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Coherent anti-Stokes Raman scattering (CARS) microscopy can provide high resolution,
high speed, high sensitivity, and non-invasive imaging of specific biomolecules without
labeling. In this review, we first introduce the principle of CARS microscopy, and then
discuss its configuration, including that of the laser source and the multiplex CARS system.
Finally, we introduce the applications of CARS in biomedicine and materials, and its future
prospects.
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INTRODUCTION

Raman scattering was named after its discoverer C. V. Raman, the celebrated Indian scientist, in 1928
[1]. The discovery of Raman scattering not only proved that the energy level of light is discrete but
also opened up a new research area for the study of the chemical characteristics of molecules. First,
Raman scattered photons in the mid-infrared range carry information about molecular vibration.
The switch from infrared to visible light circumvents the strong optical absorption of water in the
infrared region, which is of great significance in the field of biomedical science. Second, Raman
spectroscopy obviates the need for chemical labeling when obtaining chemical information, so that
the biological functional characteristics of the sample can be studied without chemical interference.

Although it has many advantages, spontaneous Raman scattering is a very weak second-order
radiative process. The cross-section of Raman scattering is approximately 10–30 cm2 per molecule,
which is 1011 times smaller than the corresponding cross-section of infrared absorption. The small
cross-section of the scattering leads to a low spontaneous Raman scattering efficiency and
consequently necessitates a long integration time. This is acceptable for Raman spectroscopy,
but for imaging, it is not feasible to collect real-time data with such a long integration time. The
development of the femtosecond laser with high peak power has enabled the observation of many
nonlinear processes, and promoted the study of coherent Raman scattering.

As a new nonlinear optical microscopy technique, coherent Raman scattering microscopy
overcomes the limitation of the imaging speed of spontaneous Raman micro-imaging [2–8]. In
coherent Raman scattering microscopy, typically, two beams of light are used to simultaneously
excite the sample, one beam is referred to as the pump beam and the other is the Stokes beam. When
the frequency difference between the two beams of light corresponds to a chemical bond vibrational
frequency of the target sample, four simultaneous coherent Raman processes will occur. These
processes are coherent anti-Stokes Raman scattering at the frequency (ωp − ωs) + ωp, coherent
Stokes Raman scattering at the frequency ωp − (ωp − ωs), stimulated Raman gain at ωs, and
stimulated Raman loss at ωp. The CARS signal is generated at a frequency that is different from
the excitation light. Stimulated Raman gain and stimulated Raman loss are both employed in another
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coherent Raman microscopy technique referred to as Stimulated
Raman Scattering (SRS) Microscopy.

The first observation of CARS was reported by Terhune and
Maker [9], as a third-order nonlinear effect in 1965 at FordMotor
Company, the car manufacturer. However, the official name of
CARS was not coined until 10 years later by Begley [10]. Begley
and his co-workers used CARS to study the chemical reaction
kinetics of combustion. CARS microscopy was first implemented
by Duncan [11] in 1982 using a non-collinear geometry to match
the phase and obtain two-dimensional images. In 1999,
Zumbusch [12] changed the excitation light configuration to
overlap collinearly with the Stokes beam, and used a
femtosecond laser for close focusing to achieve fast three-
dimensional imaging. This work greatly promoted the rapid
development of modern CARS microscopy technologies. Over
the next few years, a systematic study of CARS was performed by
Cheng and co-workers [2, 13–16]. In 2001, Cheng exploited
polarization-CARS by using the difference between the
polarizations of resonant and non-resonant CARS signals to
eliminate the non-resonant background. Laser scanning CARS
microscopy based on the picosecond pulsed laser was developed
for high-speed imaging of biomedical samples [16], and the
imaging speed of CARS reached the level of video-rate (20
frames/s) in 2005 [17]. Many strategies, including frequency
modulation [18], nonlinear interferometric vibrational imaging
[19], and spectral mixing [20] were used to suppress the non-
resonant background or extract the pure Raman responses from
the CARS spectrum.

