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We present a general method for solving the modified Helmholtz equation without shape
approximation for an arbitrary periodic charge distribution, whose solution is known as the
Yukawa potential or the screened Coulomb potential. The method is an extension of
Weinert’s pseudo-charge method [Weinert M, J Math Phys, 1981, 22:2433–2439] for
solving the Poisson equation for the same class of charge density distributions. The
inherent differences between the Poisson and the modified Helmholtz equation are in their
respective radial solutions. These are polynomial functions, for the Poisson equation, and
modified spherical Bessel functions, for the modified Helmholtz equation. This leads to a
definition of a modified pseudo-charge density and modified multipole moments. We have
shown that Weinert’s convergence analysis of an absolutely and uniformly convergent
Fourier series of the pseudo-charge density is transferred to the modified pseudo-charge
density. We conclude by illustrating the algorithmic changes necessary to turn an available
implementation of the Poisson solver into a solver for the modified Helmholtz equation.

Keywords: partial differential equations, density functional theory, electronic structure methods, Green functions
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1 INTRODUCTION

A variety of problems in condensed matter physics require an efficient solution of the partial
differential equation

(Δ − λ2)Vλ � −4πρ , (1)

for a charge density ρ in a periodic domain. In real solids, the electronic charge density is a
strongly oscillating function in the vicinity of the nuclei of atoms, making a solution in Fourier
space, as anticipated by the periodicity, unfeasible due to slow convergence of the Fourier series
of the charge density. This equation is frequently referred to as the modified Helmholtz equation
or the Yukawa equation. The latter name derives from the Yukawa potential [1],
Vλ ∝ exp(−λr)/r, in nuclear physics, which is the underlying free-space Green function of
Eq. 1. In the field of condensed matter, e.g. in physics, chemistry, and biology, the Yukawa
potential is also known as the screened Coulomb potential. It typically emerges in cases when a
many-body system of charged particles is treated in terms of an effective single-particle theory
applying a mean-field approximation. Then the many particles contribute to an effective
screening of a Coulomb interaction generated by the single, representative charged particle
when treated in linear response theory.
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The relation between the bare Coulomb potential on the one
hand and the screened Coulomb potential or the induced
screening charge on the other hand is referred to as the
dielectric constant or susceptibility, respectively. Depending on
the context, such relations appear in the Debye–Hückel theory [2]
in the form of a linearization of the Poisson–Boltzmann equation,
where the Poisson equation describing the electrostatics of
charged particles is a function of the charge density
distribution obeying a Boltzmann statistics. Another example
is the Thomas–Fermi model [3, 4] of the dielectric constant in
metals, which describes the screening potential due to the
linearized change of the electron distribution described by the
Fermi–Dirac distribution with respect to the spatial variations of
the electrostatic potential. In these theories, the constant λ
represents the inverse of a typical length scale over which an
individual charged particle exerts a notable effect.

The Thomas-Fermi theory can be regarded as a precursor of
the density functional theory [5] (DFT). The latter is the most
important theory and methodology for the modeling and
simulation of material properties of a crystalline solid based
on the quantum mechanical treatment of many electron
systems. In addition, the Thomas-Fermi theory provides a
rough but fast approximation of the common density
functionals, which relate the electron density to the effective
Kohn–Sham potentials [6]. Such a scheme makes the solution
of Eq. 1 particularly valuable. For instance it could be used to
obtain a good starting potential for the iterative solution of the
Schrödinger-like Kohn–Sham equations, where the nuclear
charge is included in ρ. Other examples are the attainment of
an efficient approximate solution of the dielectric function, or the
implementation of a hybrid functional [7] to DFT using the
Yukawa screening of the Hartree–Fock exchange. In both cases
the charge density ρ in Eq. 1 is replaced by an overlap charge
density [8] obtained as a product of wave functions associated
with different quantum numbers. Since the Thomas–Fermi
model approximates the description of the response behavior
of delocalized electrons in solids very well, Eq. 1 is frequently used
to determine a preconditioner for the acceleration of the self-
consistent solution of the DFT equation. So far the Kerker
preconditioner [9] is applied to density functional methods
with Fourier transformable charge density. By solving Eq. 1
for general periodic densities, the Kerker preconditioner [9]
can be extended to density functional methods of general
densities [10, 11].

Although most electronic structure methods implementing
DFT applied to solid-state materials systems make explicit use
of the underlying periodicity of the crystalline lattice, a
straightforward solution of Eq. 1 using Fourier transformation
techniques is in general not possible due to the strongly oscillating
charge density close to the nuclei. This problem is well discussed
for the solution of the Poisson equation, ΔV � −4πρ, a limit of the
modified Helmholtz equation for λ � 0.

In a seminal work, Weinert [12] proposed an elegant and
numerically efficient solution of the Poisson equation for periodic
charges and corresponding electrostatic potentials without shape
approximation. Weinert’s solution, to which we refer here as
Weinert’s pseudo-charge method, is implemented (in several

variants) in most full-potential all-electron DFT methods, such
as the augmented spherical wave (ASW) method [13], the
Korringa–Kohn–Rostoker Green function (KKR-GF) method
[14], and the full-potential linearized augmented planewave
(FLAPW) method [15], just to name a few.

