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We generalize the phenomenological, law of mass action-like, SIR and SEIR
epidemiological models to situations with anomalous kinetics. Specifically, the
contagion and removal terms, normally linear in the fraction I of infected people, are
taken to depend on I qup and I qdown , respectively. These dependencies can be understood
as highly reduced effective descriptions of contagion via anomalous diffusion of
susceptible and infected people in fractal geometries and removal (i.e., recovery or
death) via complex mechanisms leading to slowly decaying removal-time distributions.
We obtain rather convincing fits to time series for both active cases and mortality with the
same values of (qup,qdown) for a given country, suggesting that such aspects may in fact
be present in the early evolution of the COVID-19 pandemic. We also obtain approximate
values for the effective population Neff , which turns out to be a small percentage of the
entire population N for each country.
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1 INTRODUCTION

The classic and still widely used SIR and SEIR epidemiological models [1] represent contagion and
removal in analogy with the law of mass action in chemistry, corresponding to a mean-field approach
based on the assumption of homogeneous mixing. The latter hypothesis constitutes an
oversimplification, particularly for the COVID-19 pandemic, due to strong government
intervention (social distancing; lockdown) and underreporting as the number of cases grows
beyond testing capacity. Diverse aspects are discussed, assuming homogeneous or
nonhomogeneous mixing, in epidemiological models in general [2–4], as well as in the current
pandemic [5–15].

Epidemic models can be formulated on varying levels of detail, from individual agents in
geographically realistic settings to models of large populations without spatial structure. Each
level has its own benefits and costs; the study of an ensemble of models is expected to yield a
more reliable description than any single approach in isolation. In chemical kinetics of
processes involving anomalous diffusion and/or complex conformational pathways, effective
descriptions typically employ noninteger power-law terms where the mean-field or mass-action
analysis involves integer powers of concentrations, as in the analysis of reassociation of folded
proteins [16, 17]. With this motivation, we consider SIR- and SEIR-like models in which the
contagion and removal terms depend on I qup and I qdown , respectively, instead of depending
linearly on I, as they do in mean-field/homogeneous descriptions. Such generalization is
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consistent with anomalous human mobility and spatial disease
dynamics [18, 19] and emerges naturally within statistical
mechanics based on nonadditive entropies [20] as we show in
what comes next.

Let us now follow along lines close to [16], which provided a
satisfactory description of reassociation in folded proteins [17].
Consider the equation

dy
dt

� ayq (q ∈ R; t ≥ 0; y(0)> 0) . (1)

Its solution is given by

y(t) � y(0) ea[y(0)]
q− 1

t
q , (2)

with ezq ≡ [1 + (1 − q)z]1/(1− q) (ez1 � ez), a function that emerges
naturally in the nonadditive-entropy-based statistical mechanics
[20]. We have a monotonically increasing function y(t) for a> 0
(with infinite support if q≤ 1 and finite support if q> 1) and a
monotonically decreasing function for a< 0 (with infinite support
if q≥ 1 and finite support if q< 1). Notice an important point that
will permeate through this entire paper: if q � 1, only then the
coefficient a (which characterizes the scale of the evolution of
y(t)/y(0) with time) is not renormalized by the initial condition
y(0). If q≠ 1, the effective constant {a [y(0)]q− 1} will differ from
a; the difference can be very important depending on the values of
q and y(0).

2 GENERALIZED MODELS

2.1 q-SIR Model
The SIR set of equations is (see [1] for instance) as follows:

dS
dt

� −β S I
N

dI
dt

� β S
I
N
− c I

dR
dt

� c I ,

(3)

with β> 0, c> 0, and S + I + R � N � constant, N is the total
population, S ≡ susceptible, I ≡ infected, and R ≡ removed
(removed means either recovered or dead). Now let us
q-generalize this model as follows:

d(S/Neff )
dt

� −β S
Neff

( I
Neff

)qup

d(I/Neff )
dt

� β
S

Neff
( I
Neff

)qup

− c( I
Neff

)qdown

d(R/Neff )
dt

� c( I
Neff

)qdown

(4)

with qup ≤ 1 and qdown ≥ 1, where the bilinear term is generalized
into a nonbilinear one and the effective population Neff � ρN with
ρ≤ 1. These equations generically have a single peak for I(t). In all
cases, we have S(t) + I(t) + R(t) � Neff ; moreover, 0≤ S(t)/Neff ,

