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The nonlinear Schrödinger equation has wide range of applications in physics with spatial
scales that vary from microns to kilometres. Consequently, its solutions are also
universal and can be applied to water waves, optics, plasma and Bose-Einstein
condensate. The most remarkable solution presently known as the Peregrine
solution describes waves that appear from nowhere. This solution describes unique
events localized both in time and in space. Following the language of mariners they are
called “rogue waves”. As thorough mathematical analysis shows, these waves have
properties that differ them from any other nonlinear waves known before. Peregrine
waves can serve as ‘elementary particles’ in more complex structures that are also
exact solutions of the nonlinear Schrödinger equation. These structures lead to specific
patterns with various degrees of symmetry. Some of them resemble “atomic like
structures”. The number of particles in these structures is not arbitrary but satisfies
strict rules. Similar structures may be observed in systems described by other
equations of mathematical physics: Hirota equation, Davey-Stewartson equations,
Sasa-Satsuma equation, generalized Landau-Lifshitz equation, complex KdV equation
and even the coupled Higgs field equations describing nucleons interacting with neutral
scalar mesons. This means that the ideas of rogue waves enter nearly all areas of
physics including the field of elementary particles.
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1 INTRODUCTION

The nonlinear Schrödinger equation (NLSE) has wide range of applications in physics with spatial
scales that vary from microns to kilometres and even light years. It describes nonlinear wave
phenomena in optics [1, 2], oceanography [3, 4], plasmas [5, 6], atmosphere [7], Bose-Einstein
condensate [8, 9] and cosmology [10]. Taking into account the lowest order nonlinearity and
dispersion, this equation describes nonlinear wave phenomena at the fundamental level. NLSE serves
as a basic tool for understanding modulation instability [11, 12], solitons [13], periodic waves [14]
and extreme waves [15, 16]. The ideas born in the studies of NLSE solutions can be transferred to
many other systems. Despite being studied for nearly 50 years, the NLSE solutions have a rich
structure and provide surprises for researchers even today [17].

Being a practical introduction to a special issue, this article provides a basic review of
mathematical results on NLSE that are important for understanding the nonlinear phenomena
in general. It leaves aside the complexities of inverse scattering technique [13], Darboux
transformation [18], theta functions [19] and other sophistications of modern mathematics [20].
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Instead, it provides solutions in explicit form so that everyone can
appreciate their clarity, simplicity of making useful plots and
most importantly, the possibility of using them in applications.

The NLSE describes systems with an infinite number of
degrees of freedom. Being integrable, it has an infinite number
of solutions that can be presented in analytic form. Among them,
there are fundamental ones such as soliton solutions [13],
Akhmediev breathers [21–24], the Peregrine solution [26–28]
and the general doubly-periodic solutions [17, 22]. These can be
considered as fundamental modes of the nonlinear system each
with a specific single eigenvalue of the inverse scattering
transform [13]. More complicated solutions are nonlinear
superpositions of these fundamental ones. Although
mathematically, these superpositions may look highly
complicated, conceptually, they can be understood as a
combination of fundamental solutions. The corresponding
spectrum of eigenvalues for complex solutions is a combined
set of individual eigenvalues.

Presently, the most studied combinations are multi-soliton
solutions [13, 29]. Next in complexity are multi-Akhmediev
breathers [25, 31]. Rogue waves can also be superimposed
resulting in multi-rogue wave solutions. In contrast to multi-
solitons and multi-ABs, multi-rogue waves are degenerate
solutions. The eigenvalues corresponding to the individual
contributions are located at the same point of the complex
plane. Despite this complication, multi-rogue waves are also
well studied [32–34] but, perhaps, their physics is less
understood [35–37] than the physics of any other solutions of
the NLSE. The main reason is the unusual set of rules that control
their superposition [35]. On the other hand, the superpositions of
elementary doubly-periodic solutions studied in [17, 22] still need
to be constructed. This task is mathematically challenging and has
not been addressed so far. Existence of “explicit” solutions in
terms of theta functions [19] does not provide any clue for solving
this highly involved task.

