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We present exact explicit Peregrine soliton solutions based on a periodic-wave
background caused by the interference in the vector cubic-quintic nonlinear
Schrödinger equation involving the self-steepening effect. It is shown that such
periodic Peregrine soliton solutions can be expressed as a linear superposition of two
fundamental Peregrine solitons of different continuous-wave backgrounds. Because of the
self-steepening effect, some interesting Peregrine soliton dynamics such as ultrastrong
amplitude enhancement and rogue wave coexistence are still present when they are built
on a periodic background. We numerically confirm the stability of these analytical solutions
against non-integrable perturbations, i.e., when the coefficient relation that enables the
integrability of the vector model is slightly lifted. We also demonstrate the interaction of two
Peregrine solitons on the same periodic background under some specific parameter
conditions. We expect that these results may shed more light on our understanding of the
realistic rogue wave behaviors occurring in either the fiber-optic telecommunication links or
the crossing seas.

Keywords: peregrine soliton, rogue wave, vector nonlinear Schrödinger equation, self-steepening, cubic-quintic
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1 INTRODUCTION

Originally, rogue waves refer to the surface gravity waves occurring in the open ocean whose wave
heights are at least twice as high as the significant wave height of the surrounding waves [1]. Under
extreme conditions, they soar like a wall of water that can dwarf even the largest of modern ships, and
then disappear into the sea as if all this does not happen [2, 3]. As these massive waves usually possess
a devastating power and behave unpredictably, they are hard to observe and study. Historically, the
first scientific observation that proved the existence of rogue waves was made at the Draupner oil
platform in the North Sea on January 1, 1995, hence named “New Year Wave” afterward [4]. Since
then, rogue waves became an active multidisciplinary area of research, ranging from hydrodynamics
to optics and photonics [5–8].

Despite the extensive studies, there is still a lot of debate over the physical mechanisms behind
rogue waves [9, 10]. While the linear theory based on the superposition of random waves or the
inhomogeneity has prevailed for some time [11, 12], the nonlinear viewpoint gains increasing
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popularity, as in a stricter sense only the superposition process of
nonlinear waves could bring about extreme waves higher than the
sum of the wave heights involved [13]. Actually, the most
accepted mechanisms—integrable turbulence [14, 15] and
modulation instability (MI) [16, 17] are of nonlinear nature,
by which irregular extreme wave events could be created. This is
easily understood within the MI framework, where the periodic
perturbations on a continuous-wave (cw) background tend to
undergo exponential growth initially, and then evolve into a
multiplicity of waves, from which rogue waves may arise
[18–20]. Therefore, using nonlinear Schrödinger (NLS)
equation or other relevant equations to model realistic rogue
waves is not only possible but also fascinating, as done in the
current rogue wave investigations [21–23].

Mathematically, one can associate rogue waves to the rational
solutions of the integrable nonlinear wave equation, which are
localized on both time and space [18]. A typical example is the
Peregrine soliton, which is a fundamental rational solution of
the celebrated NLS equation [24]. This type of soliton solution
exhibits a single doubly-localized peak on a finite background,
with its peak position and constant phase all undetermined,
hence matching well the fleeting and transient wave
characteristics of rogue waves as witnessed in real world. For
this reason, the Peregrine soliton was thought of as a promising
prototype of rogue wave events seen in nature [25]. Its
importance and universality have been confirmed by a
succession of well-designed experiments, with physical
settings spanning from the water-wave tanks [26] to optical
fibers [21, 27], and from the deep ocean [28] to plasmas [29].
Moreover, in a multicomponent (or vector) nonlinear system,
some variants of Peregrine solitons such as dark Peregrine
solitons [30] and anomalous Peregrine solitons [31, 32] have
come to light, opening new perspectives on the versatility of
Peregrine solitons as an essential prototype in rogue wave
science. Here, in a broad sense, we still term the fundamental
rogue waves in a multicomponent system Peregrine solitons or
Peregrine solitary waves, provided that they inherit the basic
wave features of the Peregrine soliton in the original NLS
equation [33, 34].

Recently, there has also been an intense research on the so-
called periodic Peregrine soliton, by which we mean a Peregrine
soliton formed on a periodic background [35–41]. Normally,
when a multicomponent nonlinear system is confronted, it may
occur to us that an interference would occur when two or more
monochromatic waves of different frequencies are
simultaneously present in the same region. The appearance of
interference fringes, which was ever instrumental in establishing
the wave nature of light in the history, is a direct evidence of such
interference effects. As interference effects are inherent to the
vector nonlinear system consisting of continuous waves, it is
therefore reasonable for us to inspect the possibility of the
existence of Peregrine solitons on a periodic background
caused by interference.

