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Previous studies have verified that the local-world mechanism can greatly affect the
structural properties and dynamical processes occurring on isolated complex networks;
however, the impact of local-world mechanism on structural vulnerability of interdependent
systems is still not efficiently explored. Therefore, in this study, the joint influence of
interdependence and local worlds on attack vulnerability of interdependent networks is
addressed. First, a partially interdependent system model is proposed, consisting of two
networks which are dependent on each other with different types of interdependence
preference. In particular, each network evolves according to the local-world model with an
adjustable parameter to control the size of local worlds during network evolution. Next, the
cascading failure process induced by intentional attack on high-degree nodes is
presented. Then, the responses of interdependent systems after cascading failures are
investigated through large quantities of numerical simulations. The results show that the
emergence of local worlds during network evolution plays an important role in the structural
vulnerability of both single and interdependent networks; that is, networks with larger size
of local worlds are found to be more vulnerable against attacks. Moreover, interdependent
links make the entire system much more fragile, especially when the networks are with
max–max assortative interdependence and the strength is enhanced. These results are
beneficial to the deep understanding of the intrinsic connection between attack robustness
and underlying structure of large-scale interdependent systems.

Keywords: interdependent networks, complex networks, structural vulnerability, cascading failures, local worlds,
network attack

1 INTRODUCTION

In the past two decades, network science has been developed rapidly and enriched fruitful results in
many fields [1–3]. Among all the active topics, due to the importance of network models in
characterizing the structural properties and dynamics of complex large-scale systems, the study on a
variety of network models is of great significance. For example, many real-world systems can be
classified into and modeled as scale-free networks, such as Internet, World Wide Web, movie actor
collaboration networks, and paper citation networks [4]. Let p(k) represent the probability that a
randomly selected node has k connections with its direct neighbors in the entire network, the typical
feature of scale-free networks is that their node degree distributions follow a power-law form:
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p(k) ∼ k−c, which cannot be characterized by widely recognized
Erdős and Rényi(ER) random model in graph theory [5].

In order to interpret the underlying formation mechanism of
the abovementioned scale-free property, Barabási and Albert
proposed the classical BA scale-free model [4], which includes
two important ingredients: I) network growth, which means
that new nodes and links are added into the network
continuously, and II) preferential attachment in linking new-
added nodes and old nodes. These two ingredients are
thought to be responsible for the appearance of power-law
degree distributions in many systems. However, during the
evolution of many real-world complex networks, preferential
attachment mechanism is found to only take effect in the local
worlds, not the entire network [6]. Therefore, considering the
local-world effect during network evolution, Li and Chen
proposed the local-world evolving model [7]. An adjustable
parameter, M, is introduced into the evolution of networks,
which controls the size of the local worlds of the new-added
nodes in which the preferential attachment mechanism works.
As M increases, that is, the local world becomes larger, the
resultant networks can show transitional behaviors between
exponential and scale-free networks with respect to node
degree distributions.

Motivated by this pioneering work, subsequent studies have
been focused on local-world effect in modeling real-world
complex networks, characterizing underlying structures and
analyzing important dynamical processes occurring in complex
systems. Some variants of local-world models are continually
proposed to better understand the structural and functional
properties of real systems, such as wireless communication
networks [8], power grids [9], and energy supply–demand
system [10]. Also, localization mechanism has been
incorporated into the construction of other models in
describing the structures of hypernetworks [11], bipartite
networks [12], and weighted networks [13]. In addition,
several important topological properties, such as clustering
[14], community [15], hierarchical structures [16], and local
neighborhood [17], are combined with the local-world effect
to comprehensively uncover the underling structure of large-
scale systems. Furthermore, previous findings have revealed that
local-world effect can greatly affect the dynamical processes and
collective behaviors of complex networks, including attack
robustness [18], synchronization [19], epidemic spreading
[20], cascading failures [21], consensus [22], and structural
controllability [23].