Building higher-order superpositions consisting of the same
type of fundamental solutions, say, multi-soliton solutions is
relatively simple task [38]. This may be done using techniques
such as Darboux transformation [30]. Mixing different types of
fundamental solutions is more difficult. However, this has also
been done in a few recent works. Mixing them is the way to
address problems such as rogue waves on top of a periodic
background [39, 40]. The number of possibilities is literally
infinite.

After what is said above, it may seem strange that the NLSE
model is the simplest one among the existing nonlinear
evolution equations. However, this is indeed the case. The
NLSE provides the conceptual background for further
developments in the science of rogue waves. We should
keep in mind that the first known integrable equation
which is the real KdV equation [41] does not have rogue
wave solutions. It cannot be used as a mathematical platform
for rogue wave research. On the contrary, the ideas developed
in the studies of NLSE solutions can be further extended to
many other systems. These include Hirota equation [42], Sasa-
Satsuma equation [43], Davey-Stewartson equations [44–46],
Sine-Gordon equation [47], Landau-Lifschitz equation [48]

and many others. The basic concepts are valid not only for
integrable equations but can be expanded to non-integrable
cases [49, 50] and, to some extent, to dissipative systems
[51, 52].

The generality of the concept of rogue waves can be further
expanded to extreme events in nature. Clearly, the equations that
describe natural phenomena are more complex than the NLSE
[53]. Nevertheless, these are also evolution equations that can be
solved if not analytically, then numerically [54]. Rogue waves
must be part of complex evolution of the system with either
regular or chaotic initial conditions. These rogue waves may take
more complicated forms than a simple Peregrine wave. They can
take the form of tornadoes or hurricanes. These are also
formations that “appear from nowhere”. Thus, they do belong
to the class of rogue waves or “extreme events”.

Our task here is well defined by the subject of the special issue.
Therefore, we will concentrate on the Peregrine wave, its analogs
and its higher-order combinations. This is a very small subset of
the whole set of multi-parameter families of solutions of the
NLSE. Nevertheless, this subset plays an important role in
explaining extreme events in many physical situations.
Understanding variety of complex phenomena starts with the
studies of simple examples. These simple examples are listed in
the present rendition.

2 NLSE

The relative simplicity of the nonlinear Schrödinger equation, its
integrability [13] and its applicability to many weakly nonlinear
dispersive systems made it a universal model for wave
propagation. The most common applications include deep
ocean water waves [3, 4] and waves in an optical fiber [1, 2].
Universality means that this equation can be written in a standard
form that is applicable to all major physical settings. Variables in
this form are dimensionless and there are no free parameters.
Namely,

i
zψ

zx
+ 1
2
z2ψ

zt2
+ ∣∣∣∣ψ∣∣∣∣2ψ � 0 (1)

Here, we consider x as the propagation distance and t as the
retarded time in a reference frame moving with the group
velocity. The function ψ means the envelope of the wave
packet. Being a complex function, it defines both, the
amplitude of the envelope and the phase shift of the carrier wave.

For a given central frequency of narrow banded waves, the
group velocity of the waves is well defined by the dispersion
relation. In this case, the propagation distance and time in the
moving frame are linearly related. This means that the time and
the distance can be easily exchanged in Eq. 1 [4]. This
replacement creates an alternative form of the equation that
has been used in the earlier descriptions of water wave
propagation [4]. Evolution in time is also convenient in
problems related to Bose-Einstein condensate. For experiments
in water tanks and in optical fibers, it is more convenient to stick
to the notations taken in Eq. 1. Then waves are evolving along the
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tank or along the fiber and the shape of the wave envelope can be
observed moving along with the wave packet.

All solutions below will be given in dimensionless form that
directly satisfy Eq. 1. For practical applications, solutions must be
rescaled to dimensional variables, i.e. they must be expressed in
meters (kilometres) along the tank or along the fiber, in seconds
for the transverse variable and in the amplitude units for ψ. In the
case of an optical fiber, this rescaling is given by:

X � LNL × x, T �
������∣∣∣∣β2∣∣∣∣LNL

√
× t, Ψ � ��

PP

√ × ψ, (2)

where LNL � (cPP)− 1 is the nonlinear length, c is the nonlinear
coefficient defined by the material of the fiber, β2 is the group
velocity dispersion defined by the fiber design, and PP is the pump
power. Coefficients in the rescaling can be transferred to the
equation or used only with the transformation (2). The latter
choice is more convenient as it allows us to keep the NLSE to be a
universal model.

