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The statistical distribution of the largest value drawn from a sample of a given size has only
three possible shapes: it is either a Weibull, a Fréchet or a Gumbel extreme value
distributions. I describe in this short review how to relate the statistical distribution
followed by the numbers in the sample to the associate extreme value distribution
followed by the largest value within the sample. Nothing I present here is new.
However, from experience, I have found that a simple, short and compact guide on
this matter written for the physics community is missing.
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1 INTRODUCTION

Extreme value statistics offers a powerful tool box for the theoretical physicist. But it is the kind of
tool box that is not missed before one has been introduced to it—perhaps a little like the smart phone. It
concerns the statistics of extreme events and it aims to answer questions like “if the strongest signal I
have observed over the last hour had the value x, what would the strongest signal expected to be if
measured over hundred hours?” Furthermore, if I divide up this hundred-hour interval into a hundred
1-h intervals, what would be the statistical distribution of strongest signal in each 1-h interval?

It is the latter question which is the focus of this mini-review.
There is no lack of literature on extreme value statistics, see e.g., [1–5] or simply google the

term. We find it used in connection with spin glasses and disordered systems [6], in connection
with 1/f noise [7], in connection with optics [8], in connection with fracture [9] or the fiber
bundle model [10], in diffusion processes [11] etc. There are plenty of examples from diverse
fields of physics.

So, there is no lack of material for the novice that has seen a need for this tool. The problem is that
it is not so easy to penetrate the literature, which is often cast in a rather mathematical language
which takes work to penetrate. The aim of this mini-review is to present the theory behind and the
main results concerning the extreme value distributions in a simple and compact way. We will
present nothing new. For a longer, wider and more detailed review of extreme value statistics, Fortin
and Clusel [12] or Majumdar et al. present exactly that [13].We have a statistical distribution p(x)
and its associated cumulative probability

P(x) � ∫x

−∞
p(x′)dx′, (1)

which is the probability to find a number smaller than or equal to x. We draw N numbers from this
distribution and record the largest of the N numbers. We repeat this procedureM times and thereby
obtainM largest numbers, one for each sequence.What is the distribution of theseM largest numbers
in the limit when M→∞, which then defines the extreme value distribution?
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It turns out that depending on p(x), the extreme value
distribution will have one of three functional forms:

• The Weibull cumulative probability

Φ(u) � { e− (− u)α for u< 0,
1 for u≥ 0,

(2)

where we assume α> 0. Note that Φ(−∞) � 0. The corresponding
Weibull extreme value distribution is

ϕ(u) � { α(− u)α−1e− (− u)α for u< 0,
0 for u≥ 0.

(3)

• The Fréchet cumulative probability

Φ(u) � { 0 for u≤ 0,
e− u

− α
for u> 0. (4)

Also here we assume α> 0. Note that Φ(∞) � 1. The Fréchet
extreme value distribution is

ϕ(u) � { 0 for u≤ 0,
αu− α− 1e− u− α

for u> 0. (5)

• The Gumbel cumulative probability

Φ(u) � e−e
−u
, (6)

where −∞< u<∞, so that Φ(−∞) � 0 and Φ(∞) � 1. The
corresponding Gumbel extreme value distribution is given by

ϕ(u) � e−u−e
−u
. (7)

The questions are 1. which classes of distributions p(x)
lead to which of the three extreme value distributions and 2.
what is the connection between x and u in each case? It turns
out that.

• distributions where p(x) � 0 for x > x0 and
p(x) ∼ (x0 − x)α− 1 as x→ x−0 , see Eq. 10, lead to the
Weibull extreme value distribution,

• distributions where p(x) ∼ x−α−1 as x→∞, see Eq. 24 lead
to the Fréchet extreme value distribution,

• and distributions where p(x) falls of faster than any power
law as x→∞, see Eq. 53 lead to the Gumbel extreme value
distribution.

Furthermore, we will find that.

