the coupled
oscillators. Simulation is provided by matching the beating
frequency of the coherence and the oscillation frequency of the
physical variable. This mapping is in principle always possible for
systems where the algebraic description of the physical variables is
closed upon their commutation with Hamiltonian. Diagonalization
of the respective Liouvillian operator, Eq. 4, determines
eigenfrequencies ωk, for example Eq. 5, and enables
transformation to observables Ak(t) that evolve in time as
Ak(0)exp(iωkt). It is these frequencies that need to be measured
by the time evolution of the coherences of the device. The inevitable
size dispersion of the quantum dots limits the span of time that is

available for emulation but on the other hand allows a fine-tuning of
a frequency of interest.
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FIGURE 4 | The same device can simulate a range of frequencies. Left: A 2D frequency map (real part) for the device at a particular value of the time interval T
(computed for the full frequency range of the excited states, Supplementary Figure S4). The dispersion in sizes means that there is a range of frequencies
corresponding to each coherence. Point A. A higher frequency coherence, more off the diagonal in the map, used to compute the time-evolution of the bond distance,
Figures 3A,B. Shown are the intensities of the coherence vs time T for points in the range shown on the map. Point B. Coherence at a lower frequency for the
computation of the bond dispersion, Figures 3C,D. A wider range in the frequency is possible but reading nearer to the diagonal is experimentally more challenging.

FIGURE 5 | Reading two conjugate variables at the same position on the 2D frequency maps. Left entries:mean position (A) and momentum (C) as given by Eq.
6. As expected the displacement is maximal at a turning point of the motion while the momentum is maximal when the wavepacket crosses the equilibrium position of the
oscillator. Right entries: real (B) and imaginary (D) values of the intensities in the frequency map in the frequency range of interest. The values shown are reading at
different time intervals T.
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