In reality, many natural, technological, and social systems are
composed of fully or partially interdependent networks [24, 25],
which are becoming increasingly dependent on each other since
no particular network can exist in isolation. Take the
interdependence between three modern critical infrastructures,
for instance, considering water supply system, communication
network, and power grids, communication network and water
supply system require power grids to provide power support for
normal operations, power grids and water supply system need
communication network to transmit control signals, and power
grids require water supply system to cool down the electric
generators. Particularly, due to the dependencies between

networks, interdependent systems are extremely vulnerable to
damage; that is, a small disturbance can result in a cascade of
failures propagating through the interdependent connections
between networks [26–28]. Hence, understanding the
vulnerability of interdependent systems is of vital importance
[29–37]. Attack vulnerability is regarded as one fundamental
problem in many artificial and real-world interdependent
networks, which has attracted extensive attention in the
academic communities [38–42].

Although localization has been considered as an indispensable
mechanism in modeling and analyzing isolated complex systems,
the combined study of interdependence and local-world
mechanism is not sufficiently explored by far. Especially for
attack vulnerability, isolated [18] and fully interdependent
local-world networks [43] have been investigated, and it is
found that the existence of local worlds during network
evolution can have a great impact on networks’ performance-
resisting attacks. These results motivate us to extent the study to
partially interdependent networks to future explore the joint
influence of interdependence and local-world effect on attack
vulnerability. First, a partially interdependent system model is
constructed, consisting of two networks which are dependent on
each other with different coupling preference. In particular, each
network is evolved according to the local-world model with an
adjustable parameter to control the size of local worlds. Then,
after the attack on a small fraction of nodes, the process of
cascading failures of nodes and links in partially interdependent
system is described. Moreover, different from random attack
simulated by selecting and removing nodes randomly, an
important and realistic attacking strategy in real
world—intentional attack on high-degree nodes—is considered
in this study.

The structure of the article is organized as follows. In Section
2, a partially interdependent system model is presented,
consisting of two networks which are dependent on each
other. Then, the cascading failure process induced by
intentional removal of a small fraction of high-degree nodes is
described in detail. In Section 3, through large quantities of
numerical simulations, the impacts of local worlds and
interdependence on system’s performance after cascading
failures are investigated. Section 4 includes the conclusion of
the whole article and the perspective on future works.

2 MODELS AND VULNERABILITY METRICS

2.1 Interdependent Local-World Networks
In order to further investigate the joint influence of both
interdependence and local worlds on structural vulnerability of
interdependent networks, a partially interdependent system
model with two networks, that is, networks A and B, is
established based on the fully interdependent system model
proposed by Buldyrev et al. [24]. This model considers both
interdependence strength and preference. In the meantime, to
explore the effect of local-world mechanism during network
evolution, A and B are constructed according to the local-
world evolving model [7].
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An example of such interdependent system is exhibited in
Figure 1A, which is composed of two networks A ({ai|1≤ i≤ 6})
and B ({bj

∣∣∣∣1≤ j≤ 6}). There are two types of links in
interdependent networks, namely, connectivity links and
interdependent links. Connectivity links are the links
connecting nodes belonging to the same network, such as link
(a1-a2) and link (b1-b5). However, the interdependent links
indicate that one endpoint node of a link depends on the
node at the other end, such as link (a5-b5). The functioning of
node a5 depends on the functioning of node b5 and vice versa.
Once node a5 fails, its interdependent partner node b5 in network
B will also fail. The connectivity and interdependent links are
represented by solid and dashed lines in Figure 1, respectively.
Regarding the interdependence pattern between network A and
B, several important factors should be considered, which are listed
as follows:

2.1.1 Interdependence Strength
Even in real-world interdependent systems, there exist some
nodes which have no dependency on other networks. To
this end, different from fully interdependent networks,
the partially interdependent model involves an important

parameter, q, to define the fraction of nodes in one network
which have interdependent links. Thus, q (0≤ q≤ 1) characterizes
the interdependence strength between networks A and B.
When q approaches 0, the interdependence between two
networks becomes weaker, where failures of nodes and links
cannot easily spread from one network to another. On the
contrary, when q approaches 1, the interdependence becomes
stronger, and more interdependent links are added in the
system. As two special cases, q � 0 corresponds to isolated
networks without interdependence on each other, while
when q � 1, it corresponds to the strongest interde-
pendence, that is, the previous fully interdependent system
model [24].

