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In this article, an SEAIRS model of COVID-19 epidemic on networks is established and
analyzed. Following the method of the next-generation matrix, we derive the basic
reproduction number R0, and it shows that the asymptomatic infector plays an
important role in disease spreading. We analytically show that the disease-free
equilibrium E0 is asymptotically stable if R0 ≤ 1; moreover, the effects of various
quarantine strategies are investigated and compared by numerical simulations. The
results obtained are informative for us to further understand the asymptomatic infector
in COVID-19 propagation and get some effective strategies to control the disease.

Keywords: COVID-19 epidemic, networks, asymptomatic, the basic reproduction number, quarantine

1 INTRODUCTION

Coronaviruses are a group of enveloped viruses with a positive-sense, single-stranded RNA and viral
particles resembling a crown from which the name derives. They belong to the order of Nidovirales,
family of Coronaviridae, and subfamily of Orthocoronavirinae. A recent coronavirus outbreak has
started since December 2019. So far, the new virus has infected more than 25 million people and
killed at least 842,000 of them [1–3].

In order to better study the spread and control of infectious diseases, several classical
mathematical models have been discussed to understand the transmission mechanism and
dynamics of the disease, such as the SI model, SIR model, SEIR model, and SEIRS model [4,
5]. Different factors are considered in different models, and the purpose of these models is finding
the transmission mechanism and dynamics of the diseases for controlling the diseases. This
process needs a contact between them. It is found that the best pattern of contact is contact in the
networks [6–11], and study epidemic model on networks has been a hot field in mathematical
biology [6–20,35].

To find the transmission mechanism, we have to know who is the infector [27]. An infector is an
individual who carries the virus and can export the virus. Sometimes, an individual with the
infected state may not show any symptoms of disease, and the state can be defined as
asymptomatically infected. An individual with the infected state who shows symptoms of
disease can be defined as symptomatically infected. Exposed state and asymptomatically
infected state are more dangerous than symptomatically infected state. When a susceptible
individual contacts a symptomatic one, he(she) will usually do something possible to prevent
the disease spreading.

In the disease spreading process, a symptomatic infector will be restricted by individual
behavior or public behavior, but a symptomatic one has a higher efficiency than an
asymptomatic one. A class of works studied the role of symptomatic infectors and
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asymptomatic infectors in diseases infections, such as dengue
virus [21, 22], malaria [23], and Norovirus [24–27]. The results
of these works all show that the asymptomatic cases cannot be
neglected. Recently, several mathematic models within
asymptomatic infection have been studied, such as SAIR
model [21], CI model [28], SEIADR model [29], and SEIIeQR
model [30]. But mathematical models within asymptomatic
infection on networks are still relatively rare. When the
COVID-19 pandemic begin to outbreak, quarantining certain
individuals may be the most efficient way to stop the outbreak of
disease, but the choice of which is an important step in the
control process, and thus we also discuss the effect of different
quarantine strategies.

In this article, we consider an SEAIRS epidemic model on
scale-free networks to study the spread of COVID-19. Further,
we consider the effect of the asymptomatic state changing into
the symptomatic state. By studying the dynamics of the model,
we try to find what role the three infectors, E, A, and I, play in
disease spreading, especially for the asymptomatic infectors, E
and A. Next, in Section 2, we establish an SEAIRS COVID-19
model on network. In Section 3, we study the dynamics of the
model. In Section 4, we study and compare the effects of
various control strategies, and carry out numerical
simulations to illustrate the theoretical results in Section 5.
Finally, conclusions and some discussions are given in
Section 6.

2 THE MODEL

In the spread process, each node has five states: susceptible (S);
exposed (E); asymptomatically infected (A), those who are
infectious but have no symptoms; symptomatically infected
(I), those who are infectious but have symptoms; and
removed (R). The disease transmission flow is depicted in
Figure 1. A susceptible individual can be infected by contact
at rate β1 if there are infected individuals with A in its neighbors,
or be infected by contact at rate β2 if there are symptomatically
infected individuals I. The exposed individual will becomeA and
I with rate pα and (1 − p)α, and A will become I individual at
rate q. The infectedA and Iwill become a recovered individual at
rate μ1 and μ2 due to treatment, respectively. A recovered
individual will become S at rate δ. All parameters are
nonnegative.