• for the Weibull extreme value distribution, u is given in
terms of x in Eq. 13,

• for the Fréchet extreme value distribution, u given in terms
of x in Eq. 27,

• for the Gumbel extreme value distribution, u is given in
terms of x in Eqs 51 and 43.

We summarize these results in Table I.
The discussion that will now follow, will be built on the

following relation. We draw N numbers from the probability
distribution p(x): x1, x2,/, xN . The probability that all the N
numbers are smaller than or equal to a value x is

Prob[x1 ≤ x, x2 ≤ x,/, xN ≤ x] � ⎡⎢⎢⎢⎢⎢⎣∫x

−∞
p(x′)dx′⎤⎥⎥⎥⎥⎥⎦N � P(x)N ,

(8)

where P(x) is the cumulative probability 1. Our task is to figure
out the limit Prob[x1 ≤ x, x2 ≤ x,/, xN ≤ x] � P(x)N →Φ(u) as
N→∞, and what is u � u(x) as we approach this limit.

Rather than the conventional approach (see e.g., [10]) to this
subject based on the Fréchet, Fisher and Tippett stability criterion
[1], I will base the entire discussion on the relation

lim
N→∞

(1 + x
N
) � ex. (9)

I believe this to be the simpler and more intuitive way.

2 WEIBULL CLASS

We consider here probability distributions p(x) having the form

p(x) � { bα(x0 − x)α−1 for x→ x−0 ,
0 for x > x0,

(10)

where b is positive. We note that 0< α< 1 leads to a diverging
probability density as x→ x−0 . We furthermore note that α � 1
implies that p(x) approach a constant when x→ x−0 — which for
example is the case when the distribution is uniform. The
corresponding cumulative probability is given by

P(x) � { 1 for x ≥ x0,
1 − b(x0 − x)α for x→ x−0 .

(11)

The extreme value cumulative probability for N samplings is
given by

P(x)N � [1 − b(x0 − x)α]N , (12)

for x→ x−0 . We introduce the variable change

x − x0 � ,
u

(bN)1/α (13)

where the reader should note that b is defined by the original
distribution 10. Equation 12 then becomes

P(x)N � [1 − (−u)α
N

]N

. (14)

In the limit of N→∞, this becomes
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Φ(u) � lim
N→∞

P(x)N � e−(−u)
α

, (15)

for negative u. Hence, we have that

Φ(u) � { e− (− u)α for u< 0,
1 for u≥ 0,

(16)

which is theWeibull cumulative probability, valid for all values of
u even though we only know the behavior of p(x) close to x0. The
Weibull probability density is given by

ϕ(u) � dΦ(u)
du

� { α(− u)α−1e− (− u)α for u< 0,
0 for u≥ 0.

(17)

We note that the Weibull distribution resembles a stretched
exponential. This is correct for α< 1. However, α≥ 1 is muchmore
common in the wild.

We express the Weibull cumulative probability in terms of the
original variable x using Eq. 13,

Φ(u) � Φ((bN)1/α(x − x0)) � e−Nb(x0−x)
α � ~Φ(x). (18)

Hence, in terms of the original variable x, the Weibull extreme
value distribution becomes

~ϕ(x) � d ~Φ(x)
dx

� Nbα(−x)α− 1e−Nb(x0−x)
α

. (19)

2.1 Weibull: An Example
We now work out a concrete example. Let us assume that p(x) is
given by

p(x) �
⎧⎪⎨⎪⎩ 0 for x < 0,

α(1 − x)α−1 for 0≤ x ≤ 1,
0 for x > 1,

(20)

i.e., b � 1 and x0 � 1 in Eq. 10. The cumulative probability is then

P(x) �
⎧⎪⎨⎪⎩ 0 for x < 0,

1 − (1 − x)α for 0≤ x ≤ 1,
1 for x > 1.