2.1.2 Interdependence Preference
Two kinds of interdependent interaction preference, that is,
assortative and disassortative mixing, are usually considered in
previous studies. Assortative mixing means that nodes with
similar degree tend to be connected, and disassortative mixing
indicates that nodes with different degree are connected.
However, since only a fraction q of nodes have dependency
relationships in partially interdependent networks, it is

FIGURE 1 | (Color online) Schematic illustration of a partially interdependent system with two networks (A and B) and the cascade process of successive failures of
nodes and links of both networks induced by single node removal (a5) due to the existence of interdependence. (A) A partially interdependent systemwith network A and
B. Nodes {ai |1≤ i ≤6} in network A and nodes {bj

∣∣∣∣1≤ j ≤6} in B are represented by solid circles and squares, respectively. The connectivity links, such as link (a1-a2) and
link (b1-b5), are represented by solid lines. The dependency links, such as link (a5-b5), are represented by dashed lines. (B–F) Schematic illustration of the back-
and-forth propagating process of cascading failures of nodes and links between two networks after node a5 (one of nodes with highest degree in network A) is selected
and attacked externally. The failure of node a5 induces the damage on connectivity integrity of network A. Furthermore, due to the interdependence between networks,
the removal of nodes and links in network A triggers the failures of nodes and links in network B. This propagating process between networks stops only until no further
node and link are eliminated. (G) Finally stabilized system, network A is with largest connected component {a1 , a2} and B is with {b1 ,b2 ,b6}, respectively.
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necessary to redefine assortative and disassortative
interdependence as following.

Random interdependence

Random interdependence means randomly selecting nodes
from networks A and B, respectively, and setting up
interdependent links between them.

Assortative interdependence: max–max and min–min

First, sort nodes in networks A and B in the descending order
of node degree, respectively, then, in the case of max–max
interdependence, bidirectional interdependent links are set up
between the fraction q of high-degree nodes in A and the fraction
q of high-degree nodes in B. While, in the mode of min–min
interdependence, the fraction q of low-degree nodes in one
network are preferentially dependent on low-degree nodes in
other network.

Disassortative interdependence: max–min and min–max

Here,max–min andmin–max stand for two different kinds of
disassortative interdependence. Considering max–min
interdependence between networks A and B, it means that
bidirectional interdependent links exist between high-degree
nodes in A and low-degree nodes in B. On the contrary, in
the case of min–max interdependence, the fraction q of low-
degree nodes in A depend on the fraction q of high-degree nodes
in B and vice versa.

For simplicity, only symmetric and one-to-one
interdependence is considered, and two networks are with the
same numbers of nodes and links in this study. One-to-one
interdependence indicates that node ai is dependent on only
one node in network B, while one-to-multiple interdependence
means that node ai is dependent on more than one nodes in
network B. As for symmetric interdependence, it means that node
ai is dependent on node bj and vice versa. Otherwise, it is called
asymmetric interdependence. Both networks in the
interdependent system are constructed according to the local-
world evolving model [7]. The construction algorithm can be
described briefly as follows.

• Network growth

The network evolves with m isolated nodes initially; then, at
each time step t(t > 0), a new node is added into the network, and
m links are added between this new node and m existing nodes.
After T time steps, the resultant network has N � m + T nodes
and E � mT links.

• Locally preferential attachment

At each time step t, M(M ≥m) nodes are randomly chosen
from the existing network and regarded as the local world of the
new-added node. Afterward, the new node will connect to m
nodes in this selected local world. Let Φ denote the set of nodes in

this local world. Then, the linking probability li of any node i ∈ Φ

and the new node is defined as li ∼ ki/∑j ∈ Φkj. Obviously, li is
valued over all the nodes j ∈ Φ. Also, li is proportional to node
degree ki. However, this preferential attachment only takes effect
locally, which is different from globally preferential attachment
proposed in BA scale-free model [4].

The adjustable parameter M controls the extent to which
locally preferential mechanism takes effect. If M is equal to the
size of existing network at each time step, which is indicated by
M >N in the following numerical simulations, the local world of
the new-added node does not exist and the preferential
attachment mechanism actually works in the whole network-
wide; thus, it corresponds to the BA scale-free model, and the
degree distribution of the resultant network follows a power-law
form: p(k) ∼ k−3 [4]. IfM � m, the new-added node will connect
all the nodes in the selected local world. It will result in an
exponential network with degree distribution following an
exponential form: p(k) ∼ e−k/m. By tuning the parameter
M(m≤M <N) in the local-world model, networks can
represent transitional behaviors between these two special cases.