In this article, we consider an SEAIRS epidemic model on
scale-free networks as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt

� −β1kSk(t)θ1(t) − β2kSk(t)θ2(t) + δ Rk(t),
dEk(t)
dt

� β1kSk(t)θ1(t) + β2kSk(t)θ2(t) − αEk(t),
dAk(t)
dt

� pαEk(t) − qAk(t) − μ1Ak(t),
dIk(t)
dt

� (1 − p)αEk(t) + qAk(t) − μ2Ik(t),
dRk(t)
dt

� μ1Ak(t) + μ2Ik(t) − δ Rk(t).

(2.1)

Following [6], 〈k〉 � ∑kkPk describes the average degree and
Pk(k � 1, 2, . . . , n) describes the degree distribution; the
probability θi(i � 1, 2, 3) is a link pointing to an exposed
individual, asymptomatic infected individual, and symptomatic
infected individual. Here, Nk is a constant that stands for the
number of nodes with degree k. Then, Nk � Sk(t) + Ek(t) +
Ak(t) + Ik(t) + Rk(t), (k � 1, 2, . . . , n) and ∑kNk � N . We have

θ1(t) � 1
〈k〉∑

k

kPk
Ak(t)
Nk

, (2.2)

θ2(t) � 1
〈k〉∑

k

kPk
Ik(t)
Nk

. (2.3)

For the practice, the initial condition for model (2.1) satisfies
the following:

{ 0≤ Sk(0), Ek(0),Ak(0), Ik(0),Rk(0)≤Nk,
Sk(0) + Ek(0) + Ak(0) + Ik(0) + Rk(0) � Nk,

(k � 1, 2, . . . , n).
(2.4)

3 DYNAMICAL BEHAVIORS OF THE
MODEL
In this section, we study the stability of disease-free equilibrium of
model (2.1). First, we derive the basic reproduction number of
the model.

3.1 Equilibria and Basic Reproduction
Number
Lemma 3.1. Suppose that Sk(t), Ek(t),Ak(t), Ik(t),Rk(t) is a
solution of model (2.1) satisfying initial conditions of Eq. (2.4), then

Ω � {(Sk, Ek,Ak, Ik,Rk)|0≤ Sk, Ek,Ak, Ik,Rk ≤Nk, k � 1, 2, . . . , n}

is a positive invariant for model (2.1).
The proof of this lemma is similar to that in [31]. We ignore it

here. The stability analysis and numerical simulations are
investigated in the positive invariant Ω.

It is easy to find that model (2.1) has a disease-free
equilibrium E0, it is the only susceptible state.
E0 � (S01, 0, 0, 0, 0, S02, 0, 0, 0, 0,/, S0n, 0, 0, 0, 0), where S0k � Nk,
k � 1, 2, . . . , n. Following the method of the next-generation
matrix [32], the basic reproduction number can be calculated

FIGURE 1 | State-transition rules of the SEAIRS model of COVID-19.
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by R0 � ρ(FV−1). Here, F is the matrix of the rate of generation
of new infections, and V is the matrix of the rate of transfer of
individuals out of the two compartments. F is given by

F � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A11 A12 / A1n

A21 A22 / A2n

« « 1 «
An1 An2 / Ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
3n×3n

and

Aij �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
β1S

0
i Pj

〈k〉Nj
ij

β2S
0
i Pj

〈k〉Nj
ij

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

In addition, V � diag(B1,B2, . . . ,Bn), where

Bk � ⎛⎜⎝ α 0 0
−pα q + μ1 0

−(1 − p)α −q μ2

⎞⎟⎠,

and

B−1
k �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
α

0 0

p
q + μ1

1
q + μ1

0

q + (1 − p)μ1
μ2(q + μ1)

q
μ2(q + μ1)

1
μ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

so, V−1 � diag(B−1
1 ,B−1

2 , . . . ,B−1
n ), and the basic reproduction

number R0 can be obtained:

R0 � ρ(FV−1) � μ2pβ1 + [q + (1 − p)μ1]β2
μ2(q + μ1)

〈k2〉
〈k〉 . (3.1)

Let J0 be the Jacobian matrix of the middle three equations of
model (2.1), then J0 � F − V and s(J0) � max {Reλ: λ is an
eigenvalue of J0}, R0 < 15s(J0)< 0, R0 > 15s(J0)> 0. [34]

Remark 3.1. Let R0,a � pβ1
q+ μ1

〈k2〉
〈k〉 , R0,d � [q+(1−p)μ1]β2

μ2(q+ μ1)
〈k2〉
〈k〉 , then

R0 � R0,a + R0,d , if q � 0, this result is corresponding to the result
in [27].