Typical to these all-electron DFT-methods is the domain
decomposition into atomic spheres around the atoms and an
interstitial region in-between.Weinert’s pseudo-charge method is
based on the observation that the relation between the charge
density inside a sphere and its multipole expansion outside the
sphere is not unique. A smooth Fourier transformable pseudo-
charge density with the same multipole moments as the true
density is constructed. The latter provides the true potential
through Fourier transformation of the Poisson equation and a
subsequent solution of a Dirichlet boundary value problem on the
sphere boundary.

In this article, we extend Weinert’s pseudo-charge method to
the modified Helmholtz Eq. 1 for values of λ> 0 in order to
determine the Yukawa potential Vλ for general periodic charge
densities without shape approximation. We formulate the new
method for general charge densities, including continuous charge
densities as for electron densities, discrete charge densities as for
nuclear charges or more abstract densities that arise of products
of wave functions. Such an approach is consistent with the real-
space representation of the charge density and potential in all-
electron methods.

As a matter of choice, and motivated by the original work of
Weinert [12], we demonstrate this extension explicitly for the
FLAPW method [15] as implemented in the FLEUR code [16]. We
provide i) complete derivations of the modified multipole
expansion of the charge density inside the atomic spheres
using a Green function method, as well as the interstitial
charge density’s modified multipole moments in the atomic
spheres using some Bessel function integration properties,
which yields the coefficients of the pseudo-charge density, and
ii) a mathematical analysis of the convergence of the pseudo-
charge density’s Fourier series. Our results confirm all
expressions for all the quantities provided by Tran et al. [7]
relevant in an actual computation. Beyond Tran et al. [7] we
provide detailed derivations and justify the use of identities such
as Proposition 1 for the modified spherical Bessel function iℓ and
the transferability of Weinert’s convergence analysis to the case
λ> 0. We also discuss and provide further insight into the
convergence properties of the Fourier series, and in addition
restructure and simplify Weinert’s approach, hopefully making it
more comprehensible. We point out the algorithmic changes
required to extend the solution of the Poisson equation to a
solution of Eq. 1, which can then be straightforwardly transferred
to other all-electron full-potential band structure methods.

This paper is organized as follows: In Section 2.1, we
introduce the muffin-tin and interstitial region typical of the
FLAPW method and the corresponding domain decomposition
for the charge density and the potential. We summarize the main
statements of Weinert’s pseudo-charge method and give a
definition of the pseudo-charge density. Since we know the
true charge density inside the muffin-tin spheres and with the
assumption that we would know the interstitial potential, we
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construct in Section 2.2 the Yukawa potential inside the sphere
by solving the Dirichlet boundary value problem.We develop two
radial Green functions that are products of two linearly
independent fundamental set solutions of the homogeneous
radial modified Helmholtz equation. These Green functions
are set apart by the boundary conditions they fulfill either at
the muffin-tin sphere or in free-space. In Section 2.2.1, the radial
free-space Green function is used to define the modified
multipole expansion of the Yukawa potential. In Section 2.3,
we construct a pseudo-charge density in reciprocal space
consistent with the modified Helmholtz equation by making
use of the definition of the modified multiple moments put
forward in Section 2.2.1. We obtain the Yukawa potential for
the interstitial region by solving the modified Helmholtz equation
in Fourier space for the pseudo-charge density—the solution is a
simple algebraic expression. This is followed by an analysis of the
convergence properties of the Fourier series of the pseudo-charge
density. The entire algorithm that solves the modified Helmholtz
equation is summarized in Section 2.4 together with the minimal
modifications necessary to change Weinert’s original algorithm.
The conclusions and the outlook are presented in Section 3.

2 YUKAWA POTENTIAL FOR AMUFFIN-TIN
DECOMPOSITION OF A 3D-PERIODIC
DOMAIN

2.1 Weinert’s Pseudo-Charge Method
In order to deal with the 1/r singularities of the Coulomb
potential due to the point-like charge of the nucleus and the
associated rapid oscillations of the charge density in the vicinity of
the singularity, in all-electron electronic structure methods the
space is typically partitioned into muffin-tin spheres BRα(τα) of
radius Rα centered around the atoms α—the union of those is
called the muffin-tin (MT) region—and the interstitial region (I)
between the atoms. In FLAPW both charge densities

ρ(r) �{∑K ρI(K) eiK ·r r ∈ I

∑
L

ραL(rα)YL(r̂α) r � τα + rα ∈ BRα(τα)
(2)

and potentials

V(r) �{∑K V I(K) eiK ·r r ∈ I

∑
L

Vα
L(rα)YL(r̂α) r � τα + rα ∈ BRα(τα)

(3)

are represented in plane waves eiK ·r , where K defines the
reciprocal lattice vector dual to the lattice vectors defining the
periodic domain, and in spherical harmonics, YL, of degree ℓ and
orderm, where L is defined as L :� (ℓ,m). rα ≤Rα is the length of
the vector rα � r − τα, measured from the center of the atom α
placed at position τα in the periodic domain, with r̂α � r −
τα/|r − τα| its unit vector. The precision of the representation
is determined by the cut-off parametersKmax for the wave vectors,
K, with length K ≤Kmax, and ℓmax for the degree ℓ in the angular-
momentum expansion. ℓmax sets also a natural cut-off of the

angular-momentum expansions of all other charge densities or
multipole moments throughout the paper.