In the case of waves in deep water the rescaling takes the form:

X � x

kξ2
, T � �

2
√ t

ωξ
, Ψ � ψξ

k
, (3)

where X is dimensional distance along the tank, T is dimensional
time in the frame moving with the group velocity cg � ω

2k, Ψ is the
envelope of the water wave elevation, ω is the carrier frequency
and k is carrier wavenumber that satisfies the dispersion relation
ω � ��

gk
√

with g � 9.81 m/s2 being the gravitational acceleration.
Dimensionless parameter ξ is the wave steepness defined as the
product of the wave amplitude a and the wavenumber k.

Further adjustment of solutions can be done with the use of
scaling transformation

ψ′(x, t) � αψ(αx, α2t) (4)

Namely, if ψ(x, t) is a solution of the NLSE (1), then ψ′ is also a
solution of the same equation. Eq. 4 provides an additional tool
for adjustment of initial conditions to the required levels in
optical and hydrodynamic experiments.

3 PEREGRINE WAVE

One of the simplest non-singular rational solutions of the NLSE
1) is given by [15, 16, 26]:

ψ(x, t) � [4 1 + 2ix
1 + 4x2 + 4t2

− 1]eix, (5)

It is known as the Peregrine solution or Peregrine soliton [27] or
Peregrine breather [28]. The modulus of this complex solution is
shown in Figure 1. The main feature of this solution is the
localization of its central peak both in time and in space. The
constant background represents a plane wave with an infinite
source of energy. This solution has all features of rogue waves in
the ocean [15, 16]. It represents an unexpected wave event on an
otherwise flat background.

Peregrine solution has been observed in various experiments.
The most notable ones are in water waves [55] and in optical

fibers [27]. This solution appears in field evolution dynamics with
variety of initial conditions [56]. Moreover, the Peregrine solution
can be considered as a universal structure emerging in any type of
intensity localization of high power pulses [57]. We can consider
it as an “elementary particle” of more complicated patterns that
can appear on a plane wave background. As the NLSE is the
envelope equation, the Peregrine solution may describe both the
wave of elevation or a depression. The latter is known as the rogue
wave hole [58]. Solutions similar to the Peregrine one can also be
found in other physical systems [59–62]. Thus, the phenomenon
of rogue wave is even more universal than we can imagine.

4 HIGHER-ORDER ROGUE WAVE
SOLUTIONS

There are higher-order rational solutions of the NLSE that we
can call rogue waves. The second order solution has been first
presented in [14]. Several methods are known for constructing
higher-order solutions of integrable equations [18, 32–34]. A
hierarchy of rogue wave solutions with progressively increasing
central amplitudes are presently known as Akhmediev-
Peregrine (AP) breathers [63–66]. Their general form can be
written as:

ψN(x, t) � [(− 1)N + GN(x, t) + ixHN(x, t)
DN(x, t) ]eix, (6)

where G, H and D are polynomials, and N is the order of the
solution. In the case of the Peregrine solution (5), N � 1 and we
have: G1(x, t) � 4,H1(x, t) � 8,D1(x, t) � 1 + 4x2 + 4t2.

For the second order solution, the polynomials are given by
[14, 67]:

FIGURE 1 | A single Peregrine wave of the NLSE [15]. The maximum
amplitude at the origin is three while the background amplitude is 1. The
solution has two zeros along the t axis at each side of the maximum. This
simple wave structure appears in more complicated rogue wave
patterns.
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G2 � 3
8
− 3t2 − 2t4 − 9x2 − 10x4 − 12t2x2,

H2 � 15
4
+ 6t2 − 4t4 − 2t4 − 2x2 − 4x4 − 8t2x2,

D2 � 1
8
[3
4
+ 9t2 + 4t4 + 16

3
t6 + 33x2 + 36x4 + 16

3
x6 − 24t2x2

+ 16t4x2 + 16t2x4].
This solutions is shown in Figure 2A. While for the first order

solution shown in Figure 1 the amplitude is 3 times the
background, the maximum amplitude of the second order
solution shown in Figure 2A is 5 times the background.

