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We have studied theoretically the properties of electrical current and tunnel
magnetoresistance (TMR) through a serially connected double quantum dot (DQD)
sandwiched between two ferromagnetic leads by using the nonequilibrium Green’s
function technique. We consider that each of the DQD couples to one mode of the
Majorana bound states (MBSs) formed at the ends of a topological superconductor
nanowire with spin-dependent coupling strength. By adjusting the sign of the spin
polarization of dot–MBS coupling strength and the arrangement of magnetic moments
of the two leads, the currents’ magnitude can be effectively enhanced or suppressed.
Under some conditions, a negative TMR emerges which is useful in detection of the MBSs,
a research subject currently under extensive investigations. Moreover, the amplitude of the
TMR can be adjusted in a large regime by variation of several system parameters, such as
direct hybridization strength between the MBSs or the dots and the positions of the dots’
energy levels. Such tunable currents and TMR may also find use in high-efficiency
spintronic devices or information processes.
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1 INTRODUCTION

Electronic transport through structures composing of quantum dots (QDs) hybridized with a
topological superconductor nanowire (TSNW) hosting Majorana bound states (MBSs) [1–3] has
aroused much interest in recent years. The zero-energy MBSs are exotic self-conjugate
quasiparticles that have been successfully realized in encouraging experiments [4–6] during
the last decade. One of the most attractive platforms [7, 8] to host and detect MBSs is a
superconductor proximitized semiconductor nanowire having the spin–orbit interaction and
strong Zeeman splitting. Previous theoretical work predicted that the combined effects of the
spin–orbit interaction and the large enough Zeeman splitting will convert an ordinary s-wave
superconductor into a p-wave one so as to realize the MBSs. Recently, quantized electrical
conductance peak at zero-bias voltage [9, 10] in a TSNW device was observed, which is a
significant breakthrough for the demonstration of MBSs. Unfortunately, this zero-bias abnormal
conductance peak cannot solely be attributed to the existence of MBSs and then some other
means, such as the fractional Josephson effect [11–13] and thermoelectric effect [14–18] in
systems composing of QDs with side-coupled MBSs were proposed to detect the existence
of MBSs.
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Some previous theoretical and experimental work has shown
that the MBSs will affect the electronic transport processes
through QD-based devices in a significant way [19, 20]. For
example, Baranger and his co-author proved that the value of the
conductance in a single QD, which is coupled to the left and right
leads, will remain at half of its quantum value e2/2h, regardless of
the positions of the dot’s energy levels [21]. If both the spin
directions of electrons on the QD are coupled to the MBSs [20,
22–24] with different hybridization amplitudes, which depend on
the spin–orbit interaction length in the TSNW, they will interfere
with each other through the MBSs and then will change the
current significantly. For electron–hole symmetry, the zero-bias
conductance is 3e2/2h which is the sum of e2/2h for one spin
direction and e2/h for the opposite spin direction. In addition to
the single-QD structure, impacts of MBSs in the double quantum
dot (DQD) have also been investigated in recent years [25–27]. As
compared to the single QD, there are richer physical contents in
the DQD with more tunable system parameters, such as the
interaction between the two dots, arrangement of the dots’ energy
levels, separate coupling between the dots and the leads, and
so on.

It is known that the zero-energyMBSs exert remarkable effects
on the electrical conductance and current around the zero-bias
regimes. But under such a condition, the amplitude and changes
of the above quantities are usually small and hard to be detected.
In fact, the quantity of tunnel magnetoresistance (TMR) [28–30],
which measures the relative change of the currents’ amplitude, is
frequently used as detection means in electronic transport. It is
also a key quantity in spintronic devices. The TMR is defined as
TMR � (JP − JAP)/JAP , where JP(AP) is the electrical current when
the ferromagnetic leads’ magnetic moments are arranged in
parallel (antiparallel) configuration. Usually, the value of TMR
is positive because JP is contributed from transport processes
when electrons tunnel between the majority–majority and
minority–minority spin bands, whereas JAP is from electronic
transport between major–minority spin bands. The tunneling in
parallel configuration is easier than in the antiparallel one,
inducing a positive TMR [28–30]. In the presence of coupling
between the QDs and MBSs, however, the electrical current when
the leads’ magnetic moments are in antiparallel can be enhanced
to be larger than that of the parallel configuration. Such a change
in the currents will induce a negative TMR which is promising in
detection of the MBSs, as was proved in our previous work [31],
in which we found two criteria that can be used for detecting the
existence of MBSs. One is the peak to valley evolution of TMR
when the dot’s level is fixed at zero, and the other is the sign
change of TMR for the nonzero QD’s energy level. Moreover, we
have found that the negative TMR can be significantly enhanced
by the left–right asymmetry of the line-width functions. In the
present DQD system, however, we study other mechanisms to
reverse the sign of TMR, that is, the spin polarization of the
DQD–MBS coupling strength. Themost interesting result we find
is that the magnitude of TMR can be either enhanced or
suppressed by changing the sign of the spin polarization of the
dot–MBS coupling strength. The negative TMR is unchanged by
various system parameters, such as the direct overlapping
between the MBSs, the difference between the dots’ level, and