Weinert’s pseudo-charge method for the Poisson equation is
based on the crucial observation that several charge densities ρ
inside a sphere BRα(τα) can generate the samemultipole moments

qαL[ρ] � ∫
BRα(0)

ρ(rα + τα)rℓαY *
L(r̂α)drα (4)

and thus, the same potential

V I[ρ](r) �∑
L

4π
2ℓ + 1

qαL[ρ] 1
rℓ+1α

YL(r̂α) (5)

outside the sphere. Here, Y*
L denotes the complex conjugate of YL.

The pseudo-charge density, ~ρ, defined by Weinert in Ref. [12] is
such a charge density. It fulfills the following three conditions:

• It has the same multipole moments qαL[~ρ] � qαL[ρ] in every
sphere BRα(τα).

• It is equal to the true charge density ρI in the interstitial
region.

• It has a fast convergent Fourier expansion.

The Fourier Components of V I are then simply

V I(K) � 4π
K2

~ρ(K) for K ≠ 0, (6)

while V I(0) will be set to a constant. Once the interstitial
potential V I has been calculated, the muffin-tin potential can
be obtained by solving the Dirichlet boundary value problem on
the sphere

Vα(rα + τα) � Vα
S (rα + τα) + Vα

B(rα + τα)
� ∫

BRα(0)
G(rα, rα′)ρ(rα′ + τα)drα′

− R2
α

4π
∫

zBRα(0)
V I(rα′ + τα) zG

zn′
(rα, rα′)dω′,

(7)

where G is a Green function associated with the solution of the
Poisson equation, dω � sinθdθdϕ denotes the solid angle element
and r � rα + τα ∈ BRα(τα). Although the Green function depends
on the muffin-tin radius Rα, for simplicity we drop the index α in
the Green function and in related quantities. The muffin-tin
potential Vα is fed by two terms, a source term Vα

S due to the
charge density distribution inside the sphere and a boundary term
Vα
B due to the interstitial potential at the boundary of the sphere.

The Fourier coefficients of the pseudo-charge density basically
have the form

~ρ(K) � ρI(K) +∑
α

ρα(K) , (8)

where ρα is a Fourier transformable pseudo-charge density inside
the muffin-tin sphere. The idea behind this is the following: if the
domain of definition of ρI is formally expanded to the full space,
i.e. including the muffin-tin spheres, such that
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ρI(r) �∑
K

ρI(K)eiK ·r (9)

can also be evaluated for r ∈ ∪αBRα(τα), then the true charge ρ can
also be written as

ρ � ρI +∑
α

�ρα , (10)

where

�ρα :� { 0 in I
ρα − ρI in BRα(τα) (11)

are charge densities localized in the atomic spheres BRα(τα). If
these localized densities are now substituted by other localized
densities ρα, then the charge density is still correct in I.

The approach above is generally the same for the Yukawa
potential, i.e., for λ> 0, only Eqs. 4–6 and the pseudo-charge
density’s Fourier coefficients are slightly different. We now
continue with the derivation of the muffin-tin and interstitial
potentials in the case λ> 0.

2.2 Muffin-Tin Yukawa Potential
Assume the interstitial potential is obtained, then the Green
function method is used to determine the screened Coulomb
potential Vα

λ inside the muffin-tin sphere BRα(τα) with centre τα
through the solution of the boundary value problem

(Δ − λ2)Vα
λ � −4πρ in BRα(τα) (12)

Vα
λ � V I

λ on zBRα(τα). (13)

The solution is divided into three steps, which we describe in the
following. The derivation focuses on the construction of the
Green function and its application. For simplicity, we leave
out the index λ in Green functions and potentials in this
subsection. The solution is given in terms of radial functions
Vα
L(rα), the expansion coefficients to the spherical harmonics

expansion inside the sphere (see Eq. 3).
Step 1. We solve the homogeneous modified Helmholtz

equation, (Δ − λ2)U � 0, in spherical coordinates. Following
the solution [17] of the Laplace equation, Δψ � 0, in spherical
coordinates (r, r̂), the homogeneous potential can be factorized
into products of radial functions uℓ(r) and angular functions
YL(r̂), U(r, r̂) � ∑

L
uℓ(r)YL(r̂). The term −λ2U in the

homogeneous modified Helmholtz equation only has an effect
on the radial solution. The spherical harmonics, YL, are the
eigensolutions of the angular part of the Laplace equation with
eigenvalues ℓ(ℓ + 1). The radial part of the homogeneous
modified Helmholtz equation is known as the modified
spherical Bessel differential equation [17, 18],

d2uℓ(r)
dr2

+ 2
r
duℓ(r)
dr

− (ℓ(ℓ + 1)
r2

+ λ2)uℓ(r) � 0, (14)

and its fundamental set of solutions are for each ℓ the two
modified spherical Bessel functions [17, 18] iℓ(λr) and kℓ(λr),
the first of which is the regular solution well-defined at the origin,
but grows fast with growing radius r and the second is the

irregular solution that goes to infinity for r→ 0. To realize the
proper boundary condition for the radial Green functions two
conditions have to be fulfilled: The first solution, uℓ1, must be
finite at r � 0. We conclude that

uℓ1(r) � iℓ(λr) , (15)

since kℓ(λr)→∞ for r→ 0. The second solution, uℓ2, must be 0 at
r � Rα. This is achieved by a linear combination of the two
modified spherical Bessel functions,

uℓ2(r) � kℓ(λr) − iℓ(λr) kℓ(λRα)
iℓ(λRα) . (16)