(21)

From Eq. 19 and we have that

~ϕ(x) � Nα(1 − x)α− 1e−N(1−x)α . (22)

We show the distribution 20 with α � 3 together with the
corresponding extreme value distributions for N � 100 and
N � 1, 000, Eq. 19 in Figure 1A.

Using a random number generator producing IID numbers1 r
uniformly distributed on the unit interval, we may stochastically
generate numbers that are distributed according to the
probability density p(x) given in 20. We do this by inverting
the expression P(x) � r, where the cumulative probability is given
by 21. Hence, we have

x � 1 − r1/α, (23)

where we have also used that rmay be substituted for 1 − r in 21.We
generate a sequence of sequences of numbers using this algorithm,
each sequence having length N. We then identify the largest value
within each sequence. We chose N � 100 and N � 1, 000, in each
case generating 107 such sequences. The histograms based on the
random numbers themselves, and of the extreme values for each
sequence of length either 100 or 1,000 we show in Figure 1B. This
figure should be compared to Figure 1A.

The Weibull distribution, Eq. 17 is much used in connection
with material strength [15]. This is no coincidence. Consider a
chain. Each link in the chain can sustain a load up to a certain
value, above which it fails. This maximum value is distributed
according to some probability distribution. When the chain is
loaded, it will be the link with the smallest failure threshold that
will break first causing the chain as a whole to fail. Hence, the
strength distribution of an ensemble of chains is an extreme value
distribution, but with respect to the smallest rather than the
largest value. The link strength must a positive number. Hence,
the link strength distribution is cut off at zero or some positive
value. The distribution close to this cutoff value must behave as a
power law in the distance to the cutoff, e.g., due to a Taylor
expansion around the cutoff. The corresponding extreme value
distribution, which is the chain strength distribution, must then
be a Weibull distribution.

3 FRÉCHET CLASS

We now assume that the probability distribution p(x) behaves as
p(x) � bαx−α−1 for x→∞, (24)

TABLE 1 | Summary of main results.

p(x) ϕ(u) u � u(x)

Weibull bα(x0 − x)α− 1 for x→ x−0 α(−u)α−1e−(−u)α for u≤ 0 u � (bN)1/α(x − x0)
0 for x ≥ x0 0 for u> 0

Fréchet bαx−α−1 for x→∞ αu−α−1e−u−α for u≥ 0 u � (bN)− 1/αx
0 for u< 0

Gumbel f ′(x)exp[−f(x)] for x→∞ where d[1/f ′(x)]/dx→ 0 exp[−u − e−u] for −∞< u<∞ u � Np(xN)(x − xN) where P(xN) � 1 − 1/N

1IID variables. Independent and identically distributed random variables, a
terminology used in some communities.
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and the corresponding cumulative probability behaves as

P(x) � 1 − bx−α for x→∞. (25)

The extreme value cumulative probability for N samplings is
given by

P(x)N � [1 − bx−α]N , (26)

for x→∞. We introduce the variable change

x � (bN)1/αu, (27)

where b comes from the original distribution 24. We now plug
this change of variables into Eq. 26 to find

P(x)N � [1 − b((bN)1/α u)− α]N � [1 − u−α

N
]N . (28)

In the limit of N→∞, this becomes

Φ(u) � lim
N→∞

P(x)N � e−u
−α
, (29)

where u≥ 0 is given by Eq. 27. We see that Φ(u)→ 0 as u→ 0+.
Furthermore, for u< 0, the function is no longer real. Hence, we

define Φ(u) � 0 for u< 0. The ensuing extreme value cumulative
probability is then given by

Φ(u) � { 0 for u≤ 0,
e− u

− α
for u> 0, (30)

which is the Fréchet cumulative probability. The Fréchet
probability density is given by

ϕ(u) � dΦ(u)
du

� { 0 for u≤ 0.
αu− α− 1e− u

− α
for u> 0. (31)

We express the Fréchet cumulative probability in terms of the
original variable x using Eq. 27,