Remark 3.2. If we do not consider the asymptomatic infected
state, that is β1 � 0, μ1 � μ2 � μ, p � q � 0, then R0 � β2

μ
〈k2〉
〈k〉 ,

which is corresponding to the result in [6, 33].
Lemma 3.2. If and only if R0 > 1, there is a unique endemic

equilibrium E+.
Proof. We consider the right side of the model (2.1) to be

equal to zero. Then, we obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−β1kSkθ1 − β2kSkθ2 + δ Rk � 0,
β1kSkθ1 + β2kSkθ2 − αEk � 0,
pαEk − qAk − μ1Ak � 0,(1 − p)αEk + qAk − μ2Ik � 0,
μ1Ak + μ2Ik − δRk � 0.

Following the above equation, using θ � β1θ
*
1 + β2θ

*
2, we can find

E*
k �

kθ
α
S*k,A

*
k �

pkθ
q + μ1

S*k, I
*
k �

[q + (1 − p)μ1]kθ
μ2(q + μ1) S*k,R

*
k �

kθ
δ
S*k.

(3.2)
According to the condition N*

k � S*k + E*
k + A*

k + I*k + R*
k, we

can get

S*k �
μ2α(q + μ1)δN*

k

δμ2α(q + μ1) + {μ2α(q + μ1) + δμ2(q + μ1) + δμ2pα+δα[q + (1 − p)μ1]}kθ. (3.3)

Substituting E*
k, A

*
k, and I*k of Eq.(3.2) and Eq.(3.3) into θ, we can

obtain θf (θ) � 0, where

f (θ) � 1 − A1

〈k〉∑
k

k2Pk

A2 + A3kθ
,

and A1 � δα{μ2pβ1 + [q + (1 − p)μ1]β2}, A2 � δμ2(q + μ1)α,
A3 � μ2(q + μ1)α + δ{μ2(q + μ1) + μ2pα + α[q + (1 − p)μ1]}. It is
easy to find that θf (θ) � 0 has a trivial solution with no condition,
and model (2.1) has a disease-free equilibrium. In addition,

df (θ)
dθ

� A1A3

〈k〉 ∑
k

k3Pk

(A2 + A3kθ)2 > 0,

f (β1 + β2) � 1 − A1

〈k〉∑
k

k2Pk

A2 + A3k(β1 + β2)
> 1 − A1

〈k〉∑
k

k2P(k)
A3k(β1 + β2) � 1 − A1

A3(β1 + β2)
�1 − δα{μ2pβ1 + [q + (1 − p)μ1]β2}

μ2(q + μ1)α + δ{μ2(q + μ1) + μ2pα + α[q + (1 − p)μ1]}
1

β1 + β2

> 1 − δα{μ2pβ1 + [q + (1 − p)μ1]β2}
μ2(q + μ1)α + δ{μ2(q + μ1) + μ2pα + α[q + (1 − p)μ1]}> 0.

Thus, θf (θ) � 0 has a nontrivial solution if and only if f (0)< 0,
that is if and only if R0 > 1, there is a unique endemic equilibrium.

3.2 Stability of Disease-free and Endemic
Equilibrium
Theorem 3.1. If R0 ≤ 1, E0 of model (2.1) is locally asymptotically
stable; if R0 > 1, E0 is unstable, and there is a unique endemic
equilibrium E+, and E+ is locally asymptotically stable.

Proof. From the results of Lemma 3.1, Lemma 3.2, and the
basic reproduction number, we only need to prove the case of
R0 � 1. We consider the following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk
dt

� −β1kSkθ1 − β2kSkθ2 + δRk,

dEk

dt
� β1kSkθ1 + β2kSkθ2 − αEk,

dAk

dt
� pαEk − qAk − μ1Ak,

dIk
dt

� (1 − p)αEk + qAk − μ2Ik.