Step 2. A function Gℓ ∈ C0([0,Rα] × [0,Rα]) ∩ C2([0,Rα] ×
[0,Rα]\{(r, r)|r ∈ [0,Rα]}) is called a radial Green function, if it is
the solution to

(Δr − λ2)Gℓ(r, r′) � − 4π
r2

δ(r − r′) (17)

subject to the Dirichlet boundary condition

Gℓ(r, r′) � 0 , if r � Rα or r′ � Rα , (18)

where (Δr − λ2) is the linear radial differential operator in Eq. 14
and δ denotes the radial Dirac delta function, for which

∫b

a
δ(r − r′)f (r′)dr′ � { f (r), if r ∈ [a, b]

0, otherwise.
(19)

The radial Green function takes the form of the product of the two
linearly independent solutions with the proper boundary conditions,

Gℓ(r, r′) � Cuℓ1(r< )uℓ2(r> ) , (20)

where r< � min(r, r′), r> � max(r, r′) and

C � − 4π
r′2

W−1[uℓ1(r′), uℓ2(r′)]. (21)

Since theWronskianW is linear, the addition of cuℓ1 (c � const) onto
kℓ(λr) to suffice the boundary condition uℓ2(Rα) � 0 has no
influence on the Wronskian: W(uℓ1, cuℓ1) � 0, with W(iℓ , kℓ)
remaining. To calculate the Wronskian of iℓ(λr′) and kℓ(λr′) one
can either Taylor expand the two functions or simply take the limiting
values for r→ 0 or the asymptotic values for r→∞ to find

W[uℓ1(r′), uℓ2(r′)] � uℓ1(r′) duℓ2(r′)dr′ − duℓ1(r′)
dr′ uℓ2(r′)

� − 1
λr′2

.

(22)

Therefore, C � 4πλ, and the radial Green function finally reads

Gℓ(r, r′) � 4πλ iℓ(λr< )kℓ(λr> ) − 4πλ iℓ(λr)iℓ(λr′) kℓ(λRα)
iℓ(λRα) .

(23)

Step 3. Considering the standard expression of Dirac’s delta
function separated according to the radial and angular
coordinates
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δ(r − r′) � 1
r2
δ(r − r′)δ(r̂ − r̂′) � 1

r2
δ(r − r′)∑

L

Y *
L(r̂′)YL(r̂) ,

(24)

the three-dimensional (3D) Green function G(r, r′) solving
(Δ − λ2)G(r, r′) � −4πδ(r − r′) in BRα(0), (25)

G(r, r′) � 0 on zBRα(0) , (26)

is expanded in the form

G(r, r′) �∑
L

Gℓ(r, r′)Y *
L(r̂′)YL(r̂) (27)

and the solution to the inhomogeneous Eq. 12 is given by
Eq. 7. For the derivation of the 3D Green function and the
3D inhomogeneous solution Vα � Vα

S + Vα
B Eq. 7 we refer the

reader to Ref. [19]. Both the integral over the sphere BRα(0) and
the boundary integral simplify by exploiting the orthonormality
relation of the spherical harmonics, ∫

zB1(0)
Y*
L(r̂)YL′(r̂)dω � δLL′ .

The integral over the sphere BRα(0) provides the source
contribution to the muffin-tin potential

Vα
S (rα + τα) � ∫

BRα(0)
G(rα, rα′)ρ(rα′ + τα)drα′

�∑
L

⎡⎢⎢⎢⎢⎢⎣∫Rα

0
Gℓ(rα, rα′)ραL(rα′)rα′2drα′⎤⎥⎥⎥⎥⎥⎦YL(r̂α).

(28)

In order to obtain the boundary contribution to the muffin-tin
potential, we evaluate the boundary integral in Eq. 7 by
expanding the interstitial potential V I(K) (see Section 2.3) on
the sphere boundaries zBRα(τα) ∋ r′ in spherical coordinates

V I(rα′ + τα) �∑
K

V I(K)eiK ·ταeiK ·rα′

�∑
L

V I
L(Rα; τα)YL(r̂′α) (29)

using the plane-wave expansion

eiK ·r �∑
L

4πiℓjℓ(Kr)Y *
L(K̂)YL(r̂) , (30)

where

V I
L(Rα; τα) � 4πiℓ∑

K

V I(K)eiK ·τα jℓ(KRα)Y *
L(K̂) . (31)

Furthermore, the normal derivative ofG on the sphere boundary is

zG
zn′
(rα,rα′)� zG(rα,rα′)

zrα′

∣∣∣∣∣∣∣∣∣∣
rα′�Rα

�∑
L

zGℓ(rα,rα′)
zrα′

∣∣∣∣∣∣∣∣∣∣
rα′�Rα

Y *
L(r̂α′)YL(r̂α). (32)

Since rα <Rα � rα′ and since Gℓ takes the form Eq. 20, we obtain

zGℓ(rα, rα′)
zrα′

∣∣∣∣∣∣∣∣∣∣rα′�Rα � 4πλ uℓ1(rα)uℓ2′(Rα) . (33)

We recall that uℓ2(Rα) � 0 and reuse Eq. 22 to obtain

uℓ2′(Rα) � − 1
λR2

αiℓ(λRα) , (34)

yielding

zGℓ(rα, rα′)
zrα′

∣∣∣∣∣∣∣∣∣∣rα′�Rα � − 4π
R2
α

iℓ(λrα)
iℓ(λRα) . (35)