In this paper, we present an in-depth study of the formation
of Peregrine solitons on a periodic background, within the
framework of the vector cubic-quintic NLS (CQ-NLS)
equation, which is a two-component version of the scalar

NLS-type Gerdjikov–Ivanov equation [42]. As will be
shown, this model has included the necessary ingredients
such as group-velocity dispersion (GVD), Kerr nonlinearity,
quintic nonlinearity, and self-steepening, which could provide
more accurate descriptions for realistic rogue waves met in
complex systems, as compared to the simple Manakov model
[43, 44] and to the vector Gerdjikov–Ivanov equation [45]. We
will show that in this vector nonlinear system, a periodic
background could form as a result of an interference
between two continuous waves. Further, we present
explicitly the general Peregrine soliton solutions built on
such a periodic background, which were not reported
previously, to the best of our knowledge. The robustness of
these analytical solutions against non-integrable perturbations
has been numerically confirmed, by lifting the integrality
condition of the above vector CQ-NLS model. With these
exact solutions, the dynamics of the coexisting and anomalous
Peregrine solitons, as well as their interactions, of course
occurring on a periodic background, are exhibited. The
underlying mechanisms responsible for the generation of
such periodic Peregrine solitons are also discussed.

2 THEORETICAL FRAMEWORK

In the context of fiber optics, we write the vector CQ-NLS
equation as

iu1z + 1
2
u1tt + σu1(∣∣∣∣u1 2 + ∣∣∣∣u2

2)∣∣∣∣∣∣∣∣
+c2u1(∣∣∣∣u1 2 + ∣∣∣∣u2

2)2−icu1(u1u
*
1t + u2u

*
2t) � 0,

∣∣∣∣∣∣∣∣∣∣ (1)

iu2z + 1
2
u2tt + σu2(∣∣∣∣u1 2 + ∣∣∣∣u2

2)∣∣∣∣∣∣∣∣
+c2u2(∣∣∣∣u1 2 + ∣∣∣∣u2

2)2−icu2(u1u
*
1t + u2u

*
2t) � 0,

∣∣∣∣∣∣∣∣∣∣ (2)

where u1,2(z, t) are the normalized complex envelopes of two
optical components, and z and t are the distance and retarded
time, respectively. Subscripts z and t stand for partial derivatives.
While the constant coefficient 1/2 points to the GVD effect and
the coefficient σ to the self-phase modulation, γ accounts for the
pulse self-steepening effect [46], and c2 relates to the quintic
nonlinearity, which was often found in highly nonlinear materials
such as chalcogenide fibers [47]. Here, in terms of the anomalous
and normal dispersion cases, the parameter σ can be normalized
to 1 and −1, respectively, which have an otherwise interpretation
of self-focusing and self-defocusing in the context of beam optics,
when the independent variable t is interpreted as the transversal
spatial coordinate [48]. Besides, the combination of cubic and
quintic nonlinearity is a conventional consideration in the design
of mode-locked fiber lasers [49] or in stabilizing the soliton
propagation in nonlinear media [50]. With the above
ingredients included, this vector model represents an
important generalization of the Manakov system [43, 44],
although the former involves a specific relation between the
coefficients for quintic nonlinearity and self-steepening terms.
Therefore, from a mathematical perspective, it can provide a
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more accurate description of the propagation of ultrashort optical
pulses in highly nonlinear birefringent fibers. The physical
relevance of this integrable model can be seen by inspecting
the stability of its solutions against non-integrable perturbations,
i.e., when the above mentioned specific relation is lifted. We
should point out that, to weigh the nonlinearity factors that affect
the rogue wave dynamics, we have excluded the higher-order
dispersion terms from Eqs 1 and 2, which usually appear when
pulses are driven in the few-cycle regime [47] or in the
microstructure fiber [51].

