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Due to the current COVID-19 epidemic plague hitting the worldwide population it is of
utmost medical, economical and societal interest to gain reliable predictions on the
temporal evolution of the spreading of the infectious diseases in human populations.
Of particular interest are the daily rates and cumulative number of new infections, as they
are monitored in infected societies, and the influence of non-pharmaceutical interventions
due to different lockdown measures as well as their subsequent lifting on these infections.
Estimating quantitatively the influence of a later lifting of the interventions on the resulting
increase in the case numbers is important to discriminate this increase from the onset of a
second wave. The recently discovered new analytical solutions of Susceptible-Infectious-
Recovered (SIR) model allow for such forecast. In particular, it is possible to test lockdown
and lifting interventions because the new solutions hold for arbitrary time dependence of
the infection rate. Here we present simple analytical approximations for the rate and
cumulative number of new infections.

Keywords: coronavirus (2019-nCoV), statistical analysis, pandemic spreading, time-dependent infection rate,
parameter estimation

1 INTRODUCTION

The Susceptible-Infectious-Recovered (SIR) model has been developed nearly hundred years ago [1,
2] to understand the time evolution of infectious diseases in human populations. The SIR system is
the simplest and most fundamental of the compartmental models and its variations [3–17]. The
considered population of N≫ 1 persons is assigned to the three compartments s (susceptible), i
(infectious), or r (recovered/removed). Persons from the population may progress with time between
these compartments with given infection (a(t)) and recovery rates (μ(t)) which in general vary with
time due to non-pharmaceutical interventions taken during the pandemic evolution.

Let I(t) � i(t)/N , S(t) � s(t)/N and R(t) � r(t)/N denote the infected, susceptible and
recovered/removed fractions of persons involved in the infection at time t, with the sum
requirement I(t) + S(t) + R(t) � 1. In terms of the reduced time τ(t) � ∫ t

0
dξa(ξ), accounting for

arbitrary but given time-dependent infection rates, the SIR-model equations are [1, 2, 18]

dI
dτ

� j − KI,
dS
dτ

� −j, dR
dτ

� KI (1)
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in terms of the time-dependent ratio K(t) � μ(t)/a(t) of the
recovery and infection rates and the medically interesting daily
rate of new infections

_J(t) � a(t)j(τ) � _τj(τ), (2)

where the dot denotes a derivative with respect to t.
For the special and important case of a time-independent ratio

K(t) � k � const. new analytical results of the SIR-model (1) have
been recently derived [19] – hereafter referred to as paper A. The
constant k is referred to as the inverse basic reproduction number
k � 1/R0. The new analytical solutions assume that the SIR
equations are valid for all times t ∈ [−∞,∞], and that time t �
τ � 0 refers to the “observing time” when the existence of a
pandemic wave in the society is realized and the monitoring of
newly infected persons _J(t) is started. In paper A it has been
shown that, for arbitrary but given infection rates a(t), apart from
the peak reduced time τ0 of the rate of new infections, all
properties of the pandemic wave as functions of the reduced
time are solely controlled by the inverse basic reproduction
number k. The dimensionless peak time τ0 is controlled by k
and the value ε � −lnS(0), indicating as only initial condition at
the observing time the fraction of initially susceptible persons
S(0) � e−ε. This suggests to introduce the relative reduced time
Δ � τ − τ0 with respect to the reduced peak time. In real time t the
adopted infection rate a(t) acts as second parameter, and the
peak time tm, where _J(t) reaches its maximum must not coincide
with the time, where the reduced j reaches its maximum,
i.e., τm ≡ τ(tm)≠ τ0, in general.

2 RESULTS AND DISCUSSION

According to paper A the three fractions of the SIR-model

S(τ) � 1 − J(τ), I(τ) � j(τ)
1 − J(τ),

R(τ) � −kln[1 − J(τ)]
(3)

can be expressed in terms of the cumulative number J(τ) and
differential daily rate j(τ) � dJ/dτ of new infections. The
cumulative number satisfies the nonlinear differential equation

j(τ) � dJ
dτ

� (1 − J)[J + k ln(1 − J)] (4)

Two important values are J0(k) � J(τ0), where j attains its
maximum with (dj/dJ)J0 � 0, and the final cumulative number
J∞(k) at τ � t � ∞, when the second bracket on the right-hand
side of the differential Eq. 4 vanishes, i.e., J∞ + kln(1 − J∞) � 0.
The two transcendental equations can be solved analytically in
terms of Lambert’s W function, as shown in paper A. In the
present manuscript we are going to avoid Lambert’s function
completely, and instead use the following approximants
(Figure 1A)

J0(k) � (3 − k)(1 − k)(1 + k + k2)/6, (5)

J∞(k) � 1 − exp[− (1 − k)(1 + κ)/k], (6)

κ(k) � (4 − k)k/3 (7)

Without any detailed solution of the SIR-model equations the
formal structure of Eqs 3 and 4 then provides the final values
I∞ � j∞ � 0, R∞ � J∞, and S∞ � 1 − J∞. We list these values
together with κ in Table 1. We emphasize that the final
cumulative number J∞, determined solely by the value of k,
remains unchanged (Table 1). With NPIs one can only flatten
and distort the epidemics curve (compared to the case of no NPIs
taken) but not change the final cumulative number.

2.1 New infections
The exact solution of the differential Eq. 4 is given in inverse form
by (Appendix A)

τ � ∫J

1−e−ε
dy(1 − y)[y + k ln(1 − y)], (8)

which can be integrated numerically (subject to numerical
precision issues), replaced by the approximant presented in
paper A (involving Lambert’s function), or semi-quantitatively
captured by the simple approximant to be presented next. The
solution J(Δ) as a function of the relative reduced time
Δ � τ − τ0, with the reduced peak time approximated by

τ0 � 1 − k
fm(k)[ln J0

1 − J0
− ln(eε − 1)], (9)

corresponding to J � J0 in Eq. 8, and where fm(k) � 1 − k + lnk, is
reasonably well captured by (Appendix C)

J(Δ) � 1
2
[1 + tanhY1(Δ)]Θ[Δs(k) − Δ] + {1 − 1 − J∞

2
[1

+ cothY2(Δ)]}Θ[Δ − Δs(k)] (10)

with the Heaviside step function Θ(x) � 1(0) for x ≥ (<)0. In
Eq. 10

Y1 � 1
2
[fm(k)(Δ − Δs)

1 − k
+ ln

1 − k
k

],
Y2 � 1

2
[E0(k)(Δ − Δs) + ln

k

(1 − k)κ],
(11)

with

Δs � 1 − k
fm(k) ln

(1 − k)(1 − J0)
kJ0

, E0(k) � [ k

(1 − k)κ − 1]fm(k)
(12)

also tabulated in Table 1. We note that Δs(k) is always positive.
Figure 2 shows the approximation (Eq. 10) for the cumulative
number as a function of the relative reduced time Δ for different
values of k. For a comparison with the exact variation obtained by
the numerical integration of Eq. 8 see Appendix C. The
agreement is remarkably well with maximum deviations less
than 30 percent. The known limiting case of k � 0 is captured
exactly by the approximant (Appendix D).