(3.4)

The Jacobian matrix of model (3.4) at disease-free equilibrium is
given by
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J � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
J11 J12 / J1n
J21 J22 / J2n
« « 1 «
Jn1 Jn2 / Jnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4n×4n

with

Jij �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ −δ − β1PjNi

〈k〉Nj
ij − δ − β2PjNi

〈k〉Nj
ij − δ

0 −α β1PjNi

〈k〉Nj
ij

β2PjNi

〈k〉Nj
ij

0 pα −q − μ1 0

0 (1 − p)α q −μ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The characteristic equation of the disease-free equilibrium is

(λ + μ2)n− 1(λ + q + μ1)n− 1(λ + δ)n(λ + α)n− 1(λ3 +H2λ
2

+H1λ + H0) � 0,

where

H2 � α + q + μ1 + μ2 > 0,

H1 � α(q + μ1) + αμ2 + μ2(q + μ1) − [pαβ1 + (1 − p)αβ2] 〈k2〉〈k〉 ,

H0 � μ2α(q + μ1) − α{μ2pβ1 + [q + (1 − p)μ1]β2} 〈k2〉〈k〉 ,

when R0 � 1, H0 � 0, and

αμ2pβ1
〈k2〉
〈k〉 < μ2α(q + μ1)0αpβ1

〈k2〉
〈k〉 < α(q + μ1),

(1 − p)αμ1β2〈k2〉〈k〉 < μ2α(q + μ1)0(1 − p)αβ2〈k2〉〈k〉 < μ2(α + q + μ1).
Then, we obtain H1 > 0, and the characteristic equation can be
written as

λ(λ + μ2)n− 1(λ +q + μ1)n− 1(λ +δ)n(λ + α)n− 1(λ2 + H2λ +H1) � 0,

where the eigenvalues of J are all negative except zero eigenvalue
when R0 � 1..

4 QUARANTINE STRATEGIES

Quarantine is helpful in controlling diseases. In this section, we
will discuss three different quarantine strategies for COVID-19
disease model on networks.

4.1 Proportional Quarantine
In this case, for fixed spreading rates β1 and β2, let ω(0<ω< 1) is
the density of quarantine nodes in the network. At the mean-field
level, the presence of proportional quarantine will effectively reduce

the spreading rate. Thus, we can approximately use β1(1 − ω) to
substitute β1 and use β2(1 − ω) to substitute β2; thus, the system
(2.1) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt

� −β1(1 − ω)kSk(t)θ1(t) − β2(1 − ω)kSk(t)θ2(t) + δ Rk(t)
dEk(t)
dt

� β1(1 − ω)kSk(t)θ1(t) + β2(1 − ω)kSk(t)θ2(t) − αEk(t)
dAk(t)
dt

� pαEk(t) − qAk(t) − μ1Ak(t)
dIk(t)
dt

� (1 − p)αEk(t) + qIk(t) − μ2Ik(t)
dRk(t)
dt

� μ1Ak(t) + μ2Ik(t) − δ Rk(t)
(4.1)

Using the same method in Section 3, we obtain a self-
consistency equation as follows:

θ � δα(1 − ω)A1

〈k〉 ∑
k

〈k2〉Pk

A2 + A3kθ
θ ≡ ~f (θ).

By arguments similar to those in Section 3, the epidemic
threshold R̃w is determined by the following inequality:

d~f (θ)
dθ

|θ�0 > 1;
therefore, it can be shown that

R̃w � μ2p(1 − ω)β1 + [q + (1 − p)μ1](1 − ω)β2
μ2(q + μ1)

〈k2〉
〈k〉 , (4.2)

that is,

R̃w � (1 − ω)R0. (4.3)

Note that in (4.3), when ω � 0, that is, if no quarantine were
done, then R̃w � R0; when 0<ω< 1, R̃w <R0, that is, the
quarantine scheme is effective; while as ω→ 1, R̃w → 0, that is,
in the case of a full quarantine, it would be impossible for the
epidemic to spread in the network.

