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Microwave impedance microscope (MIM) is a near-field microwave technology which has
low emission energy and can detect samples without any damages. It has numerous
advantages, which can appreciably suppress the common-mode signal as the sensing
probe separates from the excitation electrode, and it is an effective device to represent
electrical properties with high spatial resolution. This article reviews the major theories of
MIM in detail which involve basic principles and instrument configuration. Besides, this
paper summarizes the improvement of MIM properties, and its cutting-edge applications in
quantitative measurements of nanoscale permittivity and conductivity, capacitance
variation, and electronic inhomogeneity. The relevant implementations in recent
literature and prospects of MIM based on the current requirements are discussed.
Limitations and advantages of MIM are also highlighted and surveyed to raise
awareness for more research into the existing near-field microwave microscopy. This
review on the ongoing progress and future perspectives of MIM technology aims to provide
a reference for the electronic and microwave measurement community.

Keywords: microwave impedance microscope, near-field measurement, microwave probes, electrical properties,
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INTRODUCTION

The past decade has witnessed efforts in the field of microwave to develop a near-field scanning
microwave microscope (NSMM) as a scientifically powerful instrument with rapid development
[1–9]. Early implementations of the microscope either used a small aperture at microwave cavities [2,
4] or a needle-shape probe coupled to a microwave resonator [5, 8–11]. Due to the hardship in tip-
sample distance control, these approaches are intrinsically susceptible to tip damage and difficult in
nanoscale quantitative measurement applications [9, 12]. The microwave impedance microscope
(MIM) can control tight distance perfectly and solve the crucial probe-sample gap control issue in the
nanometer range NSMM. Moreover, it shows great advantages in reducing the loss in doped silicon
traces while ensuring large power gain and high sensitivity because it employs metal lines for the
electrodes and cancels background signal before amplification. In addition, the MIM can
significantly suppress the common-mode signal since the inductive probe is separated from the
excitation electrode. Compared to atomic force microscopy (AFM) and scanning tunneling
microscopy (STM), the long-range electrostatic force involved in scanning MIM reduces the
stringent requirements for proximal probes, enabling high-speed, non-contact, and non-
destructive measurements [13–16]. Due to the aforementioned advantages, the MIM achieves
near-field measurements at nanoscale and has great potential in future application of high-resolution
microwave images generation.
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In this review, we present a comprehensive study of
development and recent progress in MIM. This review focuses
on technique improvements and applications and covers MIM
limitations and advantages, as well as the opportunities for
further research into the subject of near-field measurement.
The rest of this paper is organized as follows. Basic Design
and Improvement of Scanning Microwave Impedance
Microscopy gives a brief history and an overview of the
structure of MIM and discusses the fabrication process and
improvement of MIM. Cutting-Edge Application of Microwave
Impedance Microscope treats various cutting-edge applications.
Conclusion presents the conclusions and discussion.

BASIC DESIGN AND IMPROVEMENT OF
SCANNING MICROWAVE IMPEDANCE
MICROSCOPY
History and Design of Scanning Microwave
Impedance Microscopy
The employment of microwave frequency band has many
advantages, such as strong penetration, the ability to detect the
internal information of the sample, and the common polarization
of short relaxation time by the frequency influence. The near-field
microwave microscope works in the same principle in several
generations. The resonator resonates in the λ/4 coaxial resonator
through the coupling loop, then the resonant signal acts on the
sample after the needlepoint conduction. The microwave
reflection of the sample absorbed by the resonator will interact
with the microwave resonance. It causes resonance frequency
change. The reflected microwave decays quickly and is much
smaller than the microwave output signal, so the perturbation
equation can be used to analyze it [17–19]. Scanning microwave
microscopy (SMM) is a powerful tool for the investigation of
various properties, including conductivity, permittivity, and
impedance at the nanoscale. Different kinds of resonant
SMMs with excessive sensitivity and spatial resolution have
been demonstrated [5–9]. Despite the great progress in SMMs,
various barriers exist in current designs [14, 20]. A case in point is
the large common-mode signal, which results in loud noise. Slow

operation and low bandwidth dampen the special effect of long-
range force involved in a microwave microscope. Scanning
microwave impedance microscopy (MIM) is a species of SMM
[21–26]. MIM solves this problem successfully. Unlike traditional
SMMs, MIM determines the electrical properties through the
analysis of the phase and amplitude of the reflected wave instead
of through frequency drift and quality factor change. The
preponderance of this technique is that it shields the external
signal and reduces the common-mode signal. MIM detects
dielectric responses at a much wider frequency range (GHz).
MIM demonstrates the capacity to acquire high-resolution
microwave images of buried structures, as well as
nanoparticles, nanowires, and biological samples.