For the corresponding reduced differential rate j(Δ)
in reduced time we use the right hand side of Eq. 4 with
J � J(Δ) from Eq. 10, cf. Figure 3. Note, that this j is not
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identical with the one obtained via j � dJ/dτ, because J does
not solve the SIR equations exactly. The peak value jmax in the
reduced time rate occurs when J � J0 and is thus determined
by jmax � (1 − J0)(1 − J0 − k), also tabulated in Table 1.

As can be seen in Figure 3 the rate of new infections (Eq. 12) is
strictly monoexponentially increasing j(Δ≪ 0)xeΓ1Δ with Γ1(k) �
fm(k)/(1 − k) well before the peak time, and strictly
monoexponentially decreasing well above the peak time
j(Δ≫ 0)∝ e−Γ2Δ with the Γ2 � (1 − J∞)Γ1/κ. These exponential
rates exhibit a noteworthy property and correlation in reduced time:

Γ2
Γ1

� 1 − J∞
κ

(13)

The SIR parameter k affects several key properties of the
differential and cumulative fractions of infected persons. If the
maximum _J(tm) of the measured daily number of newly infected
persons has passed already, we find it most convenient to estimate
k from the cumulative value J(tm) at this time tm. While the
maximum of _J(t) must not occur exactly at τ(tm) � τ0
(Appendix F), we can still use J0 as an approximant for the
value of J(tm) and the relationship between J0 and k can be
inverted to read (Appendix E)

FIGURE 1 | (A) Approximants J0, J∞, and κ (thick green) used in this manuscript, cf. Eqs (5)–(7), compared with the exact functions [19] (thin black). (B) J∞ vs. J0
and (C) J∞ vs. jmax for the SIR model. (D) k as function of J0 according to Eq. 14. For J0 ≤0.1 this is well approximated by k ≈ 1 − J0, where J0 can be replaced by the
cumulative fraction of infected people at the time of the maximum in the daily number of newly infected people.

TABLE 1 | Exact parameter values depending on the inverse basic reproduction
number k.

k κ J0 J‘ S‘ fm E0 Δs jmax

0.00 0.00 0.500 1.000 0.000 1.000 0.0000 ∞ 0.2500
0.05 0.05 0.492 1.000 0.000 0.800 0.0000 3.5339 0.2327
0.10 0.11 0.483 1.000 0.000 0.670 0.0003 3.0441 0.2156
0.15 0.17 0.473 0.999 0.001 0.565 0.0049 2.7698 0.1986
0.20 0.24 0.462 0.993 0.007 0.478 0.0173 2.5745 0.1819
0.25 0.31 0.450 0.980 0.020 0.403 0.0348 2.4181 0.1653
0.30 0.37 0.436 0.959 0.041 0.339 0.0535 2.2835 0.1490
0.35 0.43 0.421 0.930 0.070 0.283 0.0709 2.1621 0.1330
0.40 0.49 0.403 0.893 0.107 0.234 0.0857 2.0491 0.1174
0.45 0.54 0.384 0.848 0.152 0.191 0.0971 1.9418 0.1022
0.50 0.59 0.363 0.796 0.203 0.153 0.1050 1.8386 0.0876
0.55 0.64 0.339 0.739 0.261 0.121 0.1093 1.7386 0.0736
0.60 0.69 0.313 0.676 0.324 0.094 0.1099 1.6416 0.0603
0.65 0.73 0.283 0.607 0.393 0.070 0.1071 1.5477 0.0479
0.70 0.78 0.251 0.533 0.467 0.050 0.1009 1.4571 0.0365
0.75 0.82 0.217 0.454 0.546 0.034 0.0914 1.3701 0.0263
0.80 0.86 0.179 0.371 0.629 0.022 0.0788 1.2871 0.0174
0.85 0.89 0.138 0.284 0.716 0.012 0.0633 1.2084 0.0102
0.90 0.93 0.095 0.193 0.807 0.005 0.0449 1.1343 0.0047
0.95 0.97 0.049 0.098 0.902 0.001 0.0237 1.0648 0.0012
1.00 1.00 0.000 0.000 1.000 0.000 0.0000 1.0000 0.0000

FIGURE 2 | (A) Cumulative number J(Δ) for different values of k according to Eq. 10. The vertical gray lines starting at the Δ-axis indicate the respective values of
Δs(k). (B) Same as in (A), divided by the final J∞.
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k � 2(1 − J0) − 1
1 + ln(1 − J0) � 1 − J0 − J20

2
+ O(J30 ) (14)

The dependency of k on J0 is shown in Figure 1C. With the so-
obtained value for k at hand, the infection rate a(tm) at peak time
can be inferred from a(tm) � _J(tm)/jmax(k). It provides a lower
bound for a0.

A major advantage of the new analytical solutions in paper A
and here is their generality in allowing for arbitrary time-
dependencies of the infection rate a(t). Such time-dependencies
result at times greater than the observing time t � 0 from non-
pharmaceutical interventions (NPIs) taken after the pandemic
outbreak [20] such as case isolation in home, voluntary home
quarantine, social distancing, closure of schools and universities
and travel restrictions including closure of country borders, applied
in different combinations and rigor [21] in many countries. These
NPIs lead to a significant reduction of the initial constant infection
rate a0 at later times. It is also important to estimate the influence of
a later lifting of the NPIs on the resulting increase in the case
numbers in order to discriminate this increase from the onset of a
second wave. Especially in the papers by Dehning et al. [17],
Flaxman et al. [22] and those reviewed by Estrada [4] the influence
of NPIs on the time evolution of the Covid-19 pandemics has been
studied using numerical solutions of the SIR-model equations. Our
analytical study presented here is superior to these results from
numerical simulations as its predictions are particularly robust for
the late forecast of the pandemic wave.