2.2 Iterative Process of Cascading Failures
under Intentional Attacks
In reality, targeted attacks on vital nodes are usually considered as
effective strategies to destroy networked systems rather than
random attacks. Therefore, it is of practical significance to
investigate the performance of interdependent systems against
intentional attacks. In this study, high-degree nodes are
deliberately selected and removed from the system. For
simplicity, nodes only in one network are initially attacked.
Take the system shown in Figure 1A as an example; if
network A is selected as the target, intentional attack can be
simulated by sorting all the nodes in the descending order of
degree and sequentially removing the nodes with the highest
degree from network A.

Because of the interdependence between networks, once a
small fraction of nodes are removed from one network, the
damage may not be limited therein. The cascading failures of
nodes and links can propagate between networks, just resulting in
the collapse of the entire system. Figures 1B–G illustrate the
propagating process of cascading failures of nodes and links
which are caused by the removal of node a5 (Figure 1A).
After node a5 is attacked and removed from network A, not
only a5 but also all its immediate links (a5-a3), (a5-a4) and (a5-a6)
are destroyed (Figure 1B). Consequentially, this makes nodes a4
and a6 lose connection with the main body of network A
(Figure 1C). Since node b5 in network B depends on node a5,
the removal of a5 leads to the failures of node b5 and links (b5-b4)
and (b5-b6) (Figure 1D), thus triggering the disconnection of
nodes b3 and b4 from the main body of network B consequently
(Figure 1E). Due to the existence of dependency link (b3-a3), the
failure of nodes b3 induces the elimination of nodes a3 and two
links (a3-a1) and (a3-a2) (Figure 1F). Thus, the failures cascade
back and forth between networks A and B. This iterative process
will not stop until no further node and link are eliminated
(Figure 1G). In the finally stabilized system, network A is
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with the largest connected component {a1, a2} and B is with
{b1, b2, b6}.

2.3 Structural Vulnerability Metrics
Generally speaking, after one network suffers attack on nodes
and/or links, the structural vulnerability can be evaluated from
two aspects, the damage on connectivity integrity and the loss of
communication efficiency. Several widely used robustness
measures are listed as follows:

(1) S, relative size of the largest connected component

For an unconnected network, considering all the components,
that is, the subnetworks of connected nodes, the largest connected
component (LCC) represents the component which has the
maximum number of connected nodes [44]. Let N ′ and N0

denote the number of nodes that remain in the LCC and the
total number of nodes in the initial undamaged network,
respectively. The relative size S is defined as S � N ′/N0, which is
usually used as the main measure of the damage level caused by the
elimination of nodes and links from the network, thus characterizing
the performance of networks against attacks. Usually, the network is
considered to be more robust with a larger value of S since more
nodes remain connected in the largest component.

(2) η, residual communication efficiency

Communication efficiency is an important quantity to
characterize how efficiently the information is transmitted
between node pairs over the whole network [45]. Assume that
information is always exchanged along the shortest paths, let dij
represent the length of shortest paths between node i and j, and
communication efficiency εij is defined to be inversely proportional
to the shortest distance, that is, εij � 1/dij. Thus, global
communication efficiency ε of the entire network is the average
of εij over all node pairs, that is, ε � ∑i ≠ jεij/(N(N − 1)). After nodes
and links are removed, let ε0 and εr denote the communication
efficiency of the initial and residual network, respectively, the extent
of communication efficiency loss can be defined as η � εr/ε0, which
can be used to evaluate the damage induced by node attack as well.

(3) fc, critical fraction of removed nodes

The critical threshold fc is the minimum fraction of nodes that
must be eliminated to provoke the avalanche of the whole system.
At f � fc, the whole network is nearly destroyed with S ≈ 0 and
residual communication efficiency η ≈ 0. Thus, fc is another
widely used quantity measuring the vulnerability of networks.
A smaller value of fc indicates that corresponding network is more
easily to be destroyed and more vulnerable against attacks.

3 NUMERICAL SIMULATIONRESULTS AND
ANALYSIS

To explore the influence of both local-world mechanism and
interdependence on structural vulnerability of interdependent

systems, in the following numerical simulations, partially
interdependent systems composed of two networks are
established with different interdependence strength q and
preference. According to the local-world evolving model, all
the networks are constructed with different parameter M.
Intentional attack is initiated by the removal of a fraction f of
high-degree nodes in one network, indicated as the target
network, which induces the cascading failures of nodes and
links throughout both networks. When the system reaches the
steady state after cascading failures, the damage on connectivity
integrity and loss of communication efficiency of the target
network are evaluated by monitoring the changes of S, η, and
fc with increasing f.