In Ref. 27, a handy and clear explanation of MIM system
characteristics was introduced. As shown in Figure 1, system
characterization involved tip-sample interaction, impedance
matching, and microwave circuitry. The outstanding point of
MIM is that the sensor probe is separated from the excitation
electrode while maintaining high sensitivity and spatial
resolution. The schematic construction of MIM was shown in
Figure 2, in which the traditional tip is replaced with a standard
AFM tip assembly and two transmission lines are included, one

FIGURE 1 | Schematic diagram of MIM. Reproduced with permission
from Rev. Sci. Instrum. 79, 6 (2008). Copyright 2008 American Institute of
Physics.

FIGURE 2 | The schematic construction of MIM. (A) Microfabricated
microwave probe with two aluminum electrodes and the ground plane
patterned on the Si nitride cantilever. (B) Schematic drawing of the layer
structure near the probe end. (C) SEM image near the probe end [27].
Reproduced with permission from Rev. Sci. Instrum. 78, 6 (2007). Copyright
2007 American Institute of Physics.

FIGURE 3 | Impedance matching section. A λ/4 cable and a tuning stub
(inside the dashed boxes) form the interface between the probe and the 50 Ω
feed lines [28]. Reproduced with permission from Rev. Sci. Instrum. 79, 6
(2008). Copyright 2008 American Institute of Physics.
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for excitation and the other for sensing. A two-layer
implementation like this improves the system’s common-mode
rejection ratio and reduces the noise level significantly. With
appropriate design, the detector can be “orthogonal”. Then the
signal is minimized without a sample. A high throughput near-
field scanning microwave microscope can be implemented.
Besides the sharp sensing electrode, a second electrode
surrounding the tip is also present on the cantilever to
significantly suppress the common-mode signal.

In Ref. 28, the lumped element circuit description is related to
the representative probe, with three impedances Ze, Zt, and Zet as
illustrated in Figure 3. Since there is a large mismatch between Zt
(Ze) and the transmission line impedance Z0(50 Ω), the
microwave power cannot be transmitted to the probe, and
detecting a small microwave impedance variation is infeasible
if the microwave power is directly connected to the feeder. In
order to improve the transmission of microwave power, it is
important to achieve impedance matching. The tip of the MIM is
first connected to a portion at the end of a λ/4 section of a
transmission line to form a resonator. As shown in Figure 3, the
resonator is then critically coupled to the feed line by a parallel
open-end tuning stub. An almost perfect match is easily obtained
with this adjustable stub [29].

In Ref. 30, the microwave is conducted into the tip through a
directional coupler. Then it gets into the directional coupler after
the surface reflection, and a cancellation signal is inputted to
suppress the background reflected signal at the same time.
Reflection microwave signals and cancellation signals are
amplified and demodulated to the quadrature mixer. Finally,
the reflected signal is composed of in-phase and out-of-phase
components [28, 29]. It contains data about the local permittivity
(capacitance) and conductivity (resistance) of the sample. But
there are still some problems. The tip electrode is the most
sensitive to local electrical performance, while the ring
electrodes to topography. Therefore, combining the signals
from the two electrodes may eliminate the convolution of
electrical and topographical information.

Improvement of Scanning Microwave
Impedance Microscopy
In recent years, MIM has been developed to characterize the
electrical properties of samples such as permittivity and
conductivity. Accordingly, the need for MIM is increased.

Many recent articles discuss the improvement of MIM in
sensitivity, resolution and wideband. Meanwhile, tip wearing
and sample dragging have become an increasingly serious
issue in near-field microwave measurement. Many researchers
have been able to make probes on a large scale by improving the
manufacturing process [31]. Table 1 compares and summarizes
different techniques and methodologies for the improvement
of MIM.