2.2 Modeling in Real Time of Lockdowns
The corresponding daily rate _J(t) and cumulative number J(t) of
new infections in real time t for given time-dependent infection
rates a(t) are J(t) � J(τ(t)) and _J(t) given by Eq. 2. From a
medical point of view the daily rate _J(t) is most important as it
determines also i) the fatality rate [23] d(t)xf _J(t − td) with the
fatality percentage fx0.005 in countries with optimal medical
services and hospital capacities and the delay time of tdx7 days,
ii) the daily number of new seriously sick persons [24] NSSPs �
2f _J(t − td) needing access to breathing apparati, and iii) the day
of maximum rush to hospitals tr � tm + td . In countries with poor
medical and hospital capacities and/or limited access to them the

fatality percentage is significantly higher by a factor h which can
be as large as 10.

To calculate the rate and cumulative number in real time
according to Eq. 2 we adopt as time-dependent infection rate the
integrable function known from shock wave physics

aLD(t) � a0
2
[1 + q − (1 − q) tanh t − ta

tb
]x{ a0 for t≪ ta

qa0 for t≫ ta,

(15)

which implies

τLD(t) � a0
2
⎡⎢⎢⎣(1 + q)t − (1 − q)tbln⎛⎝cosh t−ta

tb

cosh ta
tb

⎞⎠⎤⎥⎥⎦
x{ a0t for t≪ ta

qa0t for t≫ ta

(16)

The time-dependent lockdown infection rate (Eq. 15) is
characterized by four parameters: i) the initial constant
infection rate a0 at early times t≪ ta, ii) the final constant
infection rate a1 � qa0 at late times t≫ ta described by the
quarantine factor q � a1/a0 ≤ 1, first introduced in Refs. 21 and
24, iii) the time ta of maximum change, and iv) the time tb
regularizing the sharpness of the transition. The latter is known to
be about tbx7–14 days reflecting the typical 1–2 weeks
incubation delay. Consequently, the parameter q mainly affects
the amplitude _J shown in the left columns of Figures 5 and 6
(note that we also plotted the case of no NPIs taken (i.e., q � 1) for
comparison). Alternatively, the transition time tb controls the
rapidness of the transition in the fraction of infected persons per
day and therefore the widespread.

Moreover, the initial constant infection rate a0 characterizes
the Covid-19 virus: if we adopt the German values a0x58 days−1

and tbx11 determined below, with the remaining two
parameters q and ta we can represent with the chosen
functional form Eq. 15 four basic types of reductions: 1)
drastic (small q≪ 1) and rapid (ta small), 2) drastic (small
q≪ 1) and late (ta large), 3) mild (greater q) and rapid (ta
small), and 4) mild (greater q) and late (ta large). The four
types are exemplified in Figure 4.

FIGURE 3 | Reduced differential rate j(Δ) of newly infected fraction corresponding to the cumulative J(Δ) shown in Figure 2. (A) linear scale, (B)
semilogarithmic scale.
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2.3 Verification and Forecast
In countries where the peak of the first Covid-19 wave has already
passed such as e.g. Germany, Switzerland, Austria, Spain, France
and Italy, we may use the monitored fatality rates and peak times
to check on the validity of the SIR model with the determined free
parameters. However, later monitored data are influenced by a
time varying infection rate a(t) resulting from non-
pharmaceutical interventions (NPIs) taken during the
pandemic evolution. Only at the beginning of the pandemic
wave it is justified to adopt a time-independent injection rate
a(t)xa0 implying τ � a0t. Alternatively, also useful for other
countries which still face the climax of the pandemic wave, it is
possible to determine the free parameters from the monitored
cases in the early phase of the pandemic wave. We illustrate our
parameter estimation using the monitored data from Germany
with a total population of 83 million persons (P � 8.3 × 107).

In Germany the first two deaths were reported on March 9 so
that ε � 4.8 × 10− 6 corresponding to about 400 infected people
7 days earlier, on March 2 (t � 0). The maximum rate of newly
infected fraction, _Jmaxx380/fP, occurred tm � 37 days later,
consistent with a peak time of fatalities on 16 April 2020. At
peak time the cumulative death number was Dm � 3820/P
corresponding to Jm � Dm/f � 200Dm � 0.009. This implies

k ≈ 1 − J0 ≈ 0.991 according to Eq. 14 (and not far from the
value k � 0.989 to be determined from the fit shown in Figure 5).
From the initial exponential increase of daily fatalities in
Germany we extract Γ1(k)a0x0.28, corresponding to a
doubling time of ln(2)/Γ1a0x2.3 days, as we know Γ1(k) �
fm(k)/(1 − k)x0.0046 already from the above k. The quantity
am we can estimate from the measured _Jmax, as _Jmax � amjmax and
jmax(k) ≈ 4.2 × 10− 5. Using the mentioned value for _Jmax, we
obtain am ≈ 22/days as a lower bound for a0.

With these parameter values the entire following temporal
evolution of the pandemic wave in Germany can be predicted as
function of tb and q. To obtain all parameters consistently, we
fitted the available data to our model without constraining any of
the parameters (Figure 5). This yields for Germany kx0.989,
ta x21 days, qx0.15, a0 x58 days, and tb � 11 days. The
obtained parameters allow us to calculate the dimensionless
peak time τm x1353, the dimensionless time τ0 x1390, as
well as Jm x0.009, J0x0.011, Γ1x0.0056 and Γ2x0.0055.

We note that the value of k � 0.989 implies for Germany that
J∞(0.989) � 0.022 according to Figure 1, so that at the end of the
first Covid-19 wave in Germany 2.2% of the population, i.e., 1.83
million persons will be infected. This number corresponds to
a final fatality number of D∞ � 9146 persons in Germany.

FIGURE 5 | (A)Measured data _J(t) of new daily infected fraction (black circles) for Germany (DEU) compared with themodel _J(t) � a(t)j(τ(t)) outlined here (green).
Shown for comparison is the case where no NPIs are imposed (q � 1, black dot-dashed). (B) The measured cumulative fraction J(t) (black circles) together with the
model prediction (green), and the reference q � 1 case. Also depicted are J0 and the value at peak time, Jm. (C) The infection rate a(t) corresponding to the curves shown
in (A) and (B). Model parameters mentioned in the figure; a dropped from an initial value ofx58/days down to 7.8/days during the 2nd half of march. This realized
case can be directly compared with the four hypothetic cases shown in Figure 4. For details on how to obtain the parameters see Appendix G.