the tunnel coupling between the two dots. Single QD has been
successfully inserted in between the ferromagnetic leads [32], and
abnormal sign change of the TMR may be realized in
experiments. There are also investigations on the Kondo effect
in a single QD coupled to ferromagnetic leads [24] and showed
that the impacts of the ferromagnetism on the leads will induce
more interesting result due to the presence of the MBSs [33]. As a
natural extension, we study properties of the electrical current
and TMR in a DQD coupled to ferromagnetic leads and MBSs
(see Figure 1). Different from some previous work [31, 33], we
consider that the case that spin-up and spin-down electrons on
the QD are coupled to the MBSs with different hybridization
amplitudes [20, 22–24]. Our results show that the sign and the
amplitude of the TMR can be adjusted in a large regime by
variation of several system parameters, especially the spin
polarization of the DQD–MBS hybridization, which is useful
in detection of the MBSs, as well as in the design of spintronic
devices or information processes. It should be noted that except
the topological superconductor nanowires, the MBSs have also be
prepared in some other systems, such as electrostatic defects in
topological superconductors [34], the semiconductor [7], or
ferromagnetic [35] nanowires with native strong spin–orbit
interaction proximitization to a conventional s-wave
superconductors, and theJosephson junctions [11].

2 MODEL AND METHODS

The Hamiltonian of the studied system shown in Figure 1, which
is composed of the DQD each of which connected to the left and
right ferromagnetic leads and to one mode of the MBSs, can be
written as the following form [21, 24],

H � ∑
kασ

εkασε
+
kασεkασ + ∑

i�1,2;σ
εid

+
iσdiσ + tc∑

σ

(d+
1σd2σ + d+

2σd1σ)
+∑

kiσ

(VkLσd
+
1σckLσ + VkRσd

+
2σckRσ + H.c.) + HMBSs,

(1)

where the creation (annihilation) operator c†kασ(ckασ) is for
electrons having wave vector k, energy εkασ , and spin σ � ↑, ↓
in the α-th (α � L/R) ferromagnetic lead. The second term in the
right side of Eq. 1 is for electrons on the DQDwith energy level εi.
The creation (annihilation) operator of the electrons on the QD-i
is d†iσ(diσ). The third term in the right side of Eq. 1 denotes
hopping between the two dots via a tunnel barrier with strength
tc. The forth term in the right side of Eq. 1 describes tunneling
between the dots and ferromagnetic leads with amplitude Vkασ . In
the present structure, QDs 1 and 2 are connected to the left and
right ferromagnetic leads, respectively. The last term in Eq. 1 is
for the MBSs realized at opposite ends of the TSNW and their
couplings to the DQD [21, 24],

HMBSs � ∑
σ

λ1σ�
2

√ (d1σ − d+1σ)c2 + i∑
σ

λ2σ�
2

√ (d2σ + d+2σ)c2 + iδMc1c2,

(2)

in which λiσ � λi(1 + σΔλ) is the spin-dependent coupling
strength between the QD-i and the mode-i of the MBSs, in
which λi is the QD–MBS coupling strength independent of the
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electron spin and Δλ is the spin polarization of the coupling
strength. The operators of the MBSs have the properties of c1(2) �
c†1(2) and {ci, cj} � 2δij. For the convenience of calculations [21],
we replace the Majorana fermion operators c1(2) with the regular
fermion operators f and f † by the transformation of
c1 � 1�

2
√ (f + + f ), c2 � i�

2
√ (f + − f ), and then Eq. 2 is rewritten as

HMBSs � δM(f +f − 1
2
) +∑

σ

[λ1σ�
2

√ (d1σ − d+
1σ)(f + f +) + λ2σ�

2
√ (d2σ

+ d+2σ)(f − f +)],
(3)