4.2 Targeted Quarantine
While proportional quarantine schemes are effective, there
may be more efficient schemes due to the
heterogeneous nature of scale-free networks. We
introduce an upper threshold κ such that all nodes with
connectivity k> κ are immunized, that is, we define the
quarantine rate ωk by

ωk �
⎧⎪⎨⎪⎩

1, k> κ,
c, k � κ,
0, k< κ.

where 0< c< 1 and ∑
k
ωkP(k) � ω, where ω is the average

quarantine rate. The epidemic dynamics model is
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt

� −β1(1 − ωk)kSk(t)θ1(t) − β2(1 − ωk)kSk(t)θ2(t) + δ Rk(t)
dEk(t)
dt

� β1(1 − ωk)kSk(t)θ1(t) + β2(1 − ωk)kSk(t)θ2(t) − αEk(t)
dAk(t)
dt

� pαEk(t) − qAk(t) − μ1Ak(t)
dIk(t)
dt

� (1 − p)αEk(t) + qIk(t) − μ2Ik(t)
dRk(t)
dt

� μ1Ak(t) + μ2Ik(t) − δ Rk(t)

.

(4.4)
This leads to

θ � δαA1

〈k〉 ∑
k

〈k2〉Pk(1 − ωk)
A2 + A3kθ

θ ≡ ~f (θ).

Therefore, the epidemic threshold

R̂w � μ2pβ1 + [q + (1 − p)μ1]β2
μ2(q + μ1)

〈k2〉 − 〈k2ωk〉
〈k〉 . (4.5)

Note that 〈k2ωk〉 � ω〈k2〉 + σ ′,where σ ′ � 〈(ωk − ω) × [k2 −
〈k2〉]〉 is the covariance of ωk and k2. There may be κ (usually
big enough) where σ ′ < 0, but for appropriately small κ, ωk − ω
and k2 − 〈k2〉 have the same signs except for some k where ωk −
ω and/or k2 − 〈k2〉 is zero; Therefore σ ′ > 0 for appropriate κ.
Then,

R̂w <
1 − ω

1 − ω
R̃w.

If we set ω � ω, then,

R̂w < R̃w(0<ω< 1),
which means the targeted quarantine scheme is more efficient
than the uniform quarantine scheme for the same average
quarantine rate.

4.3 High-Risk Quarantine
If a neighbor of a susceptible individual is
infected, vaccinating this susceptible individual is

FIGURE 2 | Asymptotical stability of the model.

TABLE 1 | Parameters of Figure 2

Figure 2 β1 β2 δ α p q μ1 μ2 R0

A 0.08 0.08 0.4 0.4 0.5 0.5 0.2 0.4 0.8193 < 1
B 0.0905 0.10003 0.4 0.4 0.5 0.5 0.2 0.4 1

TABLE 2 | Parameters of Figure 4

β1 β2 Δ α

Figure 4 0.0020178 0.033949 0.12178 0.1055744
p q μ1 μ2

Figure 4 0.40043 0.040403 0.0119,536 0.20955
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called high-risk immunity [37]. We introduce the
parameter σ, that is, the probability that a node
is quarantined per unit time, and Γ � kPk

〈k〉N, which

denotes the probability that any given node is the
neighbor of some specific nodes. The epidemic dynamics
model is

FIGURE 3 | Sensitivity of model parameters.

FIGURE 4 | Effectiveness of quarantine for different ω and σ respectively.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt

� −β1(1 − σΓ)kSk(t)θ1(t) − β2(1 − σΓ)kSk(t)θ2(t) + δ Rk(t)
dEk(t)
dt

� β1(1 − σΓ)kSk(t)θ1(t) + β2(1 − σΓ)kSk(t)θ2(t) − αEk(t)
dAk(t)
dt

� pαEk(t) − qAk(t) − μ1Ak(t)
dIk(t)
dt

� (1 − p)αEk(t) + qIk(t) − μ2Ik(t)
dRk(t)
dt

� μ1Ak(t) + μ2Ik(t) − δ Rk(t)
(4.6)

This leads to

θ � δαA1

〈k〉 ∑
k

〈k2〉Pk(1 − σΓ)
A2 + A3kθ

θ ≡ f (θ).

And the epidemic threshold

R0 � μ2pβ1 + [q + (1 − p)μ1]β2
μ2(q + μ1) (〈k2〉〈k〉 − σ〈k3Pk〉

〈k〉2N )<R0.

This means that the implementation of high-risk quarantine is
effective, and the longer the period of σ〈k3Pk〉, the more effective it is.