FIGURE 4 | (A) Infection rate a(t), (B) reduced time τ(t), (C) daily rate of new infections _J(t), (D) cumulative fraction J(t) of infected persons. In each panel we
consider four basic types of reductions: 1) drastic (small q � 0.1) and rapid (ta � 20), 2) drastic (small q � 0.1) and late (ta � 40), 3) mild (q � 0.5) and rapid (ta � 20), and 4)
mild (q � 0.5) and late (ta � 40). Remaining parameters due to Germany: tb � 11 days, a0 � 57 days−1, and k � 0.989. Both curves in (C) for the late cases reach the
same value at the maximum, which is plausible as the curve remains unaffected at the time of the maximum. The rapid cases tend to lower the maximum amplitude
already at the time of the maximum, and thus tend to decrease it compared with the late cases.
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Of course, these numbers are only valid estimates if no efficient
vaccination against Covid-19 will be available.

An important consequence of the small quarantine factor q �
0.15 is the implied flat exponential decay after the peak. Because
Γ1xΓ2 for k � 0.989, the exponential decay is by a factor q
smaller than the exponential rise prior the climax, i.e.,

_J(t≫ tm)∝ e−Γ2a0qt � e−
Γ1(1−J∞ )a0qt

κ xe−t/21.8 days (17)

Equation 17 yields a decay half-live of ln(2) × 21.8 daysx 15 days
to be compared with the initial doubling time of x 2.3 days. For
Germany we thus know that their lockdown was drastic and rapid:

the time tax March 23 is early compared to the peak time tmx
April 8 resulting in a significant decrease of the infection rate with
the quarantine factor qxam/a0 � 0.15. In Figure 5we calculate the
resulting daily new infection rate as a function of the time t for the
parameters for Germany, and compare with the measured data. In
the meantime, the strict lockdown interventions have been lifted in
Germany: this does not effect the total numbers J∞ and D∞ but it
should reduce the half-live decay time further.

We also performed this parameter estimation for other
countries with sufficient data. For some of them data is
visualized in Figure 6, parameters for the remaining countries
are tabulated in Tables 2 and 3. Most importantly, with the

FIGURE 6 | Same as Figure 5 for other countries: (A) Italy (ITA), (B) France (FRA), (C) Sweden (SWE), (D) Iran (IRN), (E) Great Britain (GBR).
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exception of the six countries ARM, DOM, IRN, PAN, PER, SMR
we found values of k> 0.9 for all other countries investigated
corresponding to basic reproduction numbers R0 � 1/k< 1.11.
These values are significantly smaller than the estimates of
R0 ∈ [2.4, 5.6] in the mainstream literature on Covid-19 [4,
22]. Part of these significant differences may be explained by
the different definitions of R0.

While the inverse basic reproduction number k � 1/R0 �
μ(t)/a(t) in the SIR-model is clearly defined as the ratio of
the recovery to infection rate, there are alternative definitions of
the basic reproduction number R0 using the effective
reproduction factor R(t). As discussed in detail in Sect. 4 of
Ref. 25 R(t) has to be calculated from the convolution

R(t) � c(t)∫∞

0
dsW(s)c(t − s) (18)

of the number of daily cases c(t) with the serial interval distribution
W(t) describing the probability for the time lag between a person’s
infection and the subsequent transmission of the virus to a second
person. As different choices of the serial interval distribution are used
in the literature this leads to differences in the calculated associated
effective reproduction factors R(t). As R0 is identical to the value
R(t0) at the starting time of the outbreak it is not clear in themoment
that this R0 will be identical to the 1/k of the SIR model [26].

2.4 Summary and Conclusion
In this work we derived for the first time an analytical
approximation for the solution for the SIR-model equations
with an accuracy better than 30 percent. The explicit
approximation refers to the fraction of newly infected persons
per day _J as a function of the relative reduced time with respect to
the reduced peak time. This closed form of the analytical solution
only depends on a single parameter k, the ratio of infection to
recovery rates. We assume that this ratio is independent of time.
As _J can be directly compared with the monitored death and
infection rates in different countries, we see no advantage in using
the more complicated SEIR-model which currently does not
allow for a closed analytical solution. An analytic solution of
the SIR model with an accuracy better than 5% is available as well
from our yet unpublished work where we did not consider time-
dependent a(t), but it has the disadvantage that it involves
Lambert’s function.

For the first time in the history of SIR-research (these
equations have been discovered 93 years ago!) we thus have
derived an analytical solution which can be applied successfully to
all accumulated data of virus diseases in the world. Being of
analytic form it is superior to all existing numerical simulations
and results in the literature. We also discovered for the first time
how to extract the value of k from the monitored data which is
highly nontrivial. We applied this new method to the data taken

TABLE 2 |Model parameters and model implications. The columns are as follows: country (α3 code), population P in millions (M), outbreak time defining t � 0, fitted time ta,
estimated time t0 corresponding to the reduced peak time τ0 of j(τ), fitted SIR parameter k, fitted initial infection rate a0, fitted parameter tb, fitted quarantine factor q,
estimated doubling time t2 characterizing the early exponential increase, estimated decay half life t′2 characterizing the late exponential decrease, estimated unreported
number of infections per reported number, estimated final fraction J∞ of infected population, final number of estimated fatalities D∞P � J∞Pf . We use f � 0.005 as the
probability to decease from a Covid-19 infection (reported plus unreported).