In terms of the Hamiltonians given by Eqs 1 and 3, spin-
dependent electrical currents Jσ can be calculated by the
nonequilibrium Green’s function technique as [23, 24]

Jσ � ∫ dεTσ(ε)[fL(ε) − fR(ε)] (4)

in which the Fermi distribution function for the left and right
leads are given by fL/R(ε) � [exp[(ε − μL/R)/kBTe] + 1]− 1, with
μL/R being the chemical potential in the left/right lead held at
temperature Te. The transmission coefficient Tσ(ε) in Eq. 4 is
calculated with the help of Green’s function as [34]

Tσ(ε) � ΓLσΓRσ
∣∣∣∣Gr

12,σ(ε)
∣∣∣∣2, where Gr

12,σ(ε) is the electron

retarded Green’s function and Γασ � 2π|Vkασ |2ρασ is the line-
width function with ρασ being the local density of states in
the lead α [28–30]. As an equivalent choice, the ferromagnetism
on the leads is considered by the spin-dependent
tunneling amplitude between the leads and the dot Vkασ .
Introducing the spin polarization of the leads

pL(R) � (ΓL(R)↑ − ΓL(R)↓ )/(ΓL(R)↑ + ΓL(R)↓ ), we obtain ΓL/R↑ � Γ(1 +
pL(R)) and ΓL/R↓ � Γ(1 − pL(R)), where Γ � (ΓL/R↑ + ΓL/R↓ )/2. In

the present article, we consider that the cases of the magnetic
moments are arranged in parallel (pL � pR � p) and antiparallel
((pL � −pR � p)) configurations. We calculate Green’s function
in terms of the Dyson equation technique [24], that is, first, we
calculate the free dots’ Green’s function by the equation of
motion method and then the interactions between the dots and
the leads, as well as with the MBSs are taken into consideration
in the form of self-energies. In the absence of the Coulomb

interaction between electrons, the present Dyson equation will
give essentially the same Green’s function as that derived by the
equation of motion method [23, 36, 37]. Choosing the basis as

Ψ � ( d1↑ d+1↑ d1↓ d+1↓ d2↑ d+2↑ d2↓ d+2↓ f f + ), the

Dyson equation is written in a matrix form as

Ĝ
r � (ĝr− 1 − Σ̂r)− 1, in which ĝr is the dot’s retarded Green’s

function in the absence of all interactions and Σ̂r
is the self-

energy. The matrix form of ĝr is

ĝr � ⎛⎜⎜⎝[ĝr11(ε)]4×4 0 0
0 [ĝr22(ε)]4×4 0
0 0 [ĝrMM(ε)]2×2

⎞⎟⎟⎠ (5)

in which the diagonal matrix is

ĝr11(22)(ε) �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gr11(22),↑(ε) 0 0 0
0 ~gr11(22),↑(ε) 0 0
0 0 gr11(22),↓(ε) 0
0 0 0 ~gr11(22),↓(ε)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)

with grii,σ(ε) � 1/(ε − εi), ~grii,σ(ε) � 1/(ε + εi), grMM(ε) �
1/(ε − δM), and ~grMM(ε) � 1/(ε + δM). The matrix self-energy
Σ̂r

is composed by the line-width function (for interaction
between the dots and the leads) Γασ and the dot–MBS coupling
strength λ1(2)σ ; its expression is

Σr � ⎛⎜⎜⎜⎜⎜⎝[Σ̂L,r]
4×4 [T̂c]4×4 [K̂1]4×2[T̂p

c ]4×4 [Σ̂R,r(ε)]
4×4 [K̂2]4×2[K̂p

1]2×4 [K̂p

1]2×4 [0]2×2
⎞⎟⎟⎟⎟⎟⎠ (7)

in which

Σ̂L/R,r �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iΓL/R↑ /2 0 0 0

0 −iΓL/R↑ /2 0 0

0 0 −iΓL/R↓ /2 0

0 0 0 −iΓL/R↓ /2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8a)

T̂c �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tc 0 0 0
0 −tc 0 0
0 0 tc 0
0 0 0 −tc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8b)

K̂1(2) �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1(2)↑/ �
2

√
λ1(2)↑/ �

2
√

−λ1(2)↑/ �
2

√ −λ1(2)↑/ �
2

√
λ1(2)↓/ �

2
√

λ1(2)↓/ �
2

√
−λ1(2)↓/ �

2
√ −λ1(2)↓/ �

2
√

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8c)

The spin-dependent transmission is then calculated by [24]
T↑(↓)(ε) � ΓL↑(↓)ΓR↑(↓)

∣∣∣∣[Ĝr]15(37)
∣∣∣∣2.