The second-order solution with free parameters has been
given earlier in [32, 73]. The solution intensity

∣∣∣∣ψ∣∣∣∣2 is
completely defined by the denominator D2(x, t). Namely,∣∣∣∣ψ2(x, t)

∣∣∣∣2 � 1 + [log(D2(x, t))]tt [71]. The latter is now given by:

D2(x, t) � β2 + c2 + 64t6 + 48t4(4x2 + 1) − 16βt3

+ 12t2(16x4 − 24x2 + 4cx + 9) + 12tβ(1 + 4x2)
+ 64x6 + 432x4 − 16cx3 + 396x2 − 36cx + 9

where β and γ are free real parameters of the solution. This solution
is shown in Figure 2B. When β � 0 and c � 0, the solution reduces
to the second-order AP solution shown in 2(a). An interesting fact
about the solution shown in Figure 2B is that despite being of the
second order it contains three elementary rogue waves rather than
two. This is a distinctive feature of multi-rogue wave solutions.
They are different from multi-soliton solutions that have the
number of solitons equal to the order of the solution [30].

The general form of the third-order rogue wave solution is
cumbersome. It has several free parameters. Various forms of the
third-order solution have been presented in [71, 73–75] and [76].
Instead of giving the general form, we restrict ourselves with a
simpler one-parameter case. As the solution intensity

∣∣∣∣ψ3

∣∣∣∣2 is
completely defined by the denominator D3(x, t),

∣∣∣∣ψ3(x, t)
∣∣∣∣2 � 1 +

[log(D3(x, t))]tt [71], we only present the expression for D3(x, t)
[37, 76]. It has a single free real parameter b:

D3(x, t) � ∑12
j�0

dj(T)(2x)j, (7)

where the polynomials dj(T � 2t) are:
d0 � b2(T2 + 1) + T12 + 6T10 + 135T8 + 2340T6 + 3375T4

+ 12150T2 + 2025,

d1 � −10b(T6 − 9T4 − 45T2 + 45),
d2 � b2 + 6(T10 − 15T8 + 90T6 + 2250T4 − 6075T2 + 15525),
d3 � 10b(T4 + 18T2 + 9),
d4 � 15(T8 − 12T6 − 90T4 + 5220T2 + 9585),
d5 � 6b(3T2 − 17),
d6 � 20(T6 + 3T4 + 675T2 + 765), d7 � −2b,
d8 � 15(T4 + 18T2 + 249),
d9 � 0,

d10 � 6(T2 + 21),
d11 � 0, d12 � 1.

The third-order solutions are shown in Figure 3 for the cases
b � 0 and b � 2 × 107. The third-order solution consists of six
Peregrine waves. When b � 0, all six are located at the origin
leading to the central amplitude 7. For nonzero b, the solution
splits into six components. Each of them is a Peregrine wave as
can be seen from Figure 3B. One of them is located at the origin.
Five others are at the corners of an equilateral pentagram. The
total number of Peregrine waves is again higher than the order of
the solution. Remarkably, the number of Peregrine waves in exact
solutions cannot be equal to 2, 4, 5.We can consider the Peregrine
wave as the elementary rogue wave solution. Equivalently, we can
consider it as a rogue wave quantum or elementary particle of
rogue wave patterns.

5 COMPLEX ROGUE WAVE PATTERNS

The Nth order rogue wave solution always contains N(N + 1)/2
Peregrine waves. Namely, solution of the order N � 1, 2, 3, 4, 5/
contains 1, 3, 6, 10, 15,/ Peregrine waves, respectively. These are
known as ‘triangular numbers’ illustrated in Figure 4. They are
defined as the total number of points in a regular pattern within a
triangle with N points along its edges.

FIGURE 2 | (A) AP solution of the second order [15]. (B) Rogue wave triplet with parameters c � 200 and β � 0 [73]. Here, the second order solution consists of
three Peregrine waves.
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Rogue wave patterns are defined by the order of the
solution, N, and may depend on additional free parameters.
Two examples are given above. These free parameters split the
solution into individual Peregrine waves. These parameters
specify separations and relative positions of the individual
components on the (x, t)-plane. Any solution of Nth order
contains N(N + 1)/2 individual components that, when well-
separated, can be identified as Peregrine waves. This is a
fundamental result [35]: the number of Peregrine waves in
a multi-rogue wave solution of the NLSE is given by a
triangular number. No other number of Peregrine waves
can be present in a general multi-rogue wave solution. This
number does not depend on whether the “elementary
particles” in the higher-order rogue wave are well-separated
or partially separated. In the latter case, when the free
parameters are small, the number of Peregrine waves is not
visually obvious.