country P/M t � 0 ta tm t0 k a0 tb q t2 t92 dark J‘ D‘P

AFG 34.66 Mar 18 Apr 3 Jul 7 Jun 28 0.995 68.9 36 0.16 4.0 24.8 7.1 1.00% 1725
ALB 2.88 Mar 11 Mar 22 Jul 17 Jul 19 0.988 24.4 1 0.14 4.7 34.2 6.8 2.41% 346
AND 0.08 Mar 19 Mar 25 Mar 23 Apr 4 0.931 7.6 0 0.24 2.6 12.0 11.8 13.50% 52
ARG 43.85 Mar 6 Apr 4 Jul 13 Jul 19 0.987 21.8 12 0.20 4.8 24.1 4.6 2.63% 5774
ARM 2.93 Mar 22 Jun 9 Jul 1 Jul 19 0.897 1.1 14 0.30 11.4 43.7 4.0 19.78% 2893
AUT 8.75 Mar 9 Mar 11 Mar 31 Apr 5 0.992 149.8 19 0.05 1.1 23.4 7.2 1.66% 725
BEL 11.35 Mar 4 Mar 28 Apr 3 Apr 9 0.911 6.1 7 0.23 2.5 12.3 30.8 17.30% 9822
BFA 18.65 Mar 14 Mar 20 Mar 19 Apr 5 0.999 1754.5 0 0.25 2.8 10.9 10.1 0.06% 53
BGR 7.13 Mar 7 Mar 31 Jul 15 Jul 19 0.974 10.1 28 0.12 5.3 47.3 7.8 5.10% 1828
BLR 9.51 Mar 25 Mar 19 Jun 25 Jul 19 0.975 40.9 32 0.03 1.4 55.1 1.6 4.91% 2344
BOL 10.89 Mar 23 Apr 12 Jun 24 Jul 3 0.968 7.9 29 0.31 5.5 18.4 8.7 6.30% 3428
BRA 207.65 Mar 11 Mar 15 May 27 Jul 13 0.919 12.1 46 0.02 1.4 64.9 8.3 15.83% 164365
CAF 4.60 May 24 May 27 Jun 15 Jun 14 0.999 123.9 11 1.87 9.3 5.0 2.6 0.24% 55
CHE 8.37 Mar 1 Mar 22 Mar 23 Apr 3 0.976 22.0 5 0.25 2.6 10.9 11.8 4.70% 1969
CHL 17.91 Mar 16 Jun 7 Jul 9 Jul 8 0.910 2.0 11 0.22 7.5 38.3 5.5 17.43% 15610
CHN 1378.67 Jan 15 Feb 1 Apr 9 Feb 16 0.999 1544.6 9 0.09 2.6 28.1 10.9 0.07% 4765
COL 48.65 Mar 15 Apr 4 Jul 16 Jul 19 0.899 4.0 7 0.19 3.3 20.1 8.4 19.48% 47385
CUB 11.48 Mar 19 Mar 22 Apr 16 Apr 15 0.999 631.5 21 0.25 2.9 11.5 7.1 0.15% 86
CZE 10.56 Mar 17 Mar 25 Apr 1 Apr 11 0.997 235.1 8 0.08 1.7 21.4 5.3 0.69% 365
DEU 82.67 Mar 2 Mar 23 Apr 8 Apr 11 0.989 57.7 11 0.15 2.2 15.1 9.0 2.21% 9146
DNK 5.73 Mar 8 Mar 23 Mar 28 Apr 8 0.989 52.6 6 0.16 2.4 15.3 9.2 2.15% 615
DOM 10.65 Mar 12 Mar 23 Jul 17 Jul 19 0.747 2.6 16 0.04 1.9 76.4 4.0 45.91% 24442
DZA 40.61 Mar 6 Mar 31 Apr 2 Jul 19 0.977 18.4 9 0.05 3.3 65.2 10.0 4.48% 9105
ECU 16.39 Mar 7 Mar 7 Apr 25 Jul 8 0.935 15.5 40 0.01 1.3 119.5 14.9 12.72% 10422
EGY 95.69 Mar 6 Apr 3 Jun 8 Jun 22 0.994 52.5 5 0.22 4.4 19.8 10.5 1.20% 5724
ESP 46.44 Feb 26 Mar 17 Mar 25 Mar 31 0.937 12.4 6 0.14 1.7 13.4 21.9 12.27% 28498
ETH 102.40 Mar 29 Mar 29 Jul 19 Jul 10 0.999 215 4 1.29 21 16.2 4.7 0.06% 315
FRA 66.90 Feb 19 Mar 27 Apr 2 Apr 5 0.954 10.0 8 0.22 3.0 14.2 28.5 9.01% 30142
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TABLE 3 | Continuation of Table 2.