I(t)/Neff , and R(t)/Neff ≤ 1. Consistently, in the set of Eq. 4, it is
enough to retain the first two. Let us qualitatively compare the
SIR and q-SIR models given by Eqs 3 and 4, respectively, by
focusing on the β term; i.e., let us compare βSIR [S(t)/N] [I(t)/N]
with βqSIR [S(t)/Neff ][I(t)/Neff ]qup � βqSIR

[I(t)/Neff ]1−qup [S(t)/Neff ] [I(t)/
Neff ]; we remind that ρ � 1 yields Neff � N . It follows that roughly

βSIRx
βqSIR

[I(t)/Neff ). Since, before the peak, I(t) steadily increases with
time, a fixed value for (1 − qup)> 0 acts qualitatively as a
phenomenological time-dependent βSIR(t) which decreases with
time. These tendencies are similarly realistic since they both
reflect, each in its own manner, the generic action of
pandemic authorities to isolate people in order to decrease the
contagion represented by the β term in both models.

The particular limit R(t) ≡ 0 (hence S(t) + I(t) � Neff ) in Eq.

(4) yields I(t) � I(0) e−c[I(0)/Neff ]qdown−1 t
qdown if β � 0, and I(t) �

I(0) eβ t
(I(0)/Neff ) eβ t+[1−I(0)/Neff ] if (c, qup) � (0, 1). For generic qup < 1 and

R(t) ≡ 0, Eq. (4) yields

∫S/Neff

S(0)/Neff

dx
x(1 − x)qup � −βt , (5)

and hence,

−βt � (1 − S/Neff )1− qupΓ(qup) 2
~F1(1, 1; qup + 1;Neff /S)

S/Neff

−(1 − S(0)/Neff )1− qupΓ(qup) 2
~F1(1, 1; qup + 1;Neff/S(0))

S(0)/Neff

where Γ is the Gamma function and ~F is the regularized
hypergeometric function. As an illustration, let us consider

qup � 1/2. It follows ln[1− �����
1−S/Neff

√
1+ �����

1−S/Neff

√ × 1+ �������
1−S(0)/Neff

√
1− �������

1−S(0)/Neff

√ ] � −βt; hence,

I(t)
Neff

� 1 − S(t)
Neff

� { 1 + ��������
I(0)/Neff

√ − [1 − ��������
I(0)/Neff

√ ]e−β t
1 + ��������

I(0)/Neff

√ + [1 − ��������
I(0)/Neff

√ ] e− β t)}
2

.

(6)

Before the peak, I(t) increases nearly exponentially if
qup � 1 and is roughly characterized by I(t)xt

1
1−qup if

qup < 1. After the peak, I(t) decreases exponentially if qdown �
1 and is roughly characterized by I(t)xt−

1
qdown−1 if qdown > 1.

These various aspects are illustrated in Figure 1. An
important remark is necessary at this point. The
possibility for nonbilinear coupling β (S/Neff ) (I/Neff )qup
between subpopulations seems quite natural since
nonhomogeneous mixing involves complex dynamics and
networks for the susceptible and infected people, as well as
for the infecting agent of the disease. But why would it be
necessary to also allow, at the present phenomenological
level, a nonlinear behavior for the one-subpopulation term
c (I/Neff )qdown itself? The answer might be found in nontrivial
(multi)fractal-path-like relaxation mechanisms such as the
one that is known to happen in reassociations in folded
proteins [16, 17].
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We have checked that the q-SIR model provides functions I(t)
that are numerically close but different from the quite performing
ansatz in [5], namely, I(t)∝ tα e−β t

c

q , whose behavior before and
after the peak is, respectively, tα and tα−c/(q−1). Still, both
approaches have power-law behaviors before and after the
peak. We also checked I(t)∝ e

βup t
qup × e−βdown tqdown

, and the results are
once again numerically close but nevertheless different from the
ansatz in [5].