Φ(u) � Φ( x

(bN)1/α) � e−Nx
−α � ~Φ(x). (32)

Hence, in terms of the original variable x, the Fréchet extreme
value distribution becomes

FIGURE 2 | (A) The curve that has its maximum at x � 1 is the probability
distribution 34 with α � 3. The curve that has its maximum in the middle is
~ϕ(x), Eq. 36 with N � 100 and the curve that has its maximum to the right is
~ϕ(x) with N � 1,000. (B) The histograms shown here are based on data
according to the probability distribution 34with α � 3. The histogram having its
maximum to the left shows all the generated data. The histogram having its
maximum in the middle shows the largest number among each sequence of
numbers of length 100, and the histogram having its maximum to the right
shows the largest number among each sequence of numbers of length 1,000.
For each sequence length, 107 such sequences were generated.

FIGURE 1 | (A) The curve that has its maximum at x � 0 is the probability
distribution 20 with α � 3. The curve that has its maximum in the middle is
~ϕ(x), Eq. 22 with N � 100 and the curve that has its maximum to the right is
~ϕ(x) with N � 1,000. (B) The histograms shown here are based on data
according to the probability distribution 20with α � 3. The histogram having its
maximum to the left shows all the generated data. The histogram having its
maximum in the middle shows the largest number among each sequence of
numbers of length 100, and the histogram having its maximum to the right
shows the largest number among each sequence of numbers of length 1,000.
We generated 107 sequences for both cases.
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~ϕ(x) � d ~Φ(x)
dx

� Nαx−α−1e−Nx
−α
. (33)

3.1 Fréchet: An Example
We consider the distribution

p(x) � { 0 for x ≤ 1,
αx− α− 1 for x > 1,

(34)

The corresponding cumulative probability is given by

P(x) � { 0 for x ≤ 1,
1 − x− α for x > 1. (35)

Using Eq. 33, we find the corresponding Fréchet extreme value
distribution to be

~ϕ(x) � Nαx−α−1e−Nx
−α
, (36)

valid for all x > 1. We show p(x) and the corresponding ~ϕ(x) for
α � 3 and N � 100 and N � 1, 000 in Figure 2A.

In order to compare with numerical results, we generate
numbers distributed according to 34 by solving the equation
P(x) � r where r is drawn from a uniform distribution on the unit
interval. From Eq. 35, we get

x � r−1/α. (37)

We generate a sequence of numbers using this algorithm,
grouping them together in sequences of N � 100 or N � 1, 000.
We generate 107 such sequences. The histograms based on the
random numbers themselves generated with Eq. 37, and of the
extreme values for each sequence of length either 100 or 1,000 we
show in Figure 2B. This figure should be compared to Figure 2A.

4 GUMBEL CLASS

We now assume we have a probability distribution that takes the
form

p(x) � f ′(x)e−f (x) for x > x0, (38)

where f ′(x) � df (x)/dx. We have that x0 is any number, positive
or negative, and f (x) is an increasing function of x. We will later
on introduce a sufficient criterion imposed on p(x) to produce
the Gumbel distribution, see Eq. 53. This criterion is equivalent to
f (x) fulfilling

lim
x→∞

d
dx

( 1
f ′(x)) � 0. (39)

This criterion is e.g., fulfilled by any polynomial f (x).
The cumulative probability is

P(x) � 1 − e−f (x) for x > x0. (40)

We do not care about the form of p(x) or P(x) for x ≤ x0.
The extreme value cumulative probability for N samplings is

given by

P(x)N � [1 − e−f (x)]N , (41)

for x > x0. We introduce the variable change

~u � f (x) − f (xN), (42)

where xN is given by

P(xN) � 1 − 1
N
. (43)

Even though xN is defined by 43, we may interpret its meaning.
We do so in the conclusion, see Eq. 71. From Eq. 40 we then have
that

f (xN ) � ln N. (44)

Let us now define

Δx � x − xN . (45)

We then expand f (x) around xN ,

f (x) � f (xN + Δx) � ∑∞
n�0

f (n)(xN)
n!