3.1 Effect of Local-World Mechanism
First, the influence of local-world mechanism on vulnerability of
isolated networks is investigated, which is corresponding to the
special case of strength q � 0 of interdependent systems proposed
in section 2.1. All the networks are constructed with parameters
N � 10, 000, m � 3, average degree 〈k〉 � 6 for different
M(M � 3, 5, 7, 9, 20 and M >N). Figures 2 A and B show the
relative size S and residual communication efficiency η versus the
fraction f of initially removed nodes for networks with different
M, respectively. M � m (curves with solid •) and M >N (curves
with solid =) correspond to two special cases of local-world
model, exponential and scale-free network, respectively.

From Figure 2A, with the increasing of f, the values of S
inevitably are reduced to near 0. However, S is observed to decline
more sharply in networks with the increasing of M. The rapid
decrease of the size of largest connected component implies that
nodes break off from the main body and all the connected
components break into small pieces quickly, just accelerating
the collapse of the whole network. For example, at f � 0.3, S ≈ 0.6
with M � m; however, when f � 0.3 and M >N , S drops to
S ≈ 0.0, indicating the avalanche of the entire network.

Meanwhile, after cascading failures, the residual
communication efficiency η of networks is also examined
(Figure 2B). As more nodes are attacked and removed from
the network, that is, η monotonically decreases, with the
increasing of the fraction f of eliminated nodes. However, as
M increases (from top to bottom), under the same level of
external damage, that is, with the same f, η declines more
rapidly in networks with higher values of M. For example,
when f � 0.2, the residual efficiency of network with M � m is
η ≈ 0.8, which is larger than η ≈ 0.2 in the network with M >N .
Also, as shown in Figure 2, fc is observed to become smaller in
networks as M increases. For instance, when M � m, fc ≈ 0.44,
however, fc is observed to be about 0.26 whenM >N (Figure 2A).
As mentioned above, a smaller fc means corresponding network is
more fragile and can be destroyed more easily.

Second, the impact of local-world mechanism on structural
vulnerability of fully interdependent local-world networks is also
explored, which can be regarded as a special case of partially
interdependent system with strength q � 1.0. In the numerical
experiments, based on local-world model, all the networks are
constructed with parameters N � 2000, m � 3, average degree
〈k〉 � 6 for different M. As for fully interdependent systems, N
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interdependent links are set up between all the nodes of both
networks, indicating that each node in the system is dependent on
one and only one node in the other network. Note that, since q
equals to 1, max–max are identical with min–min for assortative
interdependence and max–min are identical with min–max for
disassortative interdependence.

Figures 3–5 show the relative size S of the largest connected
component and the residual communication efficiency η as
functions of the fraction f of initially removed high-degree
nodes for fully interdependent local-world networks in the case
of random, assortative and disassortative interdependence,
respectively. It can be observed from Figures 3A, 4A, 5A that,
as M is increased, the decline of S becomes more drastically with
increasing f, implying that corresponding networks are more
vulnerable against cascading failures. Also, as shown in Figures
3B, 4B, 5B, residual communication efficiency η decreases more
rapidly in networks with higher values of M. Note that, these
behaviors are consistent with those of isolated local-world
networks (Figure 2).

In summary, the simulation results demonstrate that the
emergence of local worlds during network evolution has great
influence on structural vulnerability of both single and
interdependent networks. Deliberate attacks on highly
connected nodes can induce more damage and sequentially
more easily lead to abrupt collapse on networks with larger
size M of local worlds. In other words, networks with larger
size of local worlds are found to be more vulnerable against
attacks.

3.2 Influence of Interdependence
Preference
Previous study has verified that interdependent links accelerate
the cascading spreading of node and link failures between
networks, thus greatly enhancing the fragility of entire system
against cascading failures [24]. This can be proved by the
following observation of the simulation results. From Figures
3–5, compared with isolated networks (Figure 2), S decreases

FIGURE 2 | (Color online) Vulnerability analysis of isolated local-world networks (corresponding to interdependence strength q � 0.0) after intentional attack on a
fraction f of high-degree nodes. (A) Relative size S of the local-world networks as a function of the fraction f of removed nodes; (B) residual communication efficiency η
versus the fraction f of removed nodes. Results are obtained by averaging over 50 independent realizations on local-world networks, which are constructed with size
N � 10, 000, m � 3, and average degree 〈k〉 � 2m � 6 for different M (M � 3,5, 7, 9, 20 and M >N). M � 3 and M >N correspond to two special cases of local-
world model, exponential and scale-free network, respectively.