2.2 q-SEIR Model
The q-SIR model is not capable (for any choice of its
parameters) of correctly fitting the epidemiologically crucial
function I(t) for the COVID-19 available data for various
countries. Since this generalization of the simplest model
does not provide a useful tool for COVID-19 data, we
addressed a more sophisticated one, namely, a four-
compartment model known as SEIR. Therefore, we next
q-generalize the SEIR model with no vital dynamics (no
births; no deaths), which is given by

dS
dt

� −β S I
N

dE
dt

� β S
I
N
− σ E

dI
dt

� σ E − c I

dR
dt

� c I

(7)

with S + E + I + R � N , where E stands for exposed. We can
generalize it as follows:

d(S/Neff )
dt

� −β S
Neff

( I
Neff

)qup

d(E/Neff )
dt

� β
S

Neff
( I
Neff

)qup

− σ
E
Neff

,

d(I/Neff )
dt

� σ
E
Neff

− c( I
Neff

)qdown

(8)

where once again we have generalized the bilinear couplings
between subpopulations into nonbilinear ones and the linear c I
term into a nonlinear one. Its particular instance E(t) ≡ 0 (hence,
S(t) + I(t) + R(t) � Neff ) precisely recovers the q-SIR model, as
defined here above. Notice that the cumulative function C(t) of
I(t) is given by C(t) ≡ ∫t

0
dt′ I(t′) � ∫t

0
dt′ [1

c

dR(t′)
dt′ ]1/qdown , which

differs from the expression C(t) � R(t) currently used in the
SEIR model. It is of course possible to further generalize the
above q-SEIR set of four equations by allowing in the right hand
Sqs (with qs ≠ 1) instead of S and E qϵ (with qϵ ≠ 1) instead of E,
but no need has emerged to increase the number of free
parameters of the model, since the allowance for qup < 1 and
for qdown > 1 appears to be enough for satisfactorily reproducing
all the relevant features of the COVID-19 available data.

Indeed, the variable which is epidemiologically crucial for
avoiding a medical-hospital collapse in a given region is
I(t), and this time dependence generically appears to be very
satisfactorily described by just allowing the possibility for
qup ≠ 1 and/or qdown ≠ 1. Notice that β (I/Neff )qup is a convex
function of (I/Neff ) for 0< qup < 1 and c (I/Neff )qdown is a concave
function of (I/Neff ) for qdown > 1. These tendencies, illustrated
in Figure 2, as well as the numerical values for the various
coefficients of the model, are in agreement with the available
medical/epidemiological evidence [21–25]. Notice also that,
through τ ≡ ct and (I/Neff ) ≡ (I/Neff )qdown , we can eliminate,
without loss of generality, two fitting parameters (e.g., c and
qdown) within the set of equations (8). Finally notice that if we
consider β � σ � 0, we precisely recover Eq. (1) and its
analytical solution in Eq. (2). Therefore, even if the general
analytical solution of the set of equations (8) is not available
(due to mathematical intractability), the initial conditions
naturally renormalize (in a nontrivial manner) the
coefficients (β, σ, c) of the model, and the effective
population Neff becomes a fitting parameter of the model.
These renormalizations disappear of course if
qup � qdown � 1, i.e., for the standard SEIR model;
concomitantly Neff (� ρN , with ρ≤ 1) ceases being a fitting
parameter and can be directly taken from the actual
population N of the particular region under focus. For other
mathematical aspects of nonlinear models such as the present
one, the reader may refer to [26].

3 APPLICATION OF Q-SEIR MODEL TO
COVID-19 PANDEMIC

In Figures 3 and 4, we have illustrations of this model for
realistic COVID-19 cases. We identify the present variable I
with the number of active cases,1 as regularly updated online
[27]. We verify that the description provided by the q-SEIR
model for nonhomogeneous epidemiological mixing is indeed
quite satisfactory for the early stages of the pandemic (before
an unpredictable but possible second wave). Let us also
mention that we have not followed here a road looking for
the minimal number of free parameters, but rather a road
where various realistic elements are taken into account, even if
at the fitting-parameter level some of them might be
redundant. Any further model yielding a deeper, or even
first-principle, expression of exponents such as qup and
qdown in terms of microscopic/mesoscopic mechanisms is
very welcome. This is by no means a trivial enterprise but,
if successfully implemented, this would probably follow a road
analogous to anomalous diffusion, namely, from Fourier’s heat

1At this point, it should be noted that the variable I in the model represents both
detected plus undetected active cases although, of course, the database includes
only detected ones as active cases. However, since these cases are roughly
proportional to each other (with a proportionality coefficient which might
change from country to country), we use the model variable I to fit the active
cases reflecting the incorporation of this proportionality into Neff and hence into ρ.