Δxn, (46)

where f (n)(x) � dnf (x)/dxn. If we now set

Δx � 1
f ′(xN ), (47)

so that the first order term in the expansion becomes constant as
N increases, we will have that

f ′(xN )Δx +∑∞
n�2

f (n)(xN)
n!

Δxn � 1 +∑∞
n�2

f (n)(xN)
n! f ′(xN)n. (48)

Hence, if we have that

lim
N→∞

f (n)(xN)
f ′(xN)n � 0, (49)

for n≥ 2, then in this limit, we will find

f (x) � f (xN) + f ′(xN)Δx � f (xN) + u, (50)

where we define

u � f ′(xN)Δx � Np(xN)(x − xN). (51)

Here we have used Eqs (40) and (44).

4.1 Sufficient Criterion for the Gumbel Class
If we combine Eq. 49 for n � 2 with Eqs 38 and 40, we find

lim
N→∞

f ′′(xN )
f ′(xN )2 � lim

N→∞

d
dx

[1 − P(x)
p(x) ]

x�xN
� 0, (52)

which is equivalent to
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lim
x→∞

d
dx

[1 − P(x)
p(x) ] � 0. (53)

Equation 53, which is equivalent to Eq. 39, is in fact a
sufficient condition for 49 to hold for all n> 1. We may show
this through induction. We have that

f (n+1)(x)
f ′(x)n+1 � 1

f ′(x)
d
dx

(f (n)(x)
f ′(x)n ) + f (n)(x)

f ′(x)n+2. (54)

If condition 52 is fulfilled, that is when the expression above is
zero in the limit x→∞ for n � 2, we also have that

lim
N→∞

f (3)(x)
f ′(x)3 � 0, (55)

since both terms on the right hand side of Eq. 54 are zero in this
limit. We now assume Eq. 49 to be true for some n> 3. We then
have that

lim
N→∞

f (n+1)(xN)
f ′(xN)n+1 � 0, (56)

again due to both terms on the right hand side of Eq. 54 are zero
in this limit. This completes the proof.

4.2 Return to the Derivation
We now combine Eq. 42 with Eq. 41 to find

P(x)N � [1 − e−u−f (xN )]N � [1 − e−u−lnN]N � [1 − e−u

N
]N . (57)

In the limit of N→∞, this becomes

Φ(u) � lim
N→∞

P(x)N � e−e
−u
, (58)

which is the Gumbel cumulative probability. Here −∞< u<∞.
The Gumbel probability density is given by

ϕ(u) � dΦ(u)
du

� e−u−e
−u
. (59)

We express the Gumbel cumulative probability in terms of the
original variable x using Eq. 51,

Φ(u) � Φ(Np(xN)(x − xN)) � e−e
−Np(xN )(x− xN ) � ~Φ(x). (60)

Hence, in terms of the original variable x, the Gumbel extreme
value distribution becomes

~ϕ(x) � d ~Φ(x)
dx

� Np(xN)e−Np(xN )(x− xN )−e−Np(xN )(x− xN ) . (61)

4.3 An Example: The Gaussian
Here is an example: the Gaussian. The Gaussian probability
density is given by

p(x) � e−x
2/2σ����
2πσ

√ , (62)

where σ is the square of the standard deviation. The cumulative
probability is

P(x) � 1
2
[1 + erf( x���

2σ
√ )], (63)

where erf(z) is the error function. In order to verify that the
Gaussian generates the Gumbel extreme distribution, we use the
sufficient condition 53,

lim
x→∞

d
dx

[1 − P(x)
p(x) ] � lim

x→∞

���
π

2σ

√
ex

2/2σx[1 − erf( x���
2σ

√ )] � 0.