In this review, the history and early development of CARS are
introduced, as well as the implementation of both single
frequency and multiplex CARS. Subsequently, recent
applications in biomedical and material science are presented.
Finally, the future directions of CARS are discussed.

CARS PRINCIPLE

CARS is a third-order nonlinear optical process. Under the
interaction of E(p), E(s) of the Stokes light field and E′(p) of
the probe light field, the sample molecules will produce an anti-
Stokes field E (as) with a frequency of ωas � 2ωp − ωs. Figure 1
shows the energy diagram of the CARS process. Figures 1A,B
show the generation process of the resonant CARS and non-
resonant CARS signals, respectively, under the action of the
pump light. In most cases, both the pump and probe light
originate from the same laser beam; thus, in the above
process, ICARS describes the intensity of the CARS signal and is
given by

ICARS ∝
∣∣∣∣χ(3)

∣∣∣∣
(2)
I2p Is

sin(Δkz/2) 2

Δk/2 (1)

Where ki � 2π/λi is the wavevector, z is the thickness of
the sample, and the wavevector mismatch Δk is defined
as Δk � kas − (2Kp − ks). When Δk z is close to zero, the sinc
function is maximized. This condition is known as the phase-
matched condition. Figures 1C exhibits the phase-matched
conditions for forward- and epi-detected CARS signals. Here
χ(3) is the third-order polarizability which is usually expressed in
the following form:

χ(3) � χ(3)NR +
χ(3)R

Δ − iΓ (2)

where Δ is the Raman shift, which can be described as
Δ � ωp − ωs − ΩR, and ΩR is the center frequency of a Raman
line with bandwidth Γ. Hence, the CARS signal can be written as

ICARS ∝
∣∣∣∣χ(3)NR

∣∣∣∣
2 + ∣∣∣∣χ(3)R (Δ)∣∣∣∣2 + 2χ(3)NRReχ

(3)
R (Δ) (3)

As can be seen from Eq. 3, the CARS intensity is determined
by three terms: the first term is known as the non-resonant

FIGURE 1 | Energy diagrams of the CARS process. Energy diagram of
the (A) resonant condition and (B) non-resonant condition. (C) Phase-
matching condition of CARS.

FIGURE 2 | (A) Spatio-temporal combination of pump and Stokes
beams. (B) CARS signal collection: forward-CARS (F-CARS) and backward
(epi)-CARS (E-CARS).
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background and is independent of the Raman shift. The second
term is the dominant contribution to probing strong resonant
scatterers. The third term includes a mixture of resonant and
non-resonant contributions, which contains the real part of the
vibrational response.

CARS MICROSCOPY

Two pulsed laser trains at different frequencies, i.e., ωp and ωs, are
necessary to build a CARS microscope (Figure 2A). One beam of
the lasers is tunable to adjust the desired Raman shift, ωp − ωs. A
pair of mirrors on a motorized linear stage is used to adjust the
time delay between the pump and Stokes beams. Expanded beams
are combined in a collinear geometry, and then directed to an
inverted or upright microscope. Finally, the two temporally and
spatially overlapped beams are focused onto the sample using a
water/oil immersion objective lens. The strong CARS signals are
generated both in the forward and backward direction, and are
referred to as F-CARS and E-CARS, respectively (Figure 2B).
Each signal is collected by a photomultiplier tube (PMT) or an
avalanche photodiode after filtering the useless fluorescence with
a bandpass filter, and focused by a lens. CARS images are
obtained by a laser scanning system similar to that of a laser
scanning confocal fluorescence microscope.

The cost and complexity of coherent Raman microscopy are
mainly due to the laser light source. The two excitation beams
must accurately control the absolute wavelength and linewidth.
Although a pulsed dye laser in the visible band was used in the
first coherent Raman microscopy system in history [11], the
current mainstream light source for CARS is the Ti: sapphire laser
or optical parametric oscillator (OPO) [17, 21]. Although the
newly developed fiber laser-based coherent Raman microscopy
can greatly reduce cost, it still cannot surpass solid-state lasers in
performance [22, 23].