With this and the knowledge of the interstitial potential at the
sphere boundary from Eq. 31, the boundary contribution to
the muffin-tin potential becomes

Vα
B(rα + τα) � − R2

α

4π
∫

zBRα(0)
V I(rα′ + τα) zG

zn′
(rα, rα′)dω′

�∑
L

V I
L(Rα; τα) iℓ(λrα)iℓ(λRα)YL(r̂α)

(36)

and the radial part of the spherical harmonics expansion of the
total potential, Vα

S + Vα
B , in the sphere BRα(0) becomes

Vα
L(rα) � ∫ Rα

0
Gα

ℓ
(rα, rα′)ραL(rα′)rα′2drα′ + V I

L(Rα; τα) iℓ(λrα)iℓ(λRα) .
(37)

Due to the kink of Gℓ at rα � rα′, for practical calculations the
integral is split in a part where rα′< rα, a part where rα′> rα and a
third part where the integrand is symmetric in rα and rα′:

Vα
L(rα) � 4πλ⎛⎜⎝[∫rα

0
ραL(rα′)iℓ(λrα′)rα′2drα′]kℓ(λrα)

+[∫Rα

rα

ραL(rα′)kℓ(λrα′)rα′2drα′]iℓ(λrα)

−[∫ Rα

0
ραL(rα′)iℓ(λrα′)rα′2drα′]iℓ(λrα) kℓ(λRα)

iℓ(λRα)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+V I
L(Rα; τα) iℓ(λrα)iℓ(λRα) .

(38)

2.2.1 Modified Multipole Expansion
In the same way we obtain the radial representation of the free-
space Green function, well-known as the Yukawa potential for a
Dirac test charge at r′,

e−λ|r−r′|
|r − r′| � 4πλ∑

L

iℓ(λr< )kℓ(λr> )Y *
L(r̂′)YL(r̂) . (39)

The modified spherical Bessel function kℓ already contains the
proper boundary condition for r→∞. A charge density �ρα

localized in a sphere BRα(τα) embedded in free space, produces
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a Yukawa potential outside the sphere, i.e.,
r � rα + τα ∉ BRα(τα),

V I[�ρα](r) � ∫
R3

G(rα, rα′)�ρα(rα′ + τα)drα′ , (40)

which can be expressed analogously to the Coulomb potential in
terms of the modified multipole expansion

V I[�ρα](r) �∑
L

4πλℓ+1

(2ℓ + 1)!!q
α
L[�ρα] kℓ(λrα)YL(r̂α) , (41)

with the modified multipole moments

qαL[�ρα] � (2ℓ + 1)!!
λℓ

∫
BRα(0)

�ρα(rα + τα)iℓ(λrα)Y *
L(r̂α)drα . (42)

An analogous definition holds true for the modified multiple
moments qαL[ρα] of the true charge ρα in the sphere. With the
standard expansion of the charge density inside the sphere into
spherical harmonics Eq. 3, ρα(rα + τα) � ∑

L
ραL(rα)YL(r̂α) and the

application of their orthonormality relation, the calculation of the
modified multipole moments inside the muffin-tin spheres is
straightforward and results in

qαL[ρα] � (2ℓ + 1)!!
λℓ

∫Rα

0
ραL(rα) iℓ(λrα) rα2drα . (43)

The summation of V I
λ[�ρα] over all spheres α finally provides the

contributions of the charges of all spheres to the interstitial potential.
Equation 7 reduces toEq. 40, since for the free-spaceGreen function
Eq. 39 the boundary value term disappears for r→∞.

2.3 Interstitial Yukawa Potential
Suppose we had found a Fourier transformable pseudo-charge
density ρα inside the sphere consistent with the Yukawa potential
produced outside the sphere, with coefficients ρα(K), and the
Fourier series would converge rapidly throughout the periodic
domain. Then we can find the Fourier coefficients of the pseudo-
charge density, ~ρ(K), by Eq. 8 and the solution of the modified
Helmholtz Eq. 1 through Fourier transformation yields an
algebraic equation from which we calculate the interstitial
Yukawa potential,

V I
λ(K) �

4π

K2 + λ2
~ρ(K) . (44)

In the previous Section 2.2 the interstitial Yukawa potential is
used as boundary values for the Yukawa potential in the atomic
spheres.

This subsection is concerned with the construction of the
Fourier transformable pseudo-charge density ρα that replaces the
true local charge density �ρα [see (11)] inside the muffin-tin sphere
such that the Yukawa potential in the interstitial region, V I

λ[�ρα] �
V I
λ[ρα] − V I

λ[ρI], due to the true charge density inside the sphere,
is equal to the Yukawa potential in the interstitial region
produced by the a priori unknown pseudo-charge density,
V I
λ[ρα] � V I

λ[�ρα]. From Eq. 41 we conclude that this is fulfilled
if the modified multipole moments Eq. 42 of both charge

densities, qαL[�ρα] � qαL[ρα] − qαL[ρI] and qαL[ρα], are equal. The
modified multiple moments qαL[ρα] are already known through
Eq. 43. Next we determine the modified multiple moments qαL[ρI]
of the interstitial charge extended into the muffin-tin spheres and
then construct the pseudo-charge density.