The maximal amplitude of a rogue wave is one of its main
characteristics. The maximal amplitude of the higher-order AP
solutions when all Peregrine waves are located at the origin is
(2N + 1) times the background, where N is the order of the
solution [63, 68–70]. This is the highest possible amplitude for all
imaginable rogue wave patterns.

A detailed classification of the rogue wave patterns has been
given in [72]. The main results of this classification are shown
in Figure 5. It shows the calculated rogue wave patterns that
increase in order from top to bottom of table. A single

Peregrine wave that is the solution of the first order is
located in the top left cell. Higher-order AP solutions are
located in the left column. The figure shows only solutions of
up to 6-th order, although the list can be continued
indefinitely. The second column represents regular
triangular structures. The third column represents
pentagram patterns. The fourth column provides examples
of heptagram structures, i.e., patterns with seven Peregrine
waves on one or several circles of different radii. Further
columns have 9, 11, . . . Peregrine waves in the outer and
inner shells of the structure.

“Atomic-like” circular structures are located along the
diagonal line. Starting from order 3, they consist of a central
nucleus containing N − 2 elementary rogue waves in the form of
an AP solution and 2N − 1 Peregrine waves playing the role of the
shell of “electrons”. Patterns in inner cells of the table can be
considered as “atomic structures” with several shells of
“electrons”. The larger variety of patterns for higher-order
solutions is caused by the larger number of free parameters
controlling the solution. The rogue wave patterns can also
have a lower symmetry than in Figure 5. Some examples can
be found in [36, 71].

There is no doubt that these patterns can be observed
experimentally. Indeed, a single Peregrine wave has been
observed in optics [27], in water waves [55] and in a
multicomponent plasma [77]. It may soon be observed in
Bose-Einstein condensate [78, 79]. The rogue wave triplet has

FIGURE 3 | (A) Third order rogue wave solution given by Eq. (7) with b � 0. (B) Third-order rogue wave solution with a circular pattern. It is given by Eq. (7) with
b � 2 × 107. Each ‘elementary particle’ in this structure is a single Peregrine wave.

FIGURE 4 | The first five triangular numbers. They are represented by the number of solid dots within each triangle.
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been observed in a water wave tank [80]. AP solutions up to fifth-
order have also been observed in water waves [81]. As the NLSE

has a wide range of applications, these solutions may appear
in situations that we cannot even predict right now.

Can this approach be used for a description of elementary
particles and atomic structures? Obviously, this will need
more sophisticated equation than the NLSE. As mentioned,
the phenomena described in this review are not unique to the
NLSE although, perhaps, the NLSE case is the most studied of
all. Rogue waves have been found in systems described by the
Hirota and Maxwell-Bloch equations [42, 82], Sasa-Satsuma
equation [83], Fokas-Lenells equation [84], in systems with
self-steepening effect [85, 86] and even in the case of the
complex KdV equation [87, 88]. Patterns of multi-rogue wave
solutions similar to those in Figure 5 have been found for the
complex modified KdV equation [89], Kundu–Eckhaus
equation [90], coupled nonlinear Schrödinger–Boussinesq
equations [91], generalized derivative nonlinear
Schrödinger equations [92, 93], generalized Landau-
Lifshitz equation [48], Manakov equations [94], the
three–wave resonant interaction equations [95, 96],
discrete Ablowitz-Ladik equations [97] and even in the
case of breather collisions [98, 99]. Most recent work [100]
shows that the ideas of rogue waves now enter the field of
elementary particles. Namely, patterns similar to those in
Figure 5 may appear in the case of coupled Higgs field
equations describing nucleons interacting with neutral
scalar mesons [100]. Further developments of the rogue
wave theory along these lines may boost our vision of the
complex world and how it is build out of simple fundamental
particles.
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