country P/M t � 0 ta tm t0 k a0 tb q t2 t29 dark J‘ D‘P

GAB 1.98 Apr 16 Apr 30 Jun 8 Jun 6 0.997 64.6 0 0.39 7.6 19.4 1.6 0.56% 56
GBR 65.64 Feb 29 Mar 26 Apr 2 Apr 19 0.925 8.9 12 0.09 2.0 26.1 30.9 14.54% 47719
GHA 28.21 Mar 16 Mar 21 Jun 12 Jun 18 0.999 464.9 0 0.22 4.4 19.9 1.2 0.13% 190
GRC 10.75 Mar 7 Mar 24 Mar 27 Apr 7 0.998 191.9 6 0.16 3.8 24.6 10.1 0.38% 203
GTM 16.58 Mar 28 Jun 11 Jul 7 Jul 6 0.985 9.7 10 0.48 9.4 19.9 9.0 3.03% 2513
HND 9.11 Mar 22 Mar 28 Jun 24 Jul 14 0.978 26.0 17 0.11 2.5 23.5 6.6 4.28% 1952
HRV 4.17 Mar 19 Apr 11 Apr 11 Apr 28 0.996 72.3 17 0.04 4.8 122.5 6.3 0.79% 165
IND 1324.17 Mar 6 Mar 21 Jun 8 Jun 28 0.997 189.9 36 0.12 2.4 20.8 5.9 0.61% 40316
IRL 4.77 Mar 7 Mar 13 Apr 17 Apr 16 0.962 21.2 29 0.11 1.7 16.9 13.7 7.41% 1768
IRN 80.28 Feb 12 Mar 8 Jul 14 Jul 19 0.819 3.1 17 0.04 2.3 84.0 11.5 33.82% 135755
ITA 60.60 Feb 15 Mar 13 Mar 20 Apr 1 0.940 10.2 8 0.14 2.2 17.6 28.7 11.70% 35442
KOR 25.37 Feb 14 Feb 16 Mar 14 Mar 21 0.999 989.6 13 0.07 1.2 17.4 4.3 0.22% 285
KWT 4.05 Apr 6 May 5 May 22 Jun 6 0.986 21.8 20 0.09 4.5 51.0 1.5 2.83% 573
LBN 6.01 Mar 4 Mar 31 Jul 19 Jul 19 0.999 95.5 2 0.09 9.9 105.3 3.6 0.29% 88
LUX 0.58 Mar 11 Mar 19 Apr 4 Apr 4 0.981 29.5 7 0.21 2.4 12.1 4.0 3.82% 111
MAR 35.28 Mar 10 Mar 24 Mar 28 Apr 17 0.999 628.8 13 0.03 2.5 82.8 3.6 0.18% 316
MDA 3.55 Mar 20 Mar 25 Jun 1 Jun 15 0.973 25.9 23 0.06 1.9 33.7 7.0 5.40% 960
MEX 127.54 Mar 13 Mar 24 Jul 19 Jun 24 0.954 16.2 42 0.06 1.8 31.1 25.4 8.99% 57326
MKD 2.08 Mar 16 Mar 31 Jun 25 Jul 19 0.927 5.4 9 0.11 3.4 33.1 10.1 14.29% 1488
MRT 4.30 May 6 Jun 1 Jun 3 Jun 7 0.996 66.4 4 0.29 5.1 17.9 5.3 0.82% 175
MYS 31.19 Mar 10 Mar 17 Mar 15 Mar 30 0.999 2064.2 7 0.11 1.7 16.2 2.8 0.08% 123
NGA 185.99 Mar 23 Apr 25 Jun 9 Jun 24 0.999 405.4 21 0.16 5.2 33.1 4.7 0.13% 1214
NLD 17.02 Mar 1 Mar 22 Mar 31 Apr 8 0.963 15.4 5 0.20 2.4 12.6 23.7 7.26% 6182
NPL 28.98 May 10 Jun 2 May 29 Jun 20 0.999 953.4 3 0.34 7.7 22.5 0.5 0.04% 55
PAK 193.20 Mar 11 Apr 8 Jun 11 Jun 13 0.997 101.1 17 0.22 4.0 18.2 4.4 0.69% 6677
PAN 4.03 Mar 15 Mar 26 Jul 10 Jul 19 0.848 3.5 10 0.09 2.5 35.5 4.8 28.80% 5808
PER 31.78 Mar 13 Mar 6 Jul 16 Jul 19 0.703 3.2 47 0.03 1.3 68.9 10.1 52.66% 83666
PHL 103.32 Mar 5 Mar 23 Jul 5 Jul 19 0.996 142.4 19 0.04 2.5 58.0 5.7 0.78% 4024
POL 37.95 Mar 6 Apr 2 Apr 17 Jun 5 0.993 63.1 20 0.05 3.4 67.0 8.3 1.30% 2474
PRT 10.33 Mar 11 Mar 14 Mar 31 Apr 22 0.982 86.4 16 0.02 0.9 38.8 7.1 3.67% 1896
ROU 19.71 Mar 15 Mar 17 Jul 14 Jul 19 0.909 13.8 21 0.02 1.1 79.1 11.7 17.60% 17343
RUS 144.34 Mar 18 Mar 18 May 22 Jul 5 0.984 60.7 44 0.02 1.4 61.8 3.4 3.12% 22543
SEN 15.41 Mar 28 May 9 Jun 8 Jun 24 0.998 79.9 1 0.55 11.5 21.0 4.3 0.30% 232
SMR 0.03 Mar 3 Mar 13 Mar 13 Mar 19 0.867 2.9 0 0.41 3.5 10.4 12.0 25.32% 42
SOM 15.01 Apr 6 Apr 19 Apr 15 May 4 0.999 591.7 0 0.24 3.7 15.2 6.0 0.13% 95
SRB 7.06 Mar 15 Mar 25 Jul 19 Jul 19 0.931 10.1 15 0.03 1.9 73.7 5.1 13.50% 4763
SWE 9.90 Mar 7 Mar 26 Apr 14 May 1 0.935 10.1 16 0.07 2.1 33.6 14.7 12.75% 6311
TCD 15.48 Apr 21 Apr 28 Apr 30 May 4 0.999 1387.0 3 0.22 2.1 9.2 16.9 0.10% 75
THA 68.86 Mar 17 Mar 29 Mar 26 Apr 1 0.999 3463.0 0 0.56 4.8 8.6 3.6 0.02% 58
TUN 11.40 Mar 15 Mar 30 Mar 26 Apr 1 0.999 659.7 6 0.29 4.7 16.4 7.3 0.09% 50
TUR 79.51 Mar 12 Mar 17 Apr 9 May 6 0.990 144 21 0.01 1.0 108.3 5.1 1.97% 7851
USA 323.13 Feb 24 Mar 23 Apr 10 May 16 0.938 10.2 23 0.03 2.1 81.6 7.8 12.18% 196763
ZAF 55.91 Mar 22 May 18 Jul 14 Jul 19 0.968 6.5 21 0.32 6.6 21.1 3.7 6.34% 17728

FIGURE 7 | Same as Figure 4 but with incomplete lifting (η � 0.8) hundred days after breakout (ts � 100 days). (A) infection rate a(t), (B) reduced time τ(t), (C)
daily rate of new infections _J(t), (D) cumulative fraction J(t) of infected persons. In each panel we consider four basic types of reductions: 1) drastic (small q � 0.1) and
rapid (ta � 20), 2) drastic (small q � 0.1) and late (ta � 40), 3) mild (q � 0.5) and rapid (ta � 20), and 4) mild (q � 0.5) and late (ta � 40). Remaining parameters due to
Germany: tb � 11 days, a0 � 57 days−1, and k � 0.989.
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for the Covid-19 pandemic waves in many countries. Our work
includes an estimate on the effects of non-pharmaceutical
interventions in these countries. This is possible as our
analytical solution holds for arbitrary but given time
dependencies a(t) of the infection rates.

An example, on how lockdown lifting can be modeled is
described in Appendix H. The situation is depicted in
Figure 7. The lifting will increase a(t) from its present value
up to a value that might be close to the initial a0. While the
dynamics is altered, the final values remain unaffected by the
dynamics, except, if the first pandemic wave is followed by a 2nd
one. The values for J∞ provided in Tables 2 and 3 provide a hint
on how likely is a 2nd wave. These values correspond to the
population fraction that had been infected already. While this
fraction is extremely large in Peru (53%), it is still below 1% in
several of the larger countries. The tables also report the

unreported number of infections per reported number
(column “dark”), estimated from the number of fatalities,
reported infections, and the death probability f.
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APPENDIX A: NON-PARAMETRIC
SOLUTION OF THE SIR MODEL

We start from the Eq. 19 from part A

τ � ∫ G
ε

dx
1 − e− x − kx

(A1)

and substitute

y � 1 − e−x, x � −ln(1 − y), dx
dy

� 1
1 − y

(A2)

Consequently, as the cumulative number of new infections is
given (see Eq. 37 from part A) by

τ � ∫ J
ψ

dy(1 − y)f (y), f (y) � y + kln(1 − y) (A3)

with the abbreviation ψ � J(0) � 1 − e−ε for the initial value. This
inverse relation τ(J) is the general solution of the SIR-model for
constant k. It is not in parametrized form.