In Ref. 32, a compact mode microwave impedance imaging
based on an atomic force microscope platform was proposed. Tap
mode microwave imaging was also superior to contact mode
because thermal drift and other electron drift observed in contact
mode can be completely eliminated and absolute measurements
of dielectric properties can be made. Because the actual tip-
sample interaction is modulated at the tapping frequency,
slowly varying temperatures and other electronic drifts that
occur over a longer time frame do not contaminate the
microwave image [33–35]. Since the cantilever probe oscillates
at its resonant frequency, it only intermittently contacts the
surface of the sample. Tip wear and sample drag are greatly
reduced. It was also shown that the tap mode MIM can be
executed on the actual Nanodevices.

In Ref. 36, the authors reported the design and fabrication of a
piezoresistive cantilever with a low-impedance conduction line to
our electrically-shielded tip. Their new design exhibits a vertical
displacement resolution of 3.5 nm in a measurement bandwidth
from 1 Hz to 10 kHz. The probes provide topography feedback

FIGURE 4 | Depiction of the experimental set up for sMIM. [30]
Reproduced with permission from Appl. Nanosci. 1, 1 (2011). Copyright 2011
Springer Nature.

FIGURE 5 | S11 image with four different probes indicates a minimum
sensitivity. [40] (A) Scan results for the Ti/Al NW probe over DUT showing the
change in the amplitude of the microwave reflection coefficient S11. All micro-
capacitors are present in the image, indicating sensitivity to at least
0.7 fF. (B) S11 image with a bare NW probe indicates a minimum sensitivity of
3 fF. (C) S11 image with Si probe indicates a minimum sensitivity of 6 fF. (D)
S11 image with Pt probe indicates a minimum sensitivity of 0.7 fF. All scans
are plotted with different Z-axis color scales for clarity. All micro-capacitors are
present in the image, indicating sensitivity to at least 0.7 fF [40]. Reproduced
with permission from Appl. Phys. Lett. 104, 2 (2014). Copyright 2014
American Institute of Physics.
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with nanometer vertical resolution for samples or setups where
laser detection is not feasible or desirable. Furthermore, the low
parasitic impedance of the tip enables MIM measurements.
Although the capacitance and resistance of the tip are not as
low as previously reported probes, the measured impedance
suggests MIM measurements can be obtained in a self-sensing
mode, though with decreased MIM sensitivity and thus contrast
[37–39]. The self-sensing cantilever allows topography feedback
where the laser beam bounce technique is not available or hard to
implement. This probe will enable coupled topography scans with
MIM images.

In Ref. 40, a novel fabrication in a GaN nanowire probe for
near-field scanning microwave microscopy was suggested and
investigated, with improved sensitivity and reduced uncertainty
achieved which can measure capacitance values down to as small
as 0.7 fF while simultaneously recording 10 nm height changes.
The changes of the Mean measurement parameter (S11)
sensitivity that the nanowire probe is coated a Ti/Al layer and
across the device under test (DUT) micro capacitors were much
greater than a commercial Pt NSMM probe [41–45]. The
measurement uncertainty was significantly reduced. It is
important to improve wear resistance during contact-mode
scanning. The high-intensitive of the defect-free nanowire
improved measurement repeatability and alleviated the need to
re-calibrate the system frequently because it keeps the tip radius
constant between the scans.

In Ref. 46, the authors reported a new type batch-processed
low impedance, well-shielded and sharp tips piezoresistive
cantilever probes for simultaneously topographical and
electrical scanning probe microscopy. The integration of a
piezo resistor on MIM probes is a challenging task [47–49].
The small resistance and capacitance, as well as the shielded

structure, ensure great electrical performance. High quality piezo
resistive topography and MIM images are simultaneously
obtained with the fabricated probes [50–52]. These novel
piezoresistive probes remarkably broaden MIM applications in
scientific and engineering research of new materials and
electronic devices by operating photosensitive samples with an
integrated feedback mechanism at low temperatures. The probes
show good piezoresistive topographic andMIM capability at both
room and cryogenic temperatures.

In Ref. 53, the main idea was to integrate a scanning
microwave microscope into a scanning electron microscope
and a focused ion beam (SEM/FIB) instrument for nanoscale
imaging, characterization, and manipulation. Scanning
electronics and microwave microscopy operated in an open-
source automation software environment [54]. The automated
operation of nanoobjects goes a step further with the
development of hybrid open-source microscope tools. This
scanning microwave microscope can image the terrain,
measure electromagnetic performance at microwave
frequencies, and manipulate the “sample under test.”