3 RESULTS AND DISCUSSION

In this section, we present our numerical results for the spin-
dependent currents and TMR. We choose the leads’ bandwidth
D ≡ 40 as the energy unit with fixed μL � eV , μR � 0, Γ � 0.1, and
Te � 0.001 throughout the article. Figure 2 shows the impacts of

FIGURE 1 | Schematic plot of the DQD coupled to ferromagnetic leads
with coupling strength ΓL/Rσ and to each other by tc. The left and right dots
interact individually with one mode of the MBSs at the end of topological
superconductor nanowire with spin-dependent hybridization amplitude
is given by λ1(2)σ � λ(1 + σΔλ), in which Δλ is the spin polarization of the
dot–MBS coupling strength. The two modes of the MBSs overlap with each
other with amplitude of δM .
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FIGURE 2 | Electronic current Jσ in A,C, and E and the associated differential conductance in B,D, and F varying with respect to the bias voltage eV for the case of
the DQD coupled to nonmagnetic leads (p � 0). In addition to the parameters given in the figure, other ones are Γ � 0.1, Te � 0.001, ε1 � ε2 � 0, tc � 0.5, and Δλ � 0. In
such a system, the spin-up and spin-down currents are identical.

FIGURE 3 | Spin-dependent and total currents for parallel configuration in A–C, and antiparallel one in D–F with λ � 0.25, p � 0.5, and different values of Δλ. Other
parameters are as in Figure 2.
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dot–MBS coupling strength λ1 � λ2 � λ, overlap amplitude
between the MBSs δM , and difference between the dots’ levels
Δε � ε1 − ε2 on the currents J↑ � J↓ and differential conductance
Gσ � dJσ /dV without ferromagnetism on the leads (p � 0) and
spin polarization of the dot–MBS coupling strength (Δλ � 0). In
the absence of interaction between the DQD and MBSs, the
molecular states of the system are positioned at

ε � (ε1 + ε2)/2 ±
��������������
(ε1 − ε2)2/4 + t2c

√
, around which the current

develops a step as shown in Figure 2A [38]. For the chosen
parameters, the molecular states in Figure 2A are at ε � ± tc,
where the conductance arises a peak as seen from the solid black
line. The reason is that when the bias voltage eV (Fermi level of
the left lead μL) equals to each of the molecular states, electrons
will tunnel into the dots from one lead and out to the other one,
resulting in an increase of the current [34, 35]. Note that the
current is attributed from electrons whose energy is close to the
Fermi level of the leads. Therefore, the current reaches a plateau
when the bias voltage is shift away from the molecular state as all
the electrons have taken part in transportation (see also the
conductance in Figure 2B which is almost zero when the bias
voltage is larger or smaller than the resonant energies). In the
presence of coupling between the MBSs and DQD (λ≠ 0), the
states on the dots are split. For the case of λ< tc, the states are
roughly at [24, 27] ±

�
2

√
λ and ± tc and then are shifted to ± tc

and ±( �
2

√
λ ± tc) for λ≥ tc, at which the conductance in

Figure 2B develops peaks. It should be emphasized that the
steps (peaks) in the current (conductance) at the molecular states