APPENDIX A.1: Maximum of j
Taking the derivative of Eq. 37 from part A with respect to τ we
obtain

1 � j

(1 − J)[J + kln(1 − J)] (A4)

or the exact SIR relation

j � (1 − J)[J + kln(1 − J)] (A5)

Equation A5 provides

dj
dJ

� 1 − k − 2J − kln(1 − J) (A6)

The maximum value jmax occurs for (dj/dJ)J0 � 0 providing

1 − J0 � kln(1 − J0) + k + 1
2

(A7)

Setting 1 − J0 � e−X yields

e−X � −k
2
(X − k + 1

k
), (A8)

which is of the form of Eq. G1 from part A, and solved in terms of
the non-principal Lambert function W−1 as

X � k + 1
k

+W−1(α0), α0 � − 2
ke

e−1/k, (A9)

so that

J0 � 1 − e−
1+k
k −W−1(α0) � 1 + k

2
W−1(α0) (A10)

The maximum value is then given by

jmax � j(J0) � k2

4
{[1 +W−1(α0)]2 − 1} (A11)

and this can also be written as jmax � (1 − J0)(1 − J0 − k) with J0
from Eq. A10. According to Eq. 8 the reduced peak time in the
dimensionless rate of new infections is then given by

τ0 � ∫ J0
ψ

dy(1 − y)f (y), (A12)

which is the only quantity depending besides on k also on ε via
ψ � 1 − e−ε. In order to have our approximation depending only
on kwe therefore introduce the relative reduced time with respect
to the peak reduced time

Δ � τ − τ0 � ∫ J
J0

dy(1 − y)f (y) (A13)

which is still exact, independent of ε and only determined by the
value of k.

APPENDIX B: APPROXIMATING THE
FUNCTION f(y)
The function f (y) defined in Eq. A3 vanishes for
yc + kln(1 − yc) � 0, or 1 − yc � e−yc/k with the solution

yc(k) � J∞(k) � (1 − k)(1 + κ) (B1)

where κ was already stated in the introduction. According to Eq.
A13 the value J∞ corresponds to Δ � τ � ∞, so the maximum
value of the cumulative number of new infections is Jmax � J∞.

Moreover, the function f (y) attains its maximum value fm(k) �
f (y � 1 − k) � 1 − k + klnk at ym � 1 − k. As approximationwe use

f (y)x{ f1(y) for y ≤ 1 − k

f2(y) for (1 − k)≤ y ≤ J∞

� fm

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y

1 − k
for y ≤ 1 − k

J∞ − y
J∞ − (1 − k) for 1 − k≤ y ≤ J∞

(B2)

FIGUREB1 |Comparison of the approximation (B2) with the exact curve
for f(y) for different values of k. Vertical solid lines mark the position of the
maximum of the function.
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which is shown in Figure B1 in comparison with the function
f (y). The agreement is reasonably well with maximum deviations
less than 30%.

APPENDIX C: APPROXIMATIONS FOR J (τ)

Figure C1 demonstrates that J0(k) is always smaller than 1 − k. In
order to calculate the integral in Eq. A13 with the approximation
Eq. B1 we then have to investigate two cases: 1) For J0 < 1 − k and
J < 1 − k only the function f1 contributes and

Δ(J<1−k,J0<1−k) � ∫J

J0

dy(1 − y)f1(y) (C1)

2) For J ≥ 1 − k> J0 both functions f1 and f2 contribute and

Δ(J≥1−k>J0)x∫1−k

J0

dy(1 − y)f1(y) + ∫J

1−k
dy(1 − y)f2(y)

� Δs + ∫J

1−k
dy(1 − y)f2(y)

(C2)

with

Δs � ∫1−k

J0

dy(1 − y)f1(y) � 1 − k
fm(k)∫

1−k

J0

dy(1 − y)y � 1 − k
fm(k) ln

1
J0
− 1

1
1−k − 1

� 1 − k
fm(k) ln

(1 − J0)(1 − k)
kJ0

(C3)

denoting the relative time corresponding to the value J � 1 − k.
We consider each case in turn.

Appendix C.1 Case (1): J ≤ 1 − k, J0 < 1 − k
Here Eq. C1 provides

fmΔ
1 − k

� ∫J

J0

dy(1 − y)y � ln
1
J0
− 1

1
J − 1

, (C4)

so that the difference of Eqs C3 and C4 yields

fm(Δ − Δs)
1 − k

� ln
kJ

(1 − k)(1 − J), (C5)

or after inversion

J(τ) � [1 + k
1 − k

e−
fm(Δ−Δs )

1− k ]−1
(C6)

Appendix C.2 Case (2): J ≥ 1 − k > J0

Here Eq. C2 with Eq. C3 yields

fmΔx(1 − k)∫1−k

J0

dy(1 − y)y + [J∞ − (1 − k)]∫J

1−k
dy(1 − y)(J∞ − y)

(C7)� fmΔs + (J∞ − 1 + k)∫J

1−k
dy(1 − y)(J∞ − y),

so that

FIGURE C1 | The ratio (1 − k)/J0(k) as a function of k.

FIGURE C2 | Comparison for (A) j(Δ) and (B) J(Δ) between exact solution of the SIR model (green) and the approximant used here (black) for various k. Our
approximant [19] in terms of Lambert’s function is shown as well, but coincides with the exact solution (green) in this representation.
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fm(Δ − Δs)
J∞ − (1 − k) � ∫J

1−k
dy(1 − y)(J∞ − y) � − 1

1 − J∞
ln
1 − 1−J∞

1−J
1 − 1−J∞

k

(C8)� − 1
1 − J∞

ln
k(J∞ − J)

(J∞ − 1 + k)(1 − J)
After straightforward but tedious algebra we obtain

J∞ − J
1 − J

� J∞ − (1 − k)
k

e−E, (C9)

E(Δ) � 1 − J∞
J∞ − (1 − k) fm(Δ − Δs) (C10)

and consequently

J(Δ) � 1 + J∞ − 1

1 − (1−k)κ
k e−E(Δ)

(C11)

Using the identities 2(1 + e−2Y )− 1 � 1 + tanhY and
2(1 − e−2Y )− 1 � 1 + cothY we combine the results Eqs C6
and C11 to the analytical approximation of the SIR-model
equations at all reduced times, stated in Eqs 10–12 above. A
comparison with the exact numerical solution of the SIR model
is provided in Figure C2. The corresponding j(Δ) is obtained
from J(Δ) via Eqs A5.