In Ref. 55, a simple and novel silicon donor nanostructure
design for scanning tunneling microscopy (STM) mode was
introduced to quantify the resolution limit of sMIM. The doping
pattern is buried under a protective silicon cap by a 10 nm
highly conductive silicon line and imaged with sMIM, which is
an ideal test for the resolution and sensitivity of sMIM
technology because it is made in nm resolution and can
reduce the complexity caused by terrain convolution [56–58].
sMIM has been identified as an excellent platform for studying
buried donor structures, opening up a field of research with
further advantages of this technology, such as monotonic signal
response. Looking ahead, sMIM is an ideal technique for
identifying buried-pattern devices and may allow for
quantified post-processing characterization of donor
structures, which may be an important tool for studying
atomic-level transistors and the latest quantum computing
solutions.

In Ref. 59, the format and overall performance of a fully
integrated CMOS-MEMS SMM were described particularly. A
measuring unit has been developed, constructed, and applied to
enhance the signal to noise ratio and maximize the sensitivity of

TABLE 1 | Summarization of different techniques for the improvement of MIM.

Indicator Different techniques Result

Sensitivity Fabrication in a GaN nanowire probe [40] Improve sensitivity and alleviate the need to re-calibrate the
system frequently

a fully integrated CMOS-MEMS SMM [59] Improve the signal to noise ratio and maximize the sensitivity
Resolution a silicon donor nanostructure design for STM [55] Quantify the resolution limit of sMIM
Wideband a piezoresistive cantilever with a low-impedance conduction line

to electrically-shielded tip [36]
Resolution of 3.5 nm in a measurement bandwidth from 1 HZ to
10 kHz

Measurement conditions a compact mode microwave impedance imaging [32] Tip wear and sample drag are greatly reduced
a novel batch-processed low impedance, well-shielded and sharp
tips piezoresistive cantilever probes [46]

MIM capability at both room and cryogenic temperatures

SMM integrated into a scanning electron microscope and a
focused ion beam (SEM/FIB) instrument [53]

The automated operation of nanoobjects goes a step further

FIGURE 6 | Block diagram of the SMM system.
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the CMOS-MEMS SMM system. The block diagram of the
complete SMM system includes the tip of the sample being
tested, the SMM device fabricated using CMOS-MEMS
technology, the matching network, and the measurement
circuit [60]. In this situation, an increase in sensitivity
means that for a given tip-sample impedance change, the
change in system output (Vout or S11 in Figure 6) will be
maximized. These experiments confirmed the workable of
SMM to reveal characteristics not detected using AFM.
These analyses are carried out on the new CMOS-MEMS
SMM system described in this paper to assist designers to
enhance the sensitivity of traditional SMM systems. The
analysis presented in this article applies not only to CMOS-
MEMS SMMs but to any kind of SMM.

Cutting-Edge Application of Microwave
Impedance Microscope
sMIM is a quantitative near-field tool [27, 28] that operates at a
high-frequency ∼ GHz range [28]. It can detect the electrical
properties of various samples and implement microwave
detection technology at a macro/nano scale, showing broad
application prospects. MIM has made rapid progress. With the
passing of the years, many people have participated in the
research of MIM application, and push the frontiers of MIM
further. MIM technology does not have limitations on the
dimensions of the sample as well as on its properties. It can
be widely used in semiconductors, insulators, metals, magnetic
materials, chemical molecules, and biological cells. In terms of
property measurement, it can measure the basic electrical
properties such as dielectric constant, conductance,
capacitance variation, and electronic inhomogeneity. Recent
applications of SMM are summarized in this section.

Quantitative Measurements of Nanoscale
Permittivity and Conductivity
In Ref. 61, the dielectric constant of materials including high-k
insulators can be quantitatively measured and the author
measured the approximate curve of an oscillating tip toward
bulk dielectric samples using the MIM. Unlike coplanar probes
with poor shielding capabilities, which sense a sample distance of
tens of microns, the shielding of the wire eliminates spurious
signals from the cantilever body and enables quantitative analysis
of tip-sample interactions. The approximation curve of the MIM-
C channel output can be accurately described by lumped element
FEA simulation using standard locking techniques. The peak
signal near the curve is a measure of the dielectric constant of the
sample and can be used to explore unknown bulk materials [61].
permit by using a large number of dielectrics and permittivity of
unknown materials.