FIGURE 3 | (Color online) Vulnerability analysis of fully interdependent local-world networks (corresponding to interdependence strength q � 1.0) after cascading
failures caused by intentional removal of high-degree nodes from one network in the case of random interdependence. (A) Relative size S of the largest connected
component as a function of the fraction f of removed nodes; (B) residual communication efficiency η as a function of the fraction f of removed nodes. Results are obtained
by averaging over 50 independent realizations on interdependent systems consisting two local-world networks, which are separately constructed with N � 2000,
m � 3, and 〈k〉 � 2m � 6 for different M (M � 3,5, 7, 9, 20 and M >N).
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more drastically and fc becomes lower in fully interdependent
networks. For example, fc ≈ 0.44 for isolated network with M �
m (Figure 2A), while fc ≈ 0.34 for networks with M � m in
random case (Figure 3A).

Considering the effect of different interdependence preference,
systems with assortative interdependence (Figure 4) are found to be
the most vulnerable resisting cascading failures compared with
random (Figure 3) and disassortative (Figure 5) cases. As M is
fixed, the relative size S declines most rapidly and drops to S ≈ 0 at
the lowest values of fc in the case of assortative interdependence. For
instance, in networks with M >N (curves with solid =), S drops
more drastically to S ≈ 0 at the lowest fc ≈ 0.15 with assortative
interdependence (Figure 4A), however, fc ≈ 0.17 and fc ≈ 0.24 in
networks with random (Figure 3A) and disassortative
interdependence (Figure 5A), respectively. The same phenomena
can be observed in networks withM � m (curves with solid •), fc is
the smallest in assortative case (fc ≈ 0.32), while the values fc in
random coupling and disassortative cases are fc ≈ 0.35 and
fc ≈ 0.40, respectively.

Moreover, the effect of interdependence preference can
also be verified by exploring the loss of communication
efficiency induced by the elimination of nodes and links at
the end of a cascading process. The changes of residual
communication efficiency η versus the fraction f of
initially removed high-degree nodes are shown in Figures
3B, 4B, 5B, which are corresponding to systems with
random, assortative, and disassortative interdependence,
respectively. In Figure 4B, for interdependent networks
with assortative interdependence and local world size M >N
(curves with solid =), at f � 0.1, which means that 10% of
high-degree nodes are initially eliminated from the network,
the residual efficiency is η ≈ 0.4, while at f � 0.1, the residual
efficiency is approximately η ≈ 0.5 in networks with random
(Figure 3B) and disassortative interdependence. All the
simulation results strongly confirm that compared with
random and disassortative interdependence, interdependent
networks coupled in an assortative way are more easily to be
destroyed.

FIGURE 4 | (Color online) Vulnerability analysis of fully interdependent local-world networks (corresponding to interdependence strength q � 1.0) after cascading
failures caused by intentional removal of high-degree nodes from one network in the case of assortative interdependence. (A) Relative size S of the largest connected
component as a function of the fraction f of removed nodes; (B) residual communication efficiency η as a function of the fraction f of removed nodes. Results are obtained
by averaging over 50 independent realizations on interdependent systems consisting two local-world networks, which are separately constructed with N � 2000,
m � 3, and 〈k〉 � 2m � 6 for different M (M � 3,5, 7, 9, 20 and M >N).