APPENDIX D: SI-LIMIT k � 0

In the limit k � 0 Eq. A7 provides J0(k � 0) � 1/2 so that with
limk→ 0fm(k � 0) � 1 the time scale (Eq. C3) becomes

Δs(k � 0) � lim
k→ 0

ln
1 − k
k

� ∞ (D1)

With this result

Y1(k � 0) � Δ
2
− 1
2
lim
k→ 0

[Δs + ln
k

1 − k
]

� Δ
2
− 1
2
lim
k→ 0

[ln 1 − k
k

+ ln
k

1 − k
] � Δ

2
(D2)

Consequently, the cumulative number Eq. 10 and the rate Eq. 4
in this case for all times correctly reduce to

J(Δ, k � 0) � 1
2
[1 + tanh

Δ
2
], j(Δ, k � 0) � 1

4cosh2(Δ/2)
(D3)

APPENDIX E: RELATIONSHIP BETWEEN J0

AND K

Here we prove Eq. 14. According to paper A the quantity J0 is
given by J0 � 1 − e−G0 with

G0 � 1 + k
k

+W−1(−2e−1/kke
) � −ln(1 − J0) (E1)

where e denotes Euler’s number and W−1 the non-principal
solution of Lambert’s equation z � WeW . Equation E1 is of
the form x � r + c−1W(ce−cr/β) upon identifying c � 1, r � 1/k,

β � −ke/2, and x � −[1 + ln(1 − J0)]. From paper A we thus
know that e−cx � β(x − r) holds, or equivalently

(1 − J0)e � −ke
2
[ −1 − ln(1 − J0) − 1

k
] � ke

2
[1 + ln(1 − J0)] + e

2
(E2)

This is readily solved for k, and thus proves Eq. 14.

APPENDIX F: TIME OF MAXIMUM IN THE
MEASURED DIFFERENTIAL RATE _J(t)
One has J(t) � J(τ(t)) and _J(t) � _τ(t)J′(τ(t)) � a(t)j(τ(t))
since j � J′ if we let the prime denote a derivative with respect
to τ. The maximum in _J(t) thus fulfills

0 � €J(tm) � _a(tm)j(τ(tm)) + a2(tm)j′(τ(tm)) (E1)

or equivalently,

0 � [dlnj
dτ

+ _a
a2
]
t�tm

(E2)

From part A we know that

dlnj
dτ

� 1 − 2J − kln(1 − J) − k (E3)

and our J0 � J(τ0) solves 1 � 2J0 + kln(1 − J0) + k. That is,
j’(τ0) � 0. If a does not depend on time, τ0 � τ(tm) � a0tm, but
this is not generally the case. To find tm and τm ≡ τ(tm) one has to
solve Eq. E1, or Eq. E2. Equation E2 with Eq. E3 is solved by

Jm � J(τm) � 1 + k
2
W−1(αm) (E4)

with

αm � −2e
−(1+Cm)/k

ek
, Cm � − _a(tm)

a2(tm) (E5)

The corresponding j is, according to Eq. 4,

j(τm) � (1 − Jm)[Jm + kln(1 − Jm)] (E6)

The smaller Cm, the closer is Jm to J0.

APPENDIX G: FITTING THE DATA

As discussed in length in paper A we base our analysis of existing
data on the reported cumulative number of deaths, D(t), from
which we estimate the cumulative number of infections J(t) �
D(t − td)/f � 200D(t − td)with td � 7 days. From the cumulative
value Jm � J(tm) at the time tm of the maximum in _J(t) we
estimate k via Eq. 14 upon assuming Jm ≈ J0. Similarly, am �
a(tm) is estimated from am � _J(tm)/jmax(k). These tm, k, am are
not the final values, but provide starting values which are then
used in the minimization of the deviation between measured and
modeled J(t). The minimization is performed assuming the time-
dependent a(t) parameterized by Eq. H1 involving parameters
ta > 0, tb > 0, a0 > 0, q ∈ [0, 1], q< η ∈ [0, 1] and ts > tm. While τ(t)
is given by the integrated a(t), we use three strategies to model
J(t): i) the numerical solution of the SIR model, ii) the
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approximant G(τ) and J(τ) � 1 − e−G(τ) developed in part A, and
iii) the approximant J(Δ) given by Eq. 10 with Δ � τ − τm and τm
specified by Eq. 9. Because the numerical solution (i) is extremely
well approximated by (ii), and (ii) and (iii) compared to (i) not
prone to numerical instabilities at small and large Δ, we present
results only for method (iii), as they can be readily reproduced by
a reader without Lambert’s function at hand.

APPENDIX H: MODELING OF LOCKDOWN
LIFTING

Similarly to the lockdown modeling a later lifting of the NPIs can
be modeled by adopting the infection rate

a(t) � aLD(t)Θ (ts − t) + astop(t)Θ (t − ts) (H1)

where ts denotes the stop time of the lockdown still represented
by the infection rate Eq. 15, and where aLD is given by Eq. 15. The
infection rate after ts is assumed to be

astop(t) � a0[qs + (η − qs)tanh t − ts
tb

]x{ qsa0 for t � ts
ηa0 for t≫ ts,

(H2)

with qs � aLD(ts)/a0 the quarantine factor reached at the time ts
of lifting. Together with the reduced time given by Eq. 16 we
now find

τ(t) � τLD(t)Θ (ts − t) + τstop(t)Θ (t − ts) (H3)

and

τstop(t) � τLD(ts) + qs(t − ts)a0 + (η − qs)a0tbln[cosh(t − ts
tb

)]
(H4)

with τLD(t) from Eq. 16. For the four basic types of Figure 4 we
demonstrate in Figure 7 the effect of incomplete lifting.
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