In Ref. 62, the authors presented a rigorous modeling of
nanosized SMM probes and their electrodynamic interaction
with material samples at microwave frequencies [62]. They
concluded that the SMM had the potential for use as a
broadband dielectric spectroscopy operating at higher
frequencies up to THz [63, 64]. The numerical simulation is
carried out by the finite element method (FEM). They pointed
out that the quasi-static model was accurate in calculating the tip
sampling capacitance., and with the increase of frequency, the
accuracy of loss calculation decreased [65, 66]. Their simulations
show that the SMMs operating at higher frequency provides
greater sensitivity on the evaluation of dielectric loss.

In Ref. 67, the authors demonstrated theMIM experiments on a
static random-access memory (SRAM) sample to resolve the local
conductivity distribution. They showed the microwave imaging on
the staircase and SRAM samples in the linear impedance.While the
conventional SCM images match the nominal device structure, the
MIM images display certain unexpected features of the nominal

FIGURE 7 | Peak MIM-C signal in tip-sample approaching as a function
of the relative dielectric constant [61]. Reproduced with permission from Appl.
Phys. Lett. 93, 12 (2008). Copyright 2008 American Institute of Physics.

FIGURE 8 |Demodulated tip-sample admittance and the corresponding
MIM-Im AC signals as a function of the relative permittivity [69]. Reproduced
with permission from Rev. Sci. Instrum. 89, 4 (2018). Copyright 2018
American Institute of Physics.
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doping maps, which originate from a thin layer of the dopant ions
that go through protective layers during the ion-implantation
processes. Real-space mapping of doping concentration in
semiconductor devices is of great importance for the
microelectronic industry. Their technique can measure the
surface impedance by MIM and carry types by SCM. With
these capabilities, our technique clearly shows great potentials
for applications in the semiconductor industry.

In Ref. 68, the authors created a quantification scheme
extracting sample conductivity and permittivity from
admittance with only the use of the capacitive calibration die
provided by the instrument using simulations and MIM
measurements. The prediction was verified with a sample of
polytetrafluoroethylene (PTFE). They have provided with finite
element simulations the full tip-sample behavior as a function of
both permittivity and conductivity. They furthermore
demonstrated a method for extracting values of permittivity
from the contrast map under certain constraints for the
conductivity. Here they supply the full behavior for multiple
values of both parameters. MIM is a valuable technique that can
image admittance contrast with minimal sample preparation.

In Ref. 69, the authors reported a method for the quantitative
measurement of nanoscale dielectric constant and conductivity
using a tuning-fork (TF) based MIM. A tuning fork (TF) based
MIMwith an etchedmetal tip provides an excellent solution to tip
degradation problems. They further developed TF-MIM by using
drive amplitude modulation (DAM) mode, which provides
satisfactory stability for samples with rough surfaces. The
demodulated MIM AC signal was simulated by combining the
finite element analysis (FEA) of the leading sample admittance
with the Fourier transform of the real-time signal. The simulation
results agree well with the experimental data on bulk media and
working nanometer devices. This work shows that TF-MIM is an
effective tool for quantitative nanoscale imaging of electrical
properties in functional materials. Their work provides a
method to perform quantitative near-field microwave imaging,
where absolute signal levels can be easily construed as local
permittivity and conductivity [69].

FIGURE 9 | AFM-tip/sample capacitance and effective tip radius. [70] (A) Topographical image of the bare 10 nm stepped dielectric staircase structure. (B)
Corresponding PNA amplitude image with the different steps resolved (0 dB corresponds to the bare silicon surface, as seen at the far-right edge of the image). (C) The
PNA amplitudes were converted to capacitances and plotted concerning the x-coordinate of the white line in (B). (D) For each dielectric step, the capacitance was
determined using an area analysis and subsequent averaging of the PNA amplitude [70]. Reproduced with permission from Rev. Sci. Instrum. 81, 11 (2010).
Copyright 2010 American Institute of Physics.