(64)

The Gaussian cumulative probability in Eq. 63 has the
asymptotic form

FIGURE 3 | (A) The Gaussian and the corresponding Gumbel
distributions for σ � 1 andN � 100 andN � 1,000. (B) The histograms shown
here are based on data generated using the Box-Müller algorithm which
produces numbers distributed according to a Gaussian. Here σ � 1. The
histogram with the maximum to the left shows all the generated data. The
histogram with its maximum in the middle shows the largest number among
each sequence of numbers of length 100, and the histogram with the
rightmost maximum shows the largest number among each sequence of
numbers of length 1,000. For each sequence length, 107 such sequences
were generated.
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P(x) � 1 −
���
σ

2π

√
e−x

2/2σ

x
, (65)

for large x. We determine xN solving Eq. 43 using this asymptotic
form. We find

xN �
���������
σW(N2

2π
)√
, (66)

where W(z) is the Lambert W function, also known as the
product logarithm, which is the solution to the equation
W(z)exp[W(z)] � z. For large arguments, it approaches the
natural logarithm, W(z)→ log(z) as z→∞ [16]. This gives us

Np(xN) �
���������
1
σ
W(N2

2π
)√
, (67)

when inserting the expression for x � xN , Eq. 66 into Eq. 62.
Thus we may now express the variable u in the Gumbel
cumulative probability 57 in terms of the variables x, σ and N
using Eq. 51,

u � x

���������
1
σ
W(N2

2π
)√
−W(N2

2π
). (68)

We show in Figure 3A the Gaussian and the corresponding
Gumbel distributions for σ � 1 and N � 100 and N � 1, 000. We
find that x100 � 2.375 and x1000 � 3.115. These are the confidence
intervals for 99% and 99.9%.

We show in Figure 3B a histogram based on numbers
distributed according to a Gaussian distribution using the
Box-Müller algorithm [14]. These numbers were grouped
together in sets of either N � 100 or N � 1, 000 elements. I
generated 107 such sets. The figure displays the two extreme
distributions for the two set sizes. This figure should be compared
to Figure 3A. In contrast to the two other extreme value
distributions, we see that there are visible discrepancies
between the calculated Gumbel distributions in Figure 3A and
the extreme value histograms in Figure 3B. We see furthermore
that the histogram for N � 1, 000 is closer to the calculated
Gumbel distribution than the histogram for N � 100. This is
due to the very slow convergence induced by the Lambert W
functions. Slow convergence is typical for the Gumbel extreme
value distributions. This slow convergence has been analyzed and
recently and through clever use of scaling methods remedied [17].

5 CONCLUDING REMARKS

We summarize the main results presented in this mini-review in
Table I.

We have only discussed the distributions associated with the
largest values of x except for the Weibull extreme value
distribution, Section 2. It is, however, easy to work out: just
transform x→ − x. Otherwise, the story presented here is rather
complete.

There is one remark that needs to be made, though. In the
derivation of the Gumbel extreme value distribution, Section 4,
we defined a variable xN in Eq. 43. First of all, xN defined in Eq. 43
may be calculated for any cumulative probability P(x) and it has
an interpretation making it very useful.

The probability density for the largest among N numbers
drawn using the probability distribution p(x) is given by

pN(x) � dP(x)N
dx

� NP(x)N− 1p(x). (69)

We calculate the average of the cumulative probability P(x)
for the extreme value based on N samples,

〈P(x)〉 � ∫∞

−∞
P(x)pN(x)dx � ∫1

0
PNdP � N

N + 1
� 1 − 1

N + 1
.

(70)

For large N, we may write this as

〈P(x)〉 � P(xN) � 1 − 1
N
, (71)

using here Eq. 43. Hence, we may interpret xN as the x value
corresponding to the average confidence interval of the largest
observed value in sequences of N numbers. It is essentially the
typical size of the extreme value for a sample of size N.
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