5 NUMERICAL SIMULATIONS

In this section, we present numerical simulations of model
(2.1), (4.1) and (4.6) to illustrate the results in Section 3
and 4. Without loss of generality, we consider the dynamical
process on scale-free networks with Pk � ck−c and ∑n

k�1Pk � 1,
c � 3, n � 200. The average infected number is
A(t) + I(t) � ∑ n

k�1Ak(t)Pk + ∑n
k�1Ik(t)Pk. The parameters of

the model are estimated by MCMC using the number of
cases in Wuhan (http://wjw.wuhan.gov.cn/ztzl_28/fk/yqtb/).

Figure 2 shows the asymptotical stability of model (2.1) with
different values, and the parameter values are shown in Table 1.
Figures 2A,B show the time series of the average infected number
I(t) with different initial values, which is in accord with the
asymptotical stability of the disease-free equilibrium.

The sensitivity analysis of the basic reproduction number R0
can be performed by model parameters. It is easy to obtain that

zR0

zβ1
� p
q + μ1

〈k2〉
〈k〉 > 0,

zR0

zβ2
� q + (1 − p)μ1(q + μ1)μ2

〈k2〉
〈k〉 > 0,

zR0

zμ1
� −β2pq − β1μ2p

μ2(q + μ1)2
〈k2〉
〈k〉 < 0,

zR0

zμ2
� −β2[q + (1 − p)μ1]

μ22(q + μ1)
〈k2〉
〈k〉 < 0,

zR0

zp
� β1μ2 − β2μ1

μ2(q + μ1)
〈k2〉
〈k〉 ,

zR0

zq
� p(β2μ1 − β1μ2)

μ2(q + μ1)2
〈k2〉
〈k〉 .

(5.1)

Equation (5.1) shows R0 is linearly positively correlated with β1
and β2; R0 is negatively correlated with μ1 and μ2; the correlation
between R0 and p or q is determined by β2μ1 − β1μ2. As can be seen
from Figure 3 that the monotonicity of R0 increases or decreases
with respect to p and q, respectively. In Figure 4, the parameters of
the model are estimated by MCMC using the number of cases in

Wuhan and the parameter values are shown in Table 2. Figure 4
shows the change of total infection density with time under different
ω and σ. It can be seen that with the increase of ω and σ, the total
infection density is becoming lower as ω and σ increase.

6 CONCLUSION AND DISCUSSION

In this article, we have generalized a traditional homogeneous
epidemic model with asymptomatic infectors to a network case to
study the spread of COVID-19. As one can see, homogeneous
epidemic models can be considered as a special case of network
epidemic models, and network epidemic models are more realistic
and refined description of disease propagation in population.
Considering two cases of infected state (show symptoms and
show no symptoms), we investigated an SEAIRS model of
COVID-19 on scale-free networks to approach the disease
progress and calculated the basic reproduction number R0. By
theoretical analysis, we obtained the asymptotical stability of the
equilibria: if R0 ≤ 1, E0 is asymptotically stable. Then, we analyzed
the different quarantine strategies in the model. At last, numerical
simulations illustrated the theoretical analysis. The results show that
the asymptomatic infectors may infect health individuals as well as
symptomatic infectors.

The SEAIRSmodel is an extension of the SEAIRSmodel, and it
is a case of the S→ S model. The S→ S model, S→ I model, and
S→Rmodel differ in terms of pathological mechanisms. It is difficult
to say which one is better than others except introducing a special
disease. Within S→ S models, formally, either the SIS model or SIRS
model can be a special case of the SEIRS model. The parameters β1
and β2 denoted in the model are constant. In fact, many infectious
diseases show seasonal phenomenon, such as measles, chickenpox,
and mumps [36], and each individual has a periodic order; the
parameters above should have some periodic property.

At the same time, we have also discussed proportional, targeted
quarantine and high-risk quarantine schemes for network models.
The result of Leung et al. [27] by illustration is suitable for Norovirus
andmeasles.Different from theirwork, the formulaic result seems to be
unsuitable for any kind of disease, for none of the parameters in the
model is assigned to a specific value. In fact, for different disease, the
parameters in themodelmay present special values. COVID-19 is now
spreading faster abroad. Susceptible people will also be infected by
asymptomatic patients. If not controlled, the epidemic will spread
more widely and the number of infected people will be more
difficult to control. The epidemic situation in China was obviously
well controlled after the implementation of the strategy of
lockdown, and other quarantine strategies. Therefore, the model
and quarantine strategy in this article can also be applied to other
countries. And, we hope that the results will be helpful to study and
control the spread of COVID-19 disease.
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