FIGURE 5 | (Color online) Vulnerability analysis of fully interdependent local-world networks (corresponding to interdependence strength q � 1.0) after cascading
failures caused by intentional removal of high-degree nodes from one network in the case of disassortative interdependence. (A) Relative size S of the largest connected
component as a function of the fraction f of removed nodes; (B) residual communication efficiency η as a function of the fraction f of removed nodes. Results are obtained
by averaging over 50 independent realizations on interdependent systems consisting two local-world networks, which are separately constructed with N � 2000,
m � 3, and 〈k〉 � 2m � 6 for different M (M � 3,5, 7, 9, 20 and M >N).
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3.3 Impact of Interdependence Strength
Sequentially, in the following simulations, the vulnerability of
partially interdependent networks after cascading failures is
investigated by monitoring the joint influence of
interdependence strength q, interdependence preference,
and local world size M on the values of critical node
threshold fc (Figure 6). Here, fc indicates the minimum
number of nodes whose removal can trigger the cascade
process of failure of nodes and links in both networks and
lead to the abrupt collapse of the entire system. Meanwhile,
different types of interdependence preference, namely,
random, max–max, min–min, max–min and min–max, are

considered. The results are obtained by averaging over 50
independent realizations on interdependent systems consisting
two local-world networks, which are separately constructed
with N � 2000, m � 3, and 〈k〉 � 2m � 6 for different
M (M � 3, 5, 7, 9, 20 and M >N).

In all the plots of Figure 6, from top (M � m) to bottom
(M >N), with the same interdependence strength q, as M
increases, fc is observed to decrease monotonically, implying
that partially interdependent systems composed of networks
with relatively larger size M of local worlds become more
vulnerable once cascading failures of nodes and links occur.
Also, the results illustrate that interdependent networks

FIGURE 6 | (Color online) Vulnerability analysis of partially interdependent local-world networks after cascading failures caused by intentional removal of high-
degree nodes from one network. Both interdependence preference and strength are considered: (A) random; (B)max–max; (C)min–min; (D)max–min; (E)min–max. All
the plots show the joint effect of interdependence strength q and local world sizeM on the critical threshold values of fc. fc is the minimum fraction of nodes that must be
removed to trigger the avalanche of the entire system. At f � fc, the whole network is nearly destroyed with the relative size of the largest connected components
S ≈ 0 and the residual communication efficiency η ≈ 0. A smaller fc indicates that corresponding networks are more fragile against attacks and vice versa. The results are
obtained by averaging over 50 independent realizations on interdependent systems consisting two local-world networks, which are separately constructed with
N � 2000, m � 3, and 〈k〉 � 2m � 6 for different M (M � 3,5, 7, 9, 20 and M >N).
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become more fragile with enhanced coupling strength. When M
is fixed, fc is observed to decrease with the increasing of q,
indicating that the emergence of more interdependent links
makes both networks more vulnerable against attacks.

Compared with random interdependence (Figure 6A), fc
drops more rapidly at relatively smaller values of q in
networks with assortative max–max interdependence
(Figure 6B). This reveals that max–max interdependence
makes interdependent system more fragile resisting cascading
failures. After targeted attacks occur in one network, since high-
degree nodes of each network are depend on each other, the
failures of high-degree nodes can not only trigger the breakdown
of their neighbors in the same network but also lead to the failures
of counterpart nodes in other networks. Especially, when q
becomes larger, that is, q> 0.5, the propagation of failures will
lead to the quick collapse of both networks. On the contrary, in
networks with min–min interdependence (Figure 6C),
interdependent links preferentially connect low-degree nodes
of both networks; thus, the failures induced by
interdependence are limited to low-degree nodes. Therefore,
networks with min–min interdependence are more robust than
other cases under attacks, especially when the interdependence
strength is relatively small (Figure 6C).

As q is increased, for example, q> 0.7, it can be observed from
Figures 6 D and E that, with the same M, the values of fc in
networks with max–min interdependence are relatively larger
than those in networks with min–max interdependence. In other
words, compared withmax–min interdependence, networks with
min–max interdependence are more fragile against cascading
failures. Qualitatively, this can be explained as follows: max–min
and min–max are two different types of disassortative
interdependence between networks. For interdependent system
with networks A and B, in the case ofmax–min interdependence,
high-degree nodes in A and low-degree nodes in B are dependent

on each other, while, in the case of min–max interdependence,
low-degree nodes in A depend on high-degree nodes in B and vice
versa. If A is selected as the attacking target, a fraction f of high-
degree nodes in A are intentionally removed from the network,
which triggers the cascading failures of nodes and links in both
networks. In the case of max–min interdependence, the removal
of high-degree nodes in A can only directly destroy low-degree
nodes in B. The failures of low-degree nodes in B can bring less
damage on connectivity compared with the failures of high-
degree nodes in B in the case of min–max interdependence,
thus suppressing the propagation of failures of nodes and links in
both networks.