At least two excitation light sources are required for coherent
Raman microscopy, one of which must be tunable to match the
Raman frequency difference of different molecular vibration
frequencies. For laser pulse width, a balance must be
established; femtosecond has a shorter pulse width, higher
peak power, and stronger nonlinear effect, while picosecond
laser has narrower linewidth (l–10 cm−1 for a similar
molecular vibration width) and can excite coherent Raman
scattering more efficiently. Experiments show that pulses of
1–10 picoseconds can ideally achieve this balance [24]. For
high-speed imaging, a repetition rate of at least 10 MHz is
required, and ideally a higher rate. In addition, the laser
excitation of the spectrum in the near infrared region can
minimize the generation of the non-resonant background in
CARS [12], providing less light-induced damage than visible
light, and deeper penetration into the tissue. Further, because
near-infrared light has a low transmission efficiency in a coherent
Raman microscopy system (typically 10%–20% from excitation
light to the sample), the power of the excitation source is
approximately at the milliwatt level. Several groups have
reported that they employed 50–200 fs pulse widths rather
than a 2–6 picosecond pulse width [22, 25–27]. In spite of the

fact that coherent Raman scattering processes could be excited by
femtosecond pulses, this resulted in decreased signal levels,
broader spectral resolution, and higher intensity non-resonant
background signals.

CARS microscopy offers many unique advantages, including
1) nondestructive molecular imaging without labeling, 2) ease of
spectral separation from the single-photon fluorescence
background, and 3) 3D sectioning capability. Despite all of its
advantages, however, the non-resonant background that limits
the sensitivity of CARS is a major disadvantage.

MULTICOLOR CARS MICROSCOPY

Multicolor CARS microscopy refers to a method that can detect
all or part of the vibration spectrum information on a sample at
the same time. Multicolor CARS microscopy can be understood
as a technique that can acquire a certain vibration spectrum such
as a spontaneous Raman spectrum, but which has good imaging
speed and spatial resolution. Although the imaging speed of
multicolor CARS microscopy is still not as fast as that of
single-color CARS, it has two essential advantages. The first is
that multi-color CARS can obtain a full range of spectral
information, while single-color can only obtain information at
a certain frequency. The second is that multicolor CARS can
better achieve quantitative analysis. Most microscopy techniques
endeavor to achieve qualitative analysis at a certain point of the
sample; however, in the fields of biology and material science,
quantitative analysis of the composition of the sample is often
required.

There are several common methods of implementing
multicolor CARS microscopy, as shown in Figure 3. Figures
3A shows multicolor CARS microscopy using picosecond pump
and femtosecond Stokes pulses [28, 29], in which a 100-fs Stokes
pulse is used to provide a frequency domain window of
approximately 400 cm−1, which is sufficient to obtain the
spectrum of the entire CH stretching range. In addition, by
adjusting the center wavelength of the Stokes pulse, other
regions of the vibration spectrum can also be studied,
although not simultaneously. Using a 10-ps pump pulse can
achieve a high spectral resolution of 2–3 cm−1. Figures 3B shows
multicolor CARS microscopy using picosecond pump and
supercontinuum Stokes pulse [30–37]. Although a
femtosecond Stokes pulse can include 400 cm−1 of spectral
information in one-shot, this is still not sufficient for a
vibrational frequency domain of 4,000 cm−1. With the rapid
development of photonic crystal fiber-based supercontinuum
light sources, it has become feasible to use supercontinuum
light sources as Stokes sources for CARS microscopy and to
achieve a window of 4,000 cm−1. Femtosecond and nanosecond
sources are used to generate the supercontinuum spectrum.
Figures 3C shows multicolor CARS using a femtosecond
pump and Stokes pulse with spectral focusing [30, 38–44], and
Figures 3D shows the principle of the spectral focusing method.
In general, by using broadband pump and broadband Stokes
pulses, the spectral resolution of the CARS signal is reduced.
Hellerer [38] proposed the method of spectral focusing in 2004,
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which can obtain a high spectral resolution when excited by a
broadband light source. In this method, a dispersive medium is
used to linearly chirp the light source. Although the linewidth of
the chirped source remains the same, the instantaneous linewidth
of the interaction between the two beams becomes very narrow.
This instantaneous linewidth determines the spectral resolution
of the system. The desired CARS spectrum can be obtained easily
and quickly by adjusting the time delay between the pump and
Stokes beams. In addition to being ingenious, this method has the
advantage of being simple and fast. The disadvantages are the
same as that of the ps-pump–fs-Stokes pulse method, i.e., it is not
feasible to obtain a wide range of spectral signals simultaneously.