Obviously, the above vector system could be reproduced from
the compatibility condition, Rtz � Rzt (which can read
Uz − Vt + UV − VU � 0), of the following 3 × 3 linear
eigenvalue problem:

Rt � UR, Rz � VR, (3)

where R � [r, s,w]T is the eigenfunction (T means a matrix
transpose, and r, s, and w are functions of the variables z, t,
and the complex spectral parameter λ), and

U � −i(λ − σ)σ3
2c

+ �
λ

√
Q − icσ3Q

2,

V � −i(λ − σ)2σ3
4c2

+
�
λ

√
2

(λ − σ

c
Q − i

�
λ

√
σ3Q

2 + iσ3Qt)
+ic

2σ3
2

Q4 − c

2
(QQt −QtQ),

with σ3 � diag(1,−1,−1) being the diagonal matrix, and

Q � ⎛⎜⎝ 0 u1 u2

−u*
1 0 0

−u*
2 0 0

⎞⎟⎠.

We should point out that the Lax pair Eq. 3 takes the same form
as used in the scalar CQ-NLS equation [42], except that the Q is
now defined by a 3 × 3 matrix. The subsequent Darboux dressing
operation is straightforward. In simple terms, let first u1,2 be the
seeding solutions and substitute them into the Lax pair Eq. 3 to
yield the eigenfunction R. Then, in terms of R at given spectral
parameter, a dress operator D can be properly constructed,
by which R will be dressed into R′ (i.e., R′ � DR). It requires
thatR′ must satisfy the Lax pair Eq. 3 of the same form, but with a
new pair of potentials u′1 and u′2 in U and V. Lastly, the Darboux
transformation formulas that relate the new solutions u′1,2 to the
seeding solutions u1,2 can be found. As concerns this standard
procedure, one can refer to Refs. 52–56 for more details. Intended
for rogue wave states only, a generalized or nonrecursive Darboux
transformation method can be developed, which can give the
nth-order rogue wave solutions without any iteration operation
[42, 57, 58, 59].

For our present purposes, we are merely concerned with the
fundamental rogue wave solutions, which evolve directly from the
MI of continuous wave fields. It is easily shown that the initial
plane-wave solutions uj0 (j � 1, 2) of the vector CQ-NLS
equation, defined by the amplitudes aj, wavenumbers kj,
frequencies ωj, and initial constant phases ϕj, all of which are
real, can be expressed as

uj0 � aj exp[i(kjz + ωjt + ϕj)], (4)

under the dispersion relations:

kj � A(σ + c2A) − c(ω1a
2
1 + ω2a

2
2) − ω2

j

2
.

Here and in what follows, we define A � a21 + a22 for the sake of
brevity. Also, we will assume below the initial constant phases
ϕj to be zero, without loss of generality. Then, with the help of
the Darboux transformation technique outlined above [42, 58,
59] followed by tedious algebraic manipulations, we obtain the
exact fundamental rogue wave solutions on a periodic
background, expressed by

u1 �
�
2

√
2

(Uu10 + Vu20), u2 �
�
2

√
2

(Uu10 − Vu20), (5)

where u10 and u20 are initial plane-wave solutions denoted by Eq.
4, and U(z,t) and V(z, t) are the complex rational polynomials
given by

U � 1 − 2iα[]2z − (Ac + μ + ω1)θ] + η(Ac2 − cω1 + σ)[(Ac + μ + ω1)2 + ]2](M + iN) , (6)

V � 1 − 2iα[]2z − (Ac + μ + ω2)θ] + η(Ac2 − cω2 + σ)[(Ac + μ + ω2)2 + ]2](M + iN) , (7)

with

θ � t + (Ac + μ)z, (8)

η � 2Ac2 + μc + σ, α � ]2c2 + η2, (9)

M � α(θ2 + ]2z2) + η2

4]2
, N � c(]2cz − ηθ). (10)

The parameters μ and ν in Eqs 6–10 are the real and imaginary
parts of the root χ (� μ + i]) of the algebraic equation:

1 + a21(Ac2 − cω1 + σ)(Ac + χ + ω1)2 + a22(Ac2 − cω2 + σ)(Ac + χ + ω2)2 � 0. (11)

We would like to emphasize that our solutions given by Eq. 5
entail the most general closed form for a pair of Peregrine
rogue waves on a periodic background, and their existence
relies on the algebraic condition given by Eq. 11. Generally, the
real-coefficient quartic Eq. 11 admits two different pairs of
complex roots and hence the solutions (Eq. 5) may exhibit two
different Peregrine soliton structures for the same set of initial
parameters. Moreover, in our solutions, the rational
polynomials U and V have been well separated by real and
imaginary parts, and their peaks have been translated to locate
on the origin so that their peak-to-background ratios read