eV � ± tc are robust against the dot–MBS coupling. The peaks at
eV � ± tc are lowered by increasing λ but remain at the same
positions. The stabilization of the states at ± tc can also be seen
from Figures 2C, D, in which the steps of the current and peaks of
the conductance at ± tc are almost unchanged by the variation of
δM . The two molecular states (peaks in the conductance) at large
bias voltage regimes disappear due to the presence of direct
coupling between the MBSs δM , which is consistent with the
previous results that the overlapping between the two modes of
the MBSs will reduce their impacts on the electronic transport
processes [19, 20]. One of the attractive advantages in the DQD as
compared to the simple singleQD is the tunable difference between
dots’ levels that can adjust tunneling through the system. Figures
2E, F present the current and conductance under different values of
Δε, respectively. As was indicated above, the difference between the
dots’ levels shifts the positions of the molecular states and then the
positions of the steps (peaks) in the current (conductance).
Moreover, the magnitudes of the currents and the conductance
are weakened by increasing Δε, as shown by the dashed and dotted
lines in Figures 2E, F. This is because that the direct tunneling
under the condition of identical dots’ levels is blockaded in the
presence of Δε, and then, electronic transport can only take place
through the levels mediated by the MBSs [24, 27, 34]. From
Figure 2, one can see that the influences of the MBSs on the
transport properties through the present DQD are quite different
from those in the single QD system. For example, the zero-bias
peaks in electrical conductance formed in the single dot structure
by the presence of MBSs disappear in this DQD due to the direct
tunneling between the two dots. Moreover, the value of the
conductance in the single dot keeps at its half of quantum value
e2/2h at sufficiently low temperatures, regardless of the dot’ level
[21], but in the DQD, there is no certain value in the presence of
coupling between the DQD and MBSs.

With the results in Figure 2, we now study the currents in
Figure 3 for different values of Δλ when the dots are coupled to
ferromagnetic leads whose magnetic moments are arranged in
either parallel or antiparallel configurations. The spin-up current
J↑ in Figure 3A is suppressed with increasing Δλ in a non-
monotonous way due to the complex molecular states induced by
dot–MBS coupling. Since both spin-up and spin-down electrons
interact with the MBSs, they will interfere with each other during
tunneling through the structure [20, 24]. Therefore, the transport
processes in the present DQD are more interesting and complex
than those in the absence of MBSs. The absolute value of J↑ in
Figure 3B is monotonously enhanced with increasing Δλ due to
the weaker coupling strength between spin-down electrons and
the MBS. The absolute value of the total current JP in Figure 3C is
mainly suppressed (enhanced) in the bias voltages
|eV |≤ tc(|eV |> tc). When the magnetic moments of the two
leads are arranged in antiparallel configuration, the properties
of the currents essentially resemble those in the parallel
configuration. By comparing Figure 3C with Figure 3F, one
can see that the total current in antiparallel JAP changes more
obviously than JP . The reason can be explained as follows [30, 31,
38]: when the magnetic moments of the leads are in parallel
configuration, spin-up and spin-down electrons transport
through the DQD from the major–major and minor–minor

FIGURE 4 | TMR for positive Δλ in A and negative Δλ in B. Other
parameters are as in Figures 2, 3.
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bands, respectively. Now the incoming and outgoing tunneling
rates (line-width function) are the same for both spin directions.
But when the leads’ magnetic moments are in antiparallel
configuration, both of the spin-up and spin-down electrons
are transporting between major and minor bands, which
means that the incoming and outgoing tunneling rates are
different from each other, and then, the current’s amplitude is
weaker than that in the parallel configuration. In the presence of
coupling between the dots and MBSs, the currents in the parallel
configuration are changed more obviously than those in the
antiparallel one [20, 31]. This may cause the total current in
the parallel configuration to be larger than that in the antiparallel
one and induce a negative TMR as will be shown later.

As is seen from Figures 2, 3, the variation of the currents
around the zero bias, where the MBSs play an important role, is
quite nonobvious. We then present the TMR in Figure 4 varying
with respect to the bias voltage for both positive and negative Δλ.
For Δλ> 0, the coupling strength λ1(2)↑ is larger than λ1(2)↓ and
then the current contributed from spin-up electrons, which
tunnel between major–major spin bands in the parallel
configuration and are the main contribution to the total
current, is suppressed [24, 34, 35]. Even the spin-down
electrons in the parallel configuration is slightly enhanced; the
total current near zero bias is suppressed which can be seen from
Figure 3. When the magnetic moments are arranged in the

antiparallel configuration, the change of the total current is
relatively small as the electrons tunnel between major–minor
spin bands. Due to the above change of the current in different
configurations, the TMR is negative for sufficiently large Δλ in
Figure 4A. When the spin polarization of the dot–MBS coupling
strength is negative Δλ< 0, the coupling between spin-up
electrons becomes weaker with increasing Δλ, and then, the
magnitude of the spin-up current is enhanced, accordingly.
Since the spin-up electrons are the main contribution to the
current in the parallel configuration, the total current will also
increase with increasing Δλ. Just for the same reason, the total
current in the antiparallel configuration changes much less
obviously than that in the parallel configuration. These result
in an enhanced positive TMR as shown in Figure 4B. In the bias
regimes of |eV |≤ tc, both negative and positive TMR develop a
plateau at largeΔλ. This change from the positive peak to negative
dip in the TMR is quite interesting as it is useful in either
detection of the MBSs or design of spintronic devices.