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 6131683

Tirnakli and Tsallis Epidemiological Model with Anomalous Kinetics

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


equation through Muskat’s Porous Medium Equation [28] to
Plastino and Plastino nonlinear Fokker-Planck equation [29],
which in turn implied the scaling law α � 2/(3 − q) [30] (α
being defined through the scaling between x2 and tα and q
being the index value of the q-Gaussian solution for the
nonlinear Fokker-Planck equation). This scaling law
recovers, for q � 1, the Brownian motion scaling 〈x2〉∝ t
and was impressively validated within 2% error in granular
matter [31]. This phenomenological line was later legitimated
on the basis of microscopic overdamped mechanisms in at
least a wide class of systems, namely, providing q � 0 for the
motion of vortices in type-II superconductors [32], and later
extended to D-dimensional 1/rλ short-range repulsive
interactions (λ/D≥ 1), leading to q � 1 − λ/D [33]. These
approaches were shown to satisfy the zeroth law of

thermodynamics, an H-theorem, and Carnot’s cycle
efficiency, with microscopically established analytical
equations of state [34–37]. An attempt to follow along
similar lines for the present q-SEIR model would surely be a
very interesting challenge. In summary, we have q-generalized,
through Eq. (8), the SEIR epidemiological model. By solving this
set of deterministic equations given the initial conditions and its
parameters, we obtain [S(t), E(t), I(t),R(t)], as well as the
cumulative function C(t). We have focused on I(t) because
the hardest quantities for satisfactorily fitting are the number of
active cases and that of deaths and also because those are the
most crucial quantities for making correct sanitary and
epidemiological decisions.

From a general perspective, let us stress that the law of mass
action, the Arrhenius relaxation law, and the Kramers

FIGURE 1 | Time evolution of I(t) for the q-SIR equations with Neff � 108; we consider t to run virtually from zero to infinity (not necessarily during only the typical
range of real epidemics, say 1,000 days). (A) Fixed β and various values of c. For c � 0 and ∀β, I(t)/Neff precisely recovers the expression given in Eq. (6). The slope at the
first inflection point for increasing time is given by max[d ln I/d ln t] � 1/(1 − qup), ∀ c. (B) Fixed c and various values of β. For β � 0, the qdown-exponential function is
precisely recovered. (C) Time dependence of the slope of [d ln(I/Neff )/d ln t], which appears to be bounded between 1/(1 − qup) (� 2 in this example) and
−1/(qdown − 1) (� −2.5 in this example) (dashed lines). The dotted line corresponds to the position of the peak of I(t), and themaximum (minimum) corresponds to the left
(right) inflection point. (D) The maximal slope of I(t)/Neff as a function of qup. The high value at qup � 1 reflects the divergence expected in the limit qup � qdown � 1.
Indeed, in this limit, the present q-SIR model recovers the standard SIR model, which increases exponentially (and not as a power-law) toward the corresponding peak.
Notice also that this slope decreases when I0/Neff increases.
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mechanism [38] of escape over a barrier through normal
diffusion constitute pillars of contemporary chemistry. They
are consistent with Boltzmann-Gibbs (BG) statistical
mechanics and constitute some of its important successes.
However, they need to be modified when the system exhibits
complexity due to hierarchical space and/or time structures. It is
along this line that a generalization has been proposed based on
nonadditive entropies [20], characterized by the index q (q � 1
recovers the BG frame): see, for instance, [16, 39–43]. It is along
these same lines that lies the present q-generalization of the
standard SEIR model.

At the level of the numerical performance of the present
q-SEIR model for the COVID-19 pandemic, it advantageously
compares with models including time-dependent coefficients
[44–47]. For instance, the SEIQRDP model [44, 45, 47]
includes seven equations with several coefficients, two of them
phenomenologically being time-dependent. It does fit rather well

the COVID-19 reported data until a given date. However, the
q-SEIR, which includes four (instead of seven) equations with
several coefficients, all of them being fixed in time, fits definitively
better the same data for all the countries that we have checked: see
illustrations in Figure 5.

At this stage, let us emphasize a rather interesting fact.
Neither the SIR nor the SEIR models distinguish the dead
from the recovered, within the removed (R) subpopulation.
However, the same values for (qup, qdown) fit satisfactorily
both the numbers of active cases and of deaths per day for a
given country, as shown in Figures 3 and 4. At this point, it
would be worth noting that although the present model, unlike,
for example, the SEIRD model [48, 49], does not distinguish
deaths from healings, the deceased cases will still be roughly
proportional to infected people. It is this proportionality, we
believe, which makes us obtain reasonable fits using the variable
I of the model, again incorporating the proportionality into Neff