2.3.1 Modified Multipole Moments of Interstitial
Charge Density Extended Into Sphere
The determination of the modified multiple moments of
the interstitial charge density is in principle the same as in
Ref. [12], but since the modified multipole moments are
different from the known multipole moments for the
Coulomb potential, we go through this step of deriving
qαL[ρI] in detail. We write ρI relative to the sphere centre τα
and employ the Rayleigh expansion Eq. 30 to eiK ·rα , which
yields

ρI(r) �∑
K

ρI(K)eiK ·rαeiK ·τα

�∑
K

ρI(K)eiK ·τα∑
L

4πiℓjℓ(Krα)Y *
L(K̂)YL(r̂α) .

(45)

The modified multipole moments of ρI in the sphere BRα(τα),
defined analogously to Eq. 42, are

qαL[ρI] � (2ℓ + 1)!!
λℓ

∫
BRα(0)

Y *
L(r̂α) iℓ(λrα)ρI(rα + τα)drα

� (2ℓ + 1)!!
λℓ

4πiℓ∑
K

ρI(K)eiK ·ταY *
L(K̂)∫Rα

0
iℓ(λrα)jℓ(Krα)r2αdrα .

For K ≠ 0, the latter integral becomes

∫ Rα
0
iℓ(λrα)jℓ(Krα)r2αdrα �

R2
α

K2 + λ2
(Kiℓ(λRα)jℓ+1(KRα)

+ λiℓ+1(λRα)jℓ(KRα))
� R2

α

K2 + λ2
(λiℓ−1(λRα)jℓ(KRα)

− Kiℓ(λRα)jℓ−1(KRα)) .
(46)

If K � 0, observe that jℓ(0) � δℓ0 (Kronecker δ) and so the
integral becomes

δℓ0∫Rα

0
i0(λrα)r2αdrα � R3

α

i1(λRα)
λRα

δℓ0 . (47)

Both equations above can be derived by partial integration in two
different ways and applying the identities in Ref. [18],

d
dr
(r−ℓfℓ(r)) � ± r−ℓfℓ+1(r) (48)

for fℓ � iℓ with the plus sign and for fℓ � jℓ with the minus
sign, and

d
dr
(rℓ+2fℓ+1(r)) � rℓ+2fℓ(r) (49)

for both fℓ � iℓ and fℓ � jℓ . In conclusion, this yields
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qαL[ρI] � δℓ0
!!!
4π

√ R2
αi1(λRα)

λ
ρI(0)

+ ∑
K ≠ 0

(2ℓ + 1)!!
λℓ

4πiℓρI(K)eiK ·ταY *
L(K̂)

R2
α

λ2 + K2
(Kiℓ(λRα)jℓ+1(KRα) + λiℓ+1(λRα)jℓ(KRα)) .

(50)

2.3.2 Construction of Pseudo-Charge Density
We construct the pseudo-charge density by following the ansatz
of Weinert,

ρα(rα + τα) �∑
L

ραL(rα)YL(r̂α) �∑
L

Qα
Ln
⎛⎝∑

η�0

n

aηr
]η
α
⎞⎠YL(r̂α) , (51)

in which the radial dependence of the charge density is expressed
in terms of a polynomial expansion up to degree ]n, which
depends on atom α and angular degree ℓ, and otherwise use
spherical harmonics for the angular part—this being the usual
representation for charge densities in the muffin-tin region. As we
will discuss in Section 2.3.3, it is beneficial to choose

aη � (−1)n− ηR2(n−η)
α ( n

η
)an for η � 0, . . . , n (52)

and ]η � ℓ + 2η, where n is yet to be determined. As will become
apparent later when we derive the coefficients Qα

Ln in Eq. 61, the
coefficient an cancels out in any relevant equation, like Eq. 54 or
Eq. 55. With these choices of parameters and with the binomials
theorem applied to

∑n
η�0

(−1)n− η( n
η
)( rα

Rα
)2η

� (( rα
Rα
)2

− 1)n

(53)

it follows from the ansatz Eq. 51

ρα(rα + τα) � an(r2α − R2
α)n∑

L

Qα
Lnr

ℓ

αYL(r̂α) . (54)

The Fourier transform of this expression is then given by

ρα(K) � 1

|Ω|e
−iK ·τα ∫

BRα(0)
ρα(rα + τα)e−iK ·rαdrα

� 4π

|Ω|e
−iK ·τα∑

L

(−i)ℓQα
LnA

α
ℓn(K)YL(K̂),

(55)

where

Aα
ℓn(K) � an∫Rα

0
(r2α − R2

α)nrℓ+2α jℓ(Krα)drα, (56)

|Ω| is the volume of the periodic domain and we used the
Rayleigh expansion Eq. 30 and the orthonormality relation of
the spherical harmonics. With Proposition 1 in the appendix
Aα
ℓn(K) finally reduces to

Aα
ℓn(K) � an(−2)nn!Rℓ+n+2

α

jℓ+n+1(KRα)
Kn+1 . (57)

In the same way we derive the coefficients Qα
Ln: We insert Eq. 54

in the definition of the modified multipole moments Eq. 42 and
use Eq. 1 for fℓ � iℓ and κ � λ to obtain

qαL[ρα] � (2ℓ + 1)!!
λℓ

∫
BRα(0)

ρα(rα + τα)iℓ(λrα)Y *
L(r̂α)drα (58)

� (2ℓ + 1)!!
λℓ

Qα
Lnan∫Rα

0
(rα2 − R2

α)nrℓ+2α iℓ(λrα)drα (59)

� (2ℓ + 1)!!
λℓ

Qα
Lnan(−2)nn!Rℓ+n+2

α

iℓ+n+1(λRα)
λn+1

, (60)

and thus,

Qα
Ln � qαL[ρα] λℓ+n+1

an(− 2)nn!Rℓ+n+2
α (2ℓ + 1)!!iℓ+n+1(λRα) . (61)

Since Aα
ℓn(K) and Qα

Ln share the term an(−2)nn!Rℓ+n+2
α , the term

cancels out in the product Qα
LnA

α
ℓn(K) entering Eq. 55,

Qα
LnA

α
ℓn(K) �

jℓ+n+1(KRα)
Kn+1(2ℓ + 1)!!