∣∣∣∣fU ∣∣∣∣
and

∣∣∣∣fV ∣∣∣∣, respectively, where
fU ≡ U(0, 0) � 1 − 4(Ac2 − cω1 + σ)]2

η[(Ac + μ + ω1)2 + ]2], (12)

fV ≡ V(0, 0) � 1 − 4(Ac2 − cω2 + σ)]2
η[(Ac + μ + ω2)2 + ]2]. (13)
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Once the real parameters μ and ν are known from Eq. 11, the
intriguing rogue wave dynamics on a periodic background,
defined by Eq. 5, could be uncovered. As a matter of fact, the
conventional rogue wave dynamics on a cw background, which
are known as u1 � Uu10 and u2 � Vu20, can be understood as
well, and one can refer to [59] for more information.

Let us now consider the special case where the quartic Eq. 11
admits two pairs of equal complex roots. In this situation, one can
find that, when the plane-wave parameters satisfy

A(2Ac2 − κc + 2σ)2 − (9Ac2 − 4κc + 8σ)δ2 � 0, (14)

B � Aδc
2Ac2 − κc + 2σ

, (15)

where κ � ω1 + ω2, δ � ω1 − ω2, and B � a21 − a22 (the same below,
for the sake of brevity), the real and imaginary parts of the root χ
would take the following simple form

μ � −Ac − κ

2
, ] �

�
3

√
2

δ. (16)

Substituting Eq. 16 into Eqs 6 and 7 yields (noting now that
α � 3

4δ
2c2 + η2)

U � 1 − i(32 δz − θ)δα + η(η − 1
2 δc)

δ2α(34δ2z2 + θ2) + 1
3η

2 − iδ2c(ηθ − 3
4δ

2cz), (17)

V � 1 − i(32 δz + θ)δα + η(η + 1
2 δc)

δ2α(34δ2z2 + θ2) + 1
3η

2 − iδ2c(ηθ − 3
4δ

2cz), (18)

which result in the special type of deterministic Peregrine rogue
wave solutions denoted by Eq. 5, for any given set of parameters
that meets Eqs 14 and 15. As there is only one pair of (μ, ]) value
given by Eq. 16, no rogue wave coexistence [23] would occur any
more in this special case.

Further, we find that when the parameter conditions given by
Eqs 14 and 15 are satisfied, there would exist a pair of two-
Peregrine-soliton states that can describe the interaction between
two Peregrine rogue waves on the periodic background. After
some algebra, we can express this special kind of two-Peregrine-
soliton solutions by the same Eq. 5, but let the complex rational
polynomials U and V be denoted by

U � 1 − 3
�
3

√
δcRS*βϕ*

c(∣∣∣∣β 2
∣∣∣∣R 2 + λ0a21

∣∣∣∣S 2 + λ0a22
∣∣∣∣W 2),∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ (19)

V � 1 + 3
�
3

√
δcRW*βϕ

c(∣∣∣∣β 2
∣∣∣∣R 2 + λ0a21

∣∣∣∣S 2 + λ0a22
∣∣∣∣W 2),∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ (20)

where

R � c1 + c2ξ + c3(3ξ22 − i
�
3

√
ξ

δ
− i3z

2
), (21)

S � R + ca22 − δϕ

δ(δ + cB) [c2 + c3(3ξ + i
�
3

√
δϕ

)], (22)

W � R + ca21 + δϕ*

δ(δ + cB) [c2 + c3(3ξ + i
�
3

√
δϕ*)], (23)

with ξ �
�
3

√
2 δz − i(t − κz/2), ϕ � 1

2 − i
�
3

√
2 , λ0 � σ − cκ

2 + i3
�
3

√
2 δc,

β �
�
3

√
2 cA + i

2 (cB − 2δ), and c1, c2 and c3(≠ 0) being three
arbitrary complex constants (not confused with the system
parameter γ). It should be noted that, as c3 � 0, the above
polynomials U and V can reduce to Eqs 17 and 18, and then
the two-soliton dynamics would disappear.

3 INTRIGUING ROGUE WAVE DYNAMICS
ON A PERIODIC BACKGROUND

For given initial parameters, our analytical solutions Eqs 5–7may
exhibit intriguing rogue wave characteristics, including periodic
background hallmark, rogue wave coexistence, anomalous peak
amplitude, and applicability for both normal and anomalous
dispersions. In the following, we proceed to uncover these
interesting features as well as their underlying generation
mechanisms.