FIGURE 2 | Time evolution of I(t) for the q-SEIR equations with Neff � 108; we consider t to run virtually from zero to infinity (not necessarily during only the typical
range of real epidemics, say 1,000 days). (A) Fixed (β, c) and various values of σ. (B) Fixed (σ, c) and various values of β. (C) Time dependence of the slope of
[d ln I/d ln t], which, in contrast with the q-SIR equations, is not bounded between 1/(1 − qup)>0 and −1/(qdown − 1)< 0 (dashed lines). The dotted line corresponds to
the position of the peak of I(t), and the maximum (minimum) corresponds to left (right) inflection points. (D) The maximal slope of I(t)/Neff as a function of qup. The
high value at qup � 1 reflects the divergence expected in the limit qup � qdown � 1. Indeed, in this limit, the present q-SEIR model recovers the standard SEIR model,
which increases exponentially (and not as a power-law) toward the corresponding peak. Notice also that this slope decreases when I0/Neff increases.
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FIGURE 3 | Time evolution of available data for COVID-19 numbers of active cases (probably under-reported inmost cases) and deaths per day [27] and their (linear
scale) Least Squares Method fittings with Neff I(t) from the q-SEIR model; ρ � Neff /N, where N is the population of the country. Notice that, (i) by convention, t0 � 0 for
China; (ii) parameters such as ρN are particularly relevant for sanitary-epidemiological decisions, and, as it is natural, ρ(deaths)≪ ρ(active) for any given country; (iii) for
any given country, the values of (qup ,qdown) are the same for both curves of active cases and of deaths; (iv) the dates of the peaks of the active cases and deaths per
day do not necessarily coincide; (v) the values that emerge for β/c (reproduction number or growth rate), 1/β (exposition time), 1/c (recovering time), and 1/σ (incubation
time) are consistent with those currently indicated in the literature [21–25]; (vi) we considered all the data reported until June 13, excluding some very initial transients or
sudden anomalous discrepancies (e.g., in China, Turkey, and Brazil).
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and hence into ρ. It is also evident from these figures that the
data for deaths per day are more scattered than those for active
cases. This is due to the fact that the real data for the former are

much less than for the latter. This is also the reason for the
significantly small ρ values of deaths per day compared to those
of active cases.

FIGURE 4 | Continuation of Figure 3.
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4 CONCLUSION

To conclude, let us remind that the q-SEIR model recovers, as
particular instances, the q-SIR model introduced here, as well as
the traditional SEIR and SIR ones. It has, however, an important
mathematical difference with the usual epidemiological models.
Virtually all these models (SIR, SEIR, SAIR, SEAIR, SIRASD,
SEAUCR, and SEIQRDP) are defined through equations that are
multilinear in their variables; i.e., that are linear in each one of its
variables. This multilinearity disappears in models such as the
present q-SIR and q-SEIR ones if either qup or qdown differs from
unity. Consequently Neff definitively plays a different role since it
sensibly enters within the set of fitting parameters of the
q-generalized models; its precise interpretation remains to be

elucidated, perhaps in terms of the sociogeographical
circumstances of that particular region. Last but not least, let us
stress that the aim of the present q-SEIR model is to mesoscopically
describe a single epidemiological peak, including its realistic power-
law growth and relaxation in the time evolution of the number of
active cases, and by no means to qualitatively address possibilities
such as the emergence of two or more peaks, a task which is (sort of
naturally, but possibly less justified on fundamental grounds)
attainable within approaches using traditional (multilinear)
models where one or more coefficients are allowed to
phenomenologically depend on time by realistically adjusting
their evolution along the actual epidemics. Alternatively, it
is always possible to approach the two-peak case by
proposing a linear combination of two q-SEIR curves

FIGURE 5 | Comparison, using precisely the same reported data (green dots), of the SEIQRDP model (left plots) and the q-SEIR model (right plots) for the time
series of Germany (from February 26th to June 13th 2020) and of Italy (from February 21st to June 13th 2020). To obtain the SEIQRDP fittings (seven linear/bilinear
equations satisfying S + E + I + Q + R + D + P � N and including several fixed as well as two time-dependent coefficients), we have used the online program [47]. To
obtain the q-SEIR fittings (four not necessarily linear/bilinear equations satisfying S + E + I + R � Neff and including only fixed parameters, two of them being the
nonlinear exponents qup and qdown ), we have used a Standard Least Squares Method (linear scales).
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starting each of them at two different values of the departing
time (t0).
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