λℓ+n+1

iℓ+n+1(λRα)q
α
L[ρα] , (62)

and setting ] � ℓ + n + 1 (in accordance with Section 2.3.3) this
leads to

ρα(K) � 4π

|Ω|e
−iK ·τα∑

L

(−i)ℓ j](KRα)
K]− ℓ(2ℓ + 1)!!

λ]

i](λRα)q
α
L[ρα]YL(K̂) .

(63)

For ρα(0) we take the limit

lim
K→0

j](KRα)
K]− ℓ

� lim
K→ 0

KℓR]
α

(2] + 1)!! , (64)

which is only different from 0 for ℓ � 0 and thus yields

ρα(0) �
!!!
4π

√
|Ω|

(λRα)]
(2] + 1)!!i](λRα)q

α
00[ρα] . (65)

Due to the condition that the pseudo-charge density has the
correct modified multipole moments, the modified multipole
moments used for the actual computation of the Fourier
coefficients are the ones of the true localized charge density
�ρα, qαL[�ρα] � qαL[ρα] − qαL[ρI] calculated from the modified
multipole moments qαL[ρα] Eq. 43 and qαL[ρI] Eq. 50 of ρα and
ρI respectively, in the sphere BRα(τα).

2.3.3 Smoothness of the Pseudo-Charge Density and
Convergence of Its Fourier Series
In Section 2.3.2, we have set aη by Eq. 52, ]η � ℓ + 2η and ] � ℓ +
n + 1 without having determined n yet. Here we motivate our
choices and finally determine a proper n.

With our choices for aη and ]η wehave eradicated the sum in ansatz
Eq. 51 and derived the much simpler form Eq. 54. The function

rα1(r2α − R2
α)n (66)

itself and all its first n − 1 derivatives with respect to rα are equal
to zero at rα � Rα. Consequently, we ensure smoothness on the
boundary of the sphere,
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dk

drkα
ραL(rα)

∣∣∣∣∣∣∣∣∣∣
rα�Rα

� 0 ∀k � 0, . . . , n − 1. (67)

Note that this includes localization of ρα in BRα(τα) and thus the
pseudo-charge density equals the charge density in I (condition 2
in Section 2.1).

The smoothness of the pseudo-charge density is connected
to the convergence properties of its Fourier series. Applying
the Riemann–Lebesgue lemma for Fourier series to a n − 1-fold
differentiable function in combination with the differentiation
rule for a Fourier transform, one can show that the Fourier
coefficients for K→∞ go faster to zero than 1

Kn−1, i.e., we obtain
the fastest convergence of the Fourier series for large K and the
convergence becomes the better the larger n is. If we choose n
too large, however, we are left with the small-K Fourier
coefficients only, and thus the Fourier series is unbalanced,
in the sense that smaller coefficients have a larger weight. So,
ideally, our choice of n is guided by the cut-off of the Fourier
series.

For an explicit rule on how to choose n, Weinert [12] discussed
the factors Qα

LnA
α
ℓn(K)/qαL[ρα], where in the Coulomb case

Qα
LnA

α
ℓn(K) �

jℓ+n+1(KRα)
Kn+1(2ℓ + 1)!!

(2ℓ + 2n + 3)!!
Rℓ+n+1
α

qαL[ρα] . (68)

His reasoning is based on the zeros of the K-dependent
function Qα

LnA
α
ℓn(K)/qαL(ρα). Viewed as a function of K,

however, our factor Qα
LnA

α
ℓn(K)/qαL[ρα] differs from Weinert’s

one only by a multiplicative constant. Thus Weinert’s
arguments apply here as well. With Proposition 2 in the
Appendix it follows that this multiplicative constant is
smaller than 1 for λ> 0. We see this confirmed in Figure 1,
which shows the KRα-dependence of the factor
Qα

LnA
α
ℓn(K)/qαL[ρα] in the Yukawa Eq. 62 and Coulomb

Eq. 68 cases for several combinations of n and angular
degree ℓ—it reveals a smaller amplitude in the Yukawa case.
In agreement with Ref. [12], in Figure 1 we make two

observations: (i) Qα
LnA

α
ℓn/q

α
L[ρα] as a function of KRα has

larger oscillations for smaller n, and (ii) for fixed n, the
largest contribution to the Fourier series comes from KRα

less than the first zero of the Bessel function jℓ+n+1. Since we
deal with a finite number of K vectors, we would like to reduce
the oscillations mentioned in (i) by choosing a large n. On the
other hand, due to the cut-off of the Fourier series at some
Kmax, the factor Qα

LnA
α
ℓn/q

α
L[ρα] must be small for K >Kmax,

which limits ℓ + n + 1 to a certain value, since the first zero is
pushed towards infinity for growing ℓ + n + 1, as can be seen
from a comparison between the pink and yellow, or the blue
and purple lines in Figure 1. From this arises Weinert’s
criterion for choosing n(ℓ), which we adopt here:

• Choose ] ∈ N such that the first zero of j](z) is
approximately equal to (KRα)max.