Figure 5 shows the influences of the ferromagnetism of the
leads on the currents and the TMR for Δλ � 0.8, which gives the
dot–MBS coupling strength as λ1(2)↑ � 0.45 and λ1(2)↓ � 0.05. For
the case of p> 0,

∣∣∣∣J↑∣∣∣∣ in the parallel configuration decreases with
increasing p in that more electrons are influenced by theMBSs. As
for the spin-down electrons that are less influenced by the MBSs
because their coupling between the leads are weakened with

FIGURE 5 | Total currents in parallel configuration JP and antiparallel configuration JAP and TMR for positive p in A–C and negative p in D–F. Here, we set Δλ � 0.8,
and other parameters are as in Figures 2, 3.
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increasing p, the absolute current contributed from them is
suppressed. The properties of the current in the antiparallel
configuration can be explained in the same way. The TMR for
p> 0 changes from the negative value to the positive one with
increasing p as shown in Figure 4C. This is because that the
negative TMR arises from the coupling between the QDs and
MBSs.With increasing spin polarization of the leads, the coupling
between spin-up electron and the leads is enhanced due to the
increased spin-up line-width function. Therefore, the impacts of
the dot–MBS coupling on the current then become relatively
weak with increasing p, and then, the value of TMR is enhanced to
positive. When p< 0, the absolute value of current in the parallel
(antiparallel) configuration is enhanced (suppressed) with
increasing p, which results in larger TMR shown in Figure 5F.
The value of the TMR for p � −0.8 is about ten times larger than
that of p � −0.2, a phenomenon useful in spintronics.

Figure 6 presents the impacts of δM , tc, and Δε on the TMR. As
is known, the direct overlapping between the two modes of the
MBSs will weaken the influences of MBSs on electronic transport

around zero-bias regime. This can be seen from Figure 6A that
the negative plateau of the TMR in the bias regimes of |eV |≤ tc is
raised with increasing δM . But even for δM � 0.5, the TMR
remains negative with a relatively large value. Figure 6B
indicates that the negative plateau becomes wider and lower
with increasing tc, which is consistent with the above
discussions. For sufficiently large tc ≥ 0.3, the zero-bias TMR
keeps at a minimum value. Figure 6C shows that the plateau
of negative TMR is split into two dips by the presence of Δε due to
the shift of the molecular states as indicated in Figure 2.
Interestingly, the magnitude of the negative TMR remains
almost unchanged even if the dots’ levels are different from
each other. The above three figures indicate that the
phenomenon of negative TMR are rather stable in this DQD
structure and may provide a reliable means to detect the existence
of the MBSs. It is known that the Coulomb interaction between
electrons plays an important role in transport processes. At
temperatures higher than Kondo one [24], the Coulomb
interaction mainly induces the so-called Coulomb blockade
effect [23] in mesoscopic systems, that is, the current–voltage
curve will display steps corresponding to the peaks in the
electrical conductance, which arises from the blockade of
additional electron transport processes when the scattering
regions (such as QD) are occupied by electrons. In the present
article, however, we neglect the impacts of the Coulomb blockade
effect in that the MBSs affect transport processes when the dots’
level is aligned to the Fermi levels in the leads. The Coulomb
interaction will only induce another step in the current in higher
energy levels, where the impacts of MBSs are weak.

4 SUMMARY

In summary, we have studied the spin-polarized currents and
TMR in a DQD coupled to both ferromagnetic leads and MBSs
formed at the ends of a topological superconductor nanowire.
Our calculation results show that the currents through the system
can be effectively adjusted in terms of the spin polarization of
either ferromagnetic leads or coupling strength between the dots
and the MBSs. When the two spin polarizations are the same in
sign, the currents’ amplitude in the antiparallel configuration can
be larger than that in the parallel one, which results in an obvious
negative TMR that can be used for detecting the existence of the
MBSs. If the two spin polarizations are different in sign, however,
then the TMR is positive and can be further enhanced by
adjusting system’s parameters. Such a result is useful in
designing high-efficiency spintronic devices. The negative or
positive TMR is robust against variations of the overlapping
between the MBSs, the tunnel coupling between the two dots,
or even the difference between the dots’ energy levels.
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