First of all, it is obvious that the periodic Peregrine soliton
solutions of the vector CQ-NLS equation can be generally
expressed as a linear superposition of two fundamental Peregrine
solitons of different cw backgrounds, provided that the continuous
waves involve a nonvanishing frequency difference. In fact, as one
might check, when the frequency difference meets δ � ω1 − ω2 � 0,
the two field components u1 and u2 would take the form of
conventional Peregrine solitons, with a three-fold peak amplitude
but without any periodicity on the amplitude of the background, as
seen in Figures 1A,B, where the Peregrine solitons defined by Eq. 5
are demonstrated in the anomalous dispersion regime (σ � 1), with
the initial parameters ω1 � ω2 � 3/2, c � 1, a1 �

���
3/2

√
, and

a2 �
���
1/2

√
. However, once δ ≠ 0, the background fields that

support the rogue waves would feature the periodic or
amplitude-modulated waves defined by

∣∣∣∣ubg1 ∣∣∣∣ � ��������������������
A
2
+ a1a2cos[δ(t − zκ/2)]

√
, (24)

∣∣∣∣ubg2 ∣∣∣∣ � ��������������������
A
2
− a1a2cos[δ(t − zκ/2)]

√
. (25)

It follows easily that the characteristic periodicity results from the
interference effects of two plane waves (see the second terms in
the radicals), and that the background waves will be modulated at
a temporal beat frequency equal to δ, with their patterns moving
at a transversal velocity equal to v � t/z � κ/2. Figures 1C–F
show two pairs of Peregrine solitons formed on such periodic
backgrounds, using otherwise identical initial parameters as in
Figures 1A,B except ω2 � −3/2, which means δ ≠ 0 and κ � 0.
These two pairs of periodic Peregrine solitons are caused by two
different (μ, ]) values (see caption) that are obtained by
substituting the same set of initial parameters into the quartic
Eq. 11. This means that on the same periodic background would
occur the pair of Peregrine soliton states shown in Figures 1C,D
or the other pair shown in Figures 1E,F, or both pairs
simultaneously. This is what we meant the rogue wave
coexistence first proposed for multi-component long-
wave–short-wave resonance [23].
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Further, we find that the Peregrine solitons formed will possess
the following enhancement factors, relative to the average
amplitude,

���
A/2

√
, of the periodic background:

fu1 � |u1(0, 0)|���
A/2

√ �
∣∣∣∣fUa1 + fVa2

∣∣∣∣��
A

√ , (26)

fu2 � |u2(0, 0)|���
A/2

√ �
∣∣∣∣fUa1 − fVa2

∣∣∣∣��
A

√ , (27)

where fU ,V are defined by Eqs 12 and 13. According to the above
definitions, one can find that the Peregrine solitons shown in
Figures 1C–F are actually enhanced in the center position up to
2.91 [Figure 1C], 1.80 [Figure 1D], 0.89 [Figure 1E], and 2.18
[Figure 1F] times as high as the average height of the periodic
backgrounds, respectively. These enhancement values are all
below 3 and do not seem to be different from what we
observed in Manakov systems [43, 44].

However, there is more to our story intended for the vector
CQ-NLS system, which involves the self-steepening effect
denoted by the parameter γ. It is found that due to the
presence of the self-steepening effect, the enhancement factors
of periodic Peregrine solitons, defined by Eqs 26 and 27, can also
be larger than 3, when an appropriate set of initial parameters is
selected [32]. To show this, we demonstrate in Figures 2A,B the
periodic Peregrine solitons in the same anomalous dispersion
regime, but using another set of initial parameters c � 1,
a1 �

���
7/6

√
, a2 �

���
5/6

√
, ω1 � 1/2, and ω2 � −1/2, which,

according to Eq. 11, can give rise to μ � −2 and

] � ����������
96 + 3

���
805

√√
/6. It is seen that one Peregrine soliton

component shown in Figure 2A has an enhancement value of
around 3.9, while the other one shown in Figure 2B has a much
smaller value, 0.56 or so. For comparison, we also provide in
Figures 2C,D the surface plots of the rational polynomials |U |
and |V | obtained under the same parameter condition, which

FIGURE 1 | Peregrine soliton states formed on (A),(B) the cw backgrounds when δ � 0 and (C)–(F) the periodic-wave backgrounds when δ ≠ 0, in the anomalous
dispersion regime (σ � 1), under the same parameters a1 � ���

3/2
√

, a2 � ���
1/2

√
, and c � 1. The other parameters are specified by (A),(B): ω1 � ω2 � 3/2, μ � −7/2, ] � ��

3
√

;
(C),(D): ω1 � 3/2, ω2 � −3/2, μ � −2 − 3

4

����
2

��
3

√√
, ] � 3

4

����
2

��
3

√√
; and (E),(F): ω1 � 3/2, ω2 � −3/2, μ � −2 + 3

4

����
2

��
3

√√
, ] � 3

4

����
2

��
3

√√
.
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correspond to the conventional bright-bright Peregrine soliton
solutions of the vector CQ-NLS equation, each involving the
peak-to-background ratios

∣∣∣∣fU ∣∣∣∣ ≈ 2.18 and
∣∣∣∣fV ∣∣∣∣ ≈ 3.45,

respectively. It is hence obvious that the ultrastrong peak
shown in Figure 2A results from the constructive interference
of such bright-bright Peregrine soliton components, while the
peak in Figure 2B may almost disappear due to the destructive
interference, as implied in Eqs 26 and 27.

Of most concern is the case of the combination of negative cubic
nonlinearity and positive quintic nonlinearity in our vector model,
which admits the existence of periodic Peregrine solitons as well.
Onemay recall that such a competing nonlinearity can often be used
to support the formation of stable dissipative solitons in mode-
locked fiber lasers [49] or to stabilize the soliton propagation in
nonlinear media [50]. A study of MI of the background fields reveals
that such a competing nonlinearity, which actually means σ � −1
(i.e., normal dispersion in the context of fiber optics), may favor the
generation of Peregrine solitons, with larger transient wave-packet
size, as compared to the anomalous dispersion case discussed above
[59]. Figure 3 shows the formation of periodic Peregrine solitons in
the normal dispersion regime, which is a linear superposition of the
given U and V distributions shown in Figures 3A,B. For simplicity,
we used a special set of initial parameters that meets Eqs 14 and 15
and thus used Eqs 17 and 18 forU andV in Eq. 5. Clearly, using this
set of parameters, we can obtain

∣∣∣∣fU ∣∣∣∣ � 4 and
∣∣∣∣fV ∣∣∣∣ � 0, as indicated in

Figures 3A,B. Hence, both periodic Peregrine soliton components
shown in Figures 3C,Ewould involve an enhancement value 1.63 in
the center position, despite that they have a different amplitude
distribution, as indicated by the contour plots in Figures 3D,F. As
compared with Figure 1, the periodic Peregrine solitons shown in

Figure 3 exhibit a larger spatiotemporal dimension and thus a larger
transient wave-packet size.

Now a natural question arises as to whether these periodic-
background Peregrine soliton solutions are robust against numerical
noises or even against strong “non-integrable” perturbations by
which we mean that the specific relation between the coefficients
for quintic nonlinearity and self-steepening terms can be lifted. To
answer this question, we perform extensive numerical simulations
with respect to our analytical solutions (Eq. 5), using an efficient
code based on the exponential time differencing Crank–Nicolson
(ETDCN) scheme with Padé approximation [60, 61]. Here we
present merely two sets of numerical results, for a typical set of
system parameters σ � 1, c � 1/4, a1 � 8/9, a2 � 4

�
5

√
/9,

ω1 � −40/81, and ω2 � 40/81, which would lead to μ � −4/9 and
] � −40 �

3
√

/81. First, for the purpose of comparison, we integrated
the original integrable CQ-NLS Eqs 1 and 2 numerically, with the
analytical solutions at z � −4 as initial conditions. Simulation results
are shown in Figures 4A,B. It is clear that our numerical code gave
precisely the whole solution profiles as predicted by the analytical
solutions (Eq. 5) till z � 4, despite the intrinsic numerical noises.
Second, we violate the integrability of the governed model by solely
changing the coefficient ic of the self-steepening term to ic(1 + 10%)
in the model, and simulate again the Peregrine soliton solutions
under otherwise identical parameter conditions, with results given in
Figures 4C,D. It is clearly seen that the whole Peregrine soliton
profiles on a periodic background can still be well maintained till
z � 2 (see the region before the white dashed line), almost the same
as shown in Figures 4A,B, implying that our analytical solutions
(Eq. 5) are still robust against such strong non-integrable
perturbations. After z � 2, due to the onset of MI, there would