Over the past few years, it has become possible to study complex
samples obtainingmore detailed information for both biological and
material science samples by multiplex CARS microscopy. Multiplex
CARS microscopy confers the two key advantages of the full
spectrum being available, and of being quantitative. The full
spectrum is essential when studying complex samples with many
overlapping peaks and the quantitative nature of the spectrum
makes multiplex CARS microscopy a particularly useful
technique for probing such complex samples. The extremely rich
information obtained from imaging and spectral information
constitutes a hyperspectral dataset. With the advent of phase
retrieval techniques such as the maximum entropy method
(MEM) and time-domain Kramers–Kronig (TD–KK)
transformation, such spectra become amenable to analysis by
multivariate techniques such as principal component analysis and
related approaches. Therefore, the different components in the
sample can be distinguished based on their vibrational
information in an unlabeled manner, and the sensitivity of each
component can be increased to the mM–μM level by using
electronic resonance enhancement. Coupled with rapid spectral
acquisition, these sophisticated algorithms should make it

possible for researchers to investigate phenomena in the
biological and material science fields that manifest as only subtle
changes in the vibrational spectrum and occur on sub-micrometer
length scales at sub-ms timescales.

APPLICATIONS OF CARS MICROSCOPY

Cell Imaging
CARS microscopy has been widely used for cell imaging [36,
45–53]. The strong CARS signal in the C-H stretching region can
provide rich and unexpected chemical information, such as that
related to lipids and proteins. For example, Nan et al. [54] used
the CH2 stretching vibration to map neutral lipid droplets in
living fibroblasts. There was a significant process of
disappearance of the lipid droplets in the cells in the early
stage of differentiation, after which differentiation and
accumulation began again. Paar et al. [55] used CARS
microscopy to study the metabolism of intracellular lipid
droplets during lipid decomposition. Experiments have shown
that lipid droplet growth is achieved through the transfer of lipids
between one organelle and another. This lipid transfer is not a
rapid spontaneous process but completed within a few hours.
Experimental data show that the growth of lipid droplets is a
highly regulated process, and the decomposition and production
of lipids occur in parallel in cells to prevent cell acid overflow. In
another work [56], cancer cells in vivo and in vitro were
monitored by CARS microscopy to assess the effect of diet on
the metastasis of cancer cells. The results show that the physical
disturbance of free fatty acids to the cancer cell membrane in lipid
rich tumors is related to tumor metastasis. CARS has also been
used to study prostate circulating carcinoma cells, and the results
show that prostate circulatory carcinoma cells have a CARS signal

FIGURE 3 | Several common methods of multicolor CARS microscopy. (A) Picosecond pump and femtosecond Stokes pulses. (B) Picosecond pump and
supercontinuum Stokes pulses. (C) Femtosecond pump and Stokes pulses with spectral focusing. (D) Principle of the spectral focusing method.
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intensity seven times stronger than leukocytes [57]. The
absorption and decomposition of surfactants in mammalian
cells were studied by CARS spectroscopy [58]. The results
show that living cells retain surfactants not only on the cell
membrane but also throughout the intracellular membrane
system. Label-free chemical mapping of cells by hyperspectral
CARS microscopy has led to promising results. In another work,
Di Napoli [59] fed different ratios of Palmitic acid and α-linolenic
acid to human adipose derived stem cells and the results showed
good contrast between cellular components and the
corresponding CARS spectra.