In previous studies, it has been revealed that node degree
distribution and degree heterogeneity are essentially important
for attack robustness of complex networks [46–49]. Two basic
topological metrics, kmax and σ2k, are introduced to characterize
the extent of heterogeneity of node degree distribution. kmax is
defined to be the maximal value of degrees among all the nodes.
And σ2k denotes the variance of the entire node degree sequence,
that is, σ2k � 〈k〉2 − 〈k2〉. Figures 7 A and B exhibit σ2k and kmax as
a function of M in local-world networks, respectively. As
observing from Figure 7A, σ2k increases monotonously with M,
implying that corresponding networks become more
heterogeneous in connectivity. As well, kmax becomes larger
with increasing M (Figure 7B), indicating that hub nodes with
more links emerge in resultant networks.

The results in Figure 7 demonstrate that with the increasing of
size M of local worlds, the local-world characteristic of the
network decreases, especially when M >N the local-world
mechanism loses effect thoroughly and the resultant network
reduces to the classic BA scale-free model [4]. The losing of local-
world feature makes the network become more heterogeneous in
connectivity, that is, the emergence of hub nodes and increased
degree variance. Also, the network becomes more fragile against
attacks. Intentional attack on high-degree nodes can lead to more
drastic damage on connectivity integrity in more heterogeneous
networks. This is the reason why isolated and interdependent
networks with increased M are more fragile to be destroyed. In
particular, in systems with max–max assortative
interdependence, hub nodes in both networks depend on each
others, when targeted attack is initiated, the removal of hub nodes
in one network can cause the failures of hub nodes in the other
network, just accelerating the propagation of node and link
failures between networks. Thus, compared with other types of
preference, systems withmax–max interdependence are the most
vulnerable against cascading failures caused by the attack on
highly connected nodes.

4 CONCLUSION

To give a deep insight into the joint influence of interdependence
and local worlds on complex interdependent networks with
respect to the structural vulnerability after cascading failures,
an interdependent system composed of two networks is
established incorporating the consideration of both
interdependence strength and preference. Especially, based on

FIGURE 7 | (Color online) Heterogeneity analysis of node degree
distribution of local-world evolving networks with different parameter M. (A)
σ2k ; (B) kmax . All the networks are with N � 10,000 nodes and average node
degree 〈k〉 � 6. Each data point is the average of 50 independent runs.
The values of σ2k and kmax increase monotonously with M, implying that
corresponding networks become more heterogeneous in connectivity.
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the local-world model, both networks are constructed with an
adjustable parameter which controls the size of local worlds
during network evolution. Through numerical simulations, it
has been revealed that local-world mechanism can greatly
affect the vulnerability of both isolated and interdependent
networks. As the size of local world increases, corresponding
networks are found to be more vulnerable after cascading failures
induced by node removal. Additionally, the research results
strongly verify that interdependent links can accelerate the
collapse of the entire system. Comparing different
interdependence preference, networks with max–max
assortative interdependence are the most fragile against
cascading failures. These results suggest that protecting highly
connected nodes and weakening the interdependence between
high-degree nodes can be effective for enhancing the robustness
of interdependent systems. Especially, from the viewpoint of
network evolution, controlling the extent of preferential
attachment can be quite beneficial to preventing the drastic
catastrophic failures of isolated and interdependent networks.

In this study, the investigation on network vulnerability
against cascading failures is mainly focused on a simple binary
networked system model, where links between nodes are only
with two states, that is, present or absent. Nonetheless, most real-
world networks are naturally weighted with some interaction
values associated to the links (i.e., the link weight) [13, 44]. Thus,
in the following work, the study on the relationships between
local-world effect and network attack will be extended to
weighted interdependent networks and real-world networks.
Recently, many protection approaches have been developed to
improve attack robustness and avoid abrupt collapse of complex
systems, including setting reinforced nodes to support their
neighborhood [50], targeted node recovery [51–53], and
introducing node repair after collapse [54]. Therefore, local-
world mechanism should be incorporated into the robustness
improvement of interdependent systems, which remains as an

interesting topic to be explored extensively. Moreover, several
important dynamical behaviors, such as system crash behavior
[36], epidemic dynamics [55] and structural controllability [56],
have been extended into multiple networked systems. The effect
of local worlds on these dynamic behaviors in interdependent
systems deserves further study as well.
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