FIGURE 2 | Peregrine soliton states on a periodic background, with (A) an anomalous amplitude enhancement on the u1 field component, and (B) a heavy falling-
off on the u2 field component, formed in the anomalous dispersion regime (σ � 1). The initial parameters are specified by c � 1, a1 � ���

7/6
√

, a2 � ���
5/6

√
, ω1 � 1/2,

ω2 � −1/2, μ � −2, and ] � 1
6

�����������
96 + 3

����
805

√√
. For comparison, the surface plots of the rational polynomials |U| and |V | are shown in (C) and (D), respectively.
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appear complex wave structures, which tend to interfere with the
trailing edge of Peregrine soliton profiles. The above simulations also
confirm, to an extent, the physical relevance of our analytical
solutions obtained with the coupled CQ-NLS Eqs 1 and 2,
although the model involves a special parameter relation between
the quintic nonlinearity and the self-steepening terms in order to
enable integrability.

Finally, we would like to point out that our solution form
defined by Eq. 5 is universal and can be applied to the higher-
order rogue wave hierarchy built on a periodic background, only
when Uu10 and Vu20 are the corresponding conventional
higher-order solutions of the underlying vector model. Here
for our current purpose, we provide the periodic two-Peregrine-
soliton solutions defined by Eqs 5, 19, and 20, which describe
the interaction between two Peregrine soliton constituents, for
any set of initial parameters that meets Eqs 14 and 15. Typical
results are demonstrated in Figure 5, where we used the same
system parameters as in Figure 3, and three extra parameters
c1 � 60, c2 � 8i, and c3 � 1. It is shown that on a periodic
background, there appear two well-separated Peregrine

soliton states on each field component; one may behave like
a spike, while the other is weaker in peak amplitude. Of course,
there would occur other complex patterns on the periodic
background, when the free parameters cs (s=1,2,3) are
changed. However, it is due to the inclusion of these extra
parameters that our general solutions presented above can be
used to model the multivariant rogue wave events met in
practical conditions.

4 CONCLUSIONS

In conclusion, we presented exact Peregrine soliton solutions
built on a periodic background caused by the interference in the
vector CQ-NLS equation involving self-steepening. It is
revealed that such periodic Peregrine soliton solutions are
indeed a linear superposition of two fundamental Peregrine
solitons of different cw backgrounds, provided that the
continuous waves possess a nonvanishing frequency
difference. With these exact solutions, we demonstrated the

FIGURE 3 | Peregrine solitons on a periodic background formed in the normal dispersion regime (σ � −1), defined by the solutions Eqs 5, 17, and 18, under the
parameters c � 1, a1 � 4/9, a2 � 4

��
5

√
/9,ω1 � −10/81, ω2 � 10/81, μ � −32/27, and ] � −10 ��

3
√

/81. While (A) and (B) display the surface plots for |U| and |V |, (C) and
(E) show the surface plots of Peregrine solitons for the u1 and u2 fields, respectively, with their corresponding contour plots given in (D) and (F).
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coexistence of Peregrine solitons on the same periodic
background, under certain parameter conditions. Further,
the ultrastrong amplitude enhancement was proved to occur

on the periodic background as well, due to the presence of the
self-steepening effect. We numerically confirm the stability of
these analytical solutions against significant non-integrable

FIGURE 4 | Typical simulations of the periodic Peregrine soliton solutions (Eq. 5) for given parameters σ � 1, c � 1/4, a1 � 8/9, a2 � 4
��
5

√
/9, ω1 � −40/81,

ω2 � 40/81, μ � −4/9, and ] � −40 ��
3

√
/81, under (A),(B) the original integrable CQ-NLS Eqs 1 and 2, and (C),(D) the same CQ-NLS model but with the coefficient ic of

the self-steepening term being changed to ic(1 + 10%), respectively.

FIGURE 5 | Interaction of two Peregrine solitons on a periodic background, under the same initial parameters as in Figure 3. The three extra parameters in Eqs 19
and 20 are given by c1 � 60, c2 � 8i, and c3 � 1.
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perturbations. We also showed the interaction of two Peregrine
solitons on the periodic background, which are still a linear
superposition of those on the cw background. Basically, such
simple superposition rule can be applied to the higher-order
rogue wave hierarchy on a periodic background. As one might
expect, these findings may shed more light on our
understanding of the realistic rogue wave behaviors
occurring in either the fiber-optic telecommunication links
[7] or the crossing seas [9].
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