Tissue Imaging
CARS has also been posited as a unique tool for label free tissue
imaging. Visualization and characterization of the myelin sheath
in the peripheral nervous system [61, 62] and central nervous
system [63–67] is an important application. The sciatic nerve is a
perfect candidate for in vivo CARS imaging since it is the largest
single nerve in mammals and located in the peripheral nervous
system isolated from the movement induced by breathing and the
heartbeat. By 3D imaging of fat cells that surround the nerve, the
underlying contrast mechanisms of in vivo CARS are found to
arise from both interfaces and back reflection of the forward
CARS signal [61]. Longitudinal in vivo CARS imaging of the
spinal cord has been demonstrated through a careful
experimental design to overcome complexities induced by
laminectomy surgery [64]. To reduce the amount of tissue to
be removed and improve the survivability and recovery time of
the animals, the spine was exposed bymaking an incision through

the skin and muscle tissue at T10, where the natural curvature of
the spinal cord makes this regionmore superficial to the skin than
at other locations [64]. The myelin sheath [63], myelinated axons
[61], and the node of Ranvier [64] were distinguished clearly by
CARSmicroscopy, as shown in Figures 4B left, middle, and right,
respectively. The lipid metabolism in the atherosclerotic tissue of
mouse and human subjects has been studied by CARS
microscopy. Employing picosecond lasers, Wang et al.
explored the imaging capabilities of CARS-based multimodal
microscopy imaging of atherosclerosis. The study first
demonstrated the capability to identify different atherosclerotic
types [68] based on the scheme of atherosclerosis classification
suggested by the American Heart Association (AHA) by imaging.
Furthermore, Wang et al. [68] showed that a multimodal
approach employing CARS and sum-frequency generation
(SFG) signals allows quantitation of collagen and lipid content
in lesions from early to advanced stages. Additional studies have
shown increasing interest in using CARS microscopy for the
studies of atherosclerotic lesions in animal models. Lim et al.
utilized multimodal NLO microscopy to quantitatively measure
the impact of a high-fat, high-cholesterol Western diet on the
composition of atherosclerotic plaques in ApoE-deficient mice
[69]. Using photonic crystal fiber-based CARS microscopy, the
capability of multimodal imaging was demonstrated by an
alternative femtosecond system to study lesion development in
myocardial infarction-prone, hyperlipidemic rabbits [70].
Moreover, CARS has been used to skin biopsy [17, 71–74]
and for stain-free histopathology. An imaging platform based
on broadband coherent anti-Stokes Raman scattering (BCARS)

FIGURE 4 | (A) Adipocyte cellular lipid disintegration induced by forskolin [55]. (B) Imaging myelin sheath ex vivo and in vivo by CARS microscopy. (C) Extremely
broadband, 785 cm−1 (nuclei) to 1,665 cm−1 (protein), CARS imaging of a murine pancreatic duct and 3D reconstruction imaging [60].
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was developed by Camp et al. [60], and demonstrated 3D tissue
imaging of a murine pancreatic duct showing the distributions of
DNA, collagen, protein and lipids, as shown in Figures 4C.
Recently, Wei-Wen [75] studied lipid particles in
Caenorhabditis elegans by using this BCARS platform. The
results show that fat particles in the adult intestine are diverse,
and most are destined for the next generation. In comparison, fat
particles in skin-like epidermis are similar and less dynamic.