FIGURE 10 | Simultaneously taken topography andMIM-C images of an
In2Se3 nanoribbon. [72] Reproduced with permission from Nano Lett. 9, 3
(2009). Copyright 2009 American Chemical Society.
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Capacitance Variation
In Ref. 70, this paper proposes a calibration method that can be
widely applied to SMM based on the study of the quantitative
dimension of dielectric constants of thin films using SMM. And
calibration procedures for nanoscale capacitance measurements
permit quantitative evaluation of material and device overall
performance in SMM measurements. Customized standard
samples, coupled with end-to-end interaction modeling and
thorough PNA data processing, make it possible to calibrate
SMM parameters, including calibration capacitance and
effective probe size. This quantitative information is
important to understand the response and conduct of
nanoscale systems, in particular when equipment
performance must be evaluated over its expected operating
frequency range. In order to determine the absolute
capacitance value by the PNA reflection amplitude, a
calibration pattern of quite a number sizes of conductive
gold pads on the SiO2 step shape used to be used.

In Ref. 71, the authors proposed a general method for
calculating the change in capacitance of a tip-sample in a
near-field scanning microwave microscope. This method can
accurately calculate the change in capacitance due to uneven
perturbations in insulated or conductive samples, which has been
verified by finite element analysis of commercial software and
experimental data from MIM. Furthermore, the method
presented in this paper also provides a rigorous framework to
solve the inverse problem, with great potential to increase the
resolution by deconvolution. This method can be applied directly
to scanning microscopes and saves a lot of time and memory. The
frame is suitable for a wide range of models. Regardless of tip
shape, sample type, and disturbing material, the results are very
accurate and can be applied to any tip shape, thick film, and
variations due to uneven disturbances.

Electronic Inhomogeneity
In Ref. 72, the authors reported the observation of electronic
inhomogeneity in indium selenide (In2Se3) nanoribbons by near-
field scanning MIM. Microwave probes compatible with atomic
force microscopy enable quantitative sub-surface electronics
research in a non-invasive manner. The large signal with
opposite signs recorded by the MIM most vividly displays the
phase change memory function of the In2Se3 devices. It is possible
to further implement the MIM as a spatially-resolved readout
instrument for memories with great resistivity changes [72]. MIM
cannot detect small topographic changes with phases changes,
but can directly measure local electronic properties and is more
sensitive to operations [73–76]. The author demonstrates that the
MIM can provide spatially resolved information when In2Se3
nano-devices are phase-switched by voltage pulses [72].

CONCLUSION

Near-field microscopy at microwave frequencies has attracted many
research interests in the past decades. MIM expands the scope of
local electrical characteristics testing. The MIM based on

microwave detection mainly uses microwave as the detection
source and obtains the information of the tiny electrical
parameters in the sample microregion in combination with
probe technology. The MIM probe is microfabricated on a
silicon nitride cantilever with a shielded metal trace and a Pt
tip deposited by a focused ion beam (FIB). Microwave
electronics can get the local information of these materials by
detecting the real and imaginary parts of the effective tip-sample
impedance, and microwave electronics output as MIM-R and
MIM-C signals [72]. Therefore, we believe that MIM can
provide a powerful and versatile tool to study nanoscale
dielectric inhomogeneities in a non-invasive manner [72].
This paper reviews developments and recent progress in
MIM and discusses both MIM limitations and advantages, as
well as the opportunities for further research into the subject of
near-field measurement. This paper also seeks to raise
awareness regarding the need for more research into the
existing near-field microwave microscopy in order to address
the limitations of MIM.

The MIM has been successfully used to obtain calibrated
values of relevant physical quantities, such as capacitance,
complex impedance and resistance, and surface localized
physical sample properties (electric permittivity, dopant
density, and resistivity) with nanoscale spatial resolution. In a
hot research field, MIM plays important roles in the detection of
various electrical properties of samples. In addition, the MIM can
also work at room temperature, low temperature, vacuum, and
magnetic field, which greatly improves the measurement range
and the feasibility of operating in multiple environments.

However, the geometry of the tip is limited to a few specific
types. The finished nib is almost impossible to have a strictly
regular shape in practice. For near-field microscope in the
microwave state, few theoretical works focus on specific
designs presented. As with any artifact, due to the disturbance
caused by the probe, the measurement component of the
microwave signal and the image deconvolution has not been
attracted much attention. With the development of microwave
near-field microscopy, these voids will be filled in time [14]. At
the same time, the preparation of the scale and the durability of
the probe are long-term topics.
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