Material Science
CARS microscopy lends itself well to the study of polymer films,
thanks to the intrinsic sectioning capability of CARS and the
intensity of the polymer peaks. Von Vacano et al. [35] were able
to discriminate between the different polymers in tertiary blends
of polystyrene (PS), polyethylene terephthalate (PET) and
polymethylmethacrylate (PMMA), as well as to construct a
virtual section of an adhesive and its carrier film, as shown in
Figure 5. Jeoung group has also used the sectioning capability of
multiplex CARS microscopy to quantitatively determine the
thickness of sub-micron polymeric films [76, 77].

CARS microscopy has also been used to study reactions in
zeolite crystals. CARS is an ideal tool to study the interplay
between catalyst architecture and reactivity and hence obtain
previously inaccessible information about fundamental processes
of catalysts. Specifically, the precursor states of thiophene
conversion over individual H-ZSM-5 zeolite crystals have been
studied [78]. Maps of the catalyst loaded with thiophene revealed
a heterogeneous, diffusion-limited distribution of thiophene

throughout the zeolite, with the analytes accumulating at the
center of the crystal and along defect sites.

More recently, Kotaro [79] developed a high-throughput flow
cytometry system based on a Fourier-transform CARS
spectrometer, enabling a high throughput of 2000 events/s.
High chemical specificity and classification accuracy without
labeling is demonstrated by the differentiation of polymer
beads and Euglena gracilis. Super-resolution vibration imaging
by higher-order CARSmicroscopy that detects higher-order anti-
stokes Raman signals, such as six-wave mixing (SWM) at ωSWM �
3ωp − 2ωS and eight-wave mixing (EWM) at ωEWM � 4ωp − 3ωS,
increasing the respective lateral resolutions to 230 and 196 nm is
reported by Li [80]. To increase the signal-to-noize radio and
imaging speed, the wide-field CARS implementation was
improved. Duarte [81] developed wide-field Fourier-transform
coherent anti-Stokes Raman scattering microscopy with high-
contrast, and outline detail of the wide-field FT-CARS signal.
Heuke [82] implemented wide-field CARS by using a rotating
disk with an imprinted modulation pattern and a PMT detector,
referred to as spatial frequency modulated imaging (SPIFI). The
results demonstrate that SPIFI-CARS could detect a much larger
number of photons than that of laser-scanning microscopy
(LSM)-CARS, and further, could be operated in ambient light.

OUTLOOK

Although the technological development of CARS is close to
maturity, its application has just begun; however, the results are
encouraging. Although CARS has broad application prospects, it will
not replace other imagingmethods in all fields. Because the cost of the
spontaneous Raman system is relatively low and the system is
relatively simple, it will likely be chosen when imaging speed is
not a priority or there are technical difficulties (such as sample
environment) to apply the coherent method. However, if the sample
does not have second harmonic generation (SHG) characteristics,
and fast acquisition is important, CARS or coherent Raman
microscopy is the best label-free optical imaging method.

The clinical translation of CARS microscopy has long been
hindered by traditional solid-state lasers that are sensitive to the
environment. Ultrafast fiber lasers can potentially overcome these
shortcomings but have not yet been fully exploited for CARS
microscopy, as previous implementations have suffered from high
intensity noise, a narrow tuning range, and low power, resulting in
low image quality and slow imaging speed [23, 83–90]. Therefore,
high-performance fiber lasers are highly required.

Another recent trend has been focusing on label-free
multimodal nonlinear microscopy based on CARS, two-
photon excited fluorescence (TPEF), and SHG [91–94]. The
coupling of two-photon fluorescence, second-harmonic
generation, and coherent anti-Stokes Raman scattering has
allowed for investigation of a broad range of biological
phenomena concerning lipid metabolism, cancer development,
cardiovascular disease, and skin biology. By integrating the
strengths of each non-linear optical (NLO) imaging modality,
different structures and their interactions in a complex biological
system can be simultaneously visualized.

FIGURE 5 | CARS imaging of a polymer blend consisting of PS, PET,
and PMMA. (A) Lateral and (B) axial views.
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Overall, as a label-free optical imaging method, CARS has a
bright future with the development of other technologies such as
laser light source and detection devices.
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