• Then n(ℓ) is fixed by the relation ] � ℓ + n + 1.

Note that in this method ℓ is compensated by n in such a way
that ] is de facto not depending on ℓ. Since the discretization of K
vectors and the muffin-tin radii usually do not change over the
course of the self-consistent-field iteration, the terms in Eq. 63
depending on ] need to be computed just once.

2.4 Algorithm: Construction of Yukawa
Potential
Algorithm 1 summarizes the construction of the Yukawa
potential derived in this paper.

In the case that Weinert’s method is available as an
implemented algorithm, then only relatively few changes are
necessary to make it available for the solution of the modified
Helmholtz equation. The changes to be made in practice are
limited to the following: The slightly different radial behavior of
the Green function leads to small changes in the multipole

FIGURE 1 | The factorQα
LnA

α
ℓn/q

α
L[ρα] for several (ℓ, n) in the Yukawa and

Coulomb cases with Rα � 1 and λ � 2.

Algorithm 1 | Bulk-Case Yukawa Potential
Input: charge density ρ, integer ] chosen as described on page 8
and preconditioning parameter λ.
Output: Yukawa potential Vλ solving the modified Helmholtz Eq. 1
with periodic boundary conditions.

Pseudo-Charge Density ~ρ←ρ

1: Modified multipole moments qαL[ρI] of the interstitial charge
density in BRα(τα). 8 Eq. 50

2: Modified multipole moments qαL[ρα] of the muffin-tin charge
density in BRα(τα). 8 Eq. 43

3: Modified Multipole Moments qαL[ρα] � qαL[ρα] − qαL[ρI] of ρα
4: Sphere-localized part ρα(K) of the pseudo-charge density.

8 Eqs. 63 and 65
5: Pseudo-charge density ~ρ(K). 8 Eq. 8

Interstitial potential V I
λ←~ρ

6: Interstitial potential V I
λ(K). 8 Eq. 44

Muffin-tin potential VMT
λ ←ρMT,V I

λ

7: Boundary terms V I
L(Rα; τα) of muffin-tin potential. 8 Eq. 31

8: Radial parts Vα
L(rα) of muffin-tin potential. 8 Eq. 38
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moments of the interstitial and muffin-tin charge densities in
each sphere, qαL[ρI] Eq. 50 and qαL[ρα] Eq. 43 respectively, and in
the Fourier components of the pseudo-charge density ρα(K)
Eqs. 63 and 65. The integer ] in the formula for the pseudo-
charge density’s Fourier components, which determines the
convergence of the Fourier series, is chosen exactly the same as
in Weinert’s original method. The interstitial potential Eq. 44
undergoes changes indirectly through the pseudo-charge
density and directly by the prefactor 4π/(K2 + λ2) that
substitutes 4π/K2. Since the K � 0-term is well-defined, it is
not set to a constant as in the original method. The muffin-tin
potential is affected only in its radial dependence in both the
boundary and the source contribution of Eq. 2.2. Basically, the
polynomials rℓ and 1/rℓ+1 in these quantities are substituted by
the modified spherical Bessel functions iℓ(λr) and kℓ(λr),
respectively, and the prefactor 4π/(2ℓ + 1) is substituted by
4πλ. The interstitial potential on the boundary of the spheres,
V I
L(Rα; τα) Eq. 31, only changes indirectly through the changed

values of V I
λ(K).

3 CONCLUSION AND OUTLOOK

We have presented a general method for solving the modified
Helmholtz equation for a 3D-periodic system of charge densities
not restricted by any shape approximation of three-dimensional
volume. The three-dimensional domain is typically decomposed into
non-overlapping atom-centered spheres (the muffin-tin region) and
the space between these spheres (the interstitial region). The
solution, the Yukawa potential, suffices 3D-periodic boundary
conditions. Since the Yukawa differential equation is similar to
the Poisson equation, we leveraged our derivations on the work
of Weinert [12]. Our work can be considered an extension of
Weinert’s work determining instead of the bare Coulomb
potential with zero screening, the screened Coulomb potential
with finite screening length 1/λ. Like Weinert’s pseudo-charge
method, our extension is based on the concept of the non-
uniqueness of the multipole expansion as well as on the Dirichlet
boundary value problem applied to a sphere. The difference between
the modified Helmholtz equation and the Poisson equation lies
solely in the radial behavior and thus the homogeneous solutions to
the radial part of the differential equation are modified spherical
Bessel functions instead of polynomial functions. The consequence is
a different radial behavior of the Green function, resulting in the
screening of the potential, which is now expanded in modified
multipole moments, and this in turn affects the pseudo-charge
density. Furthermore, the modification of the multipole moments
implies that themodifiedmonopole is not connected anymore to the
total charge. We have shown that Weinert’s convergence analysis of
an absolutely and uniformly convergent Fourier series of the pseudo-
charge density is transferred to the modified pseudo-charge density
and thus we can therefore best choose the same integer parameters
for convergence. Finally we layed out theminor changes necessary to

change an implemented method for solving the Poisson equation
available to an implementation for solving the modified Helmholtz
equation.

Considering that Weinert’s pseudo-charge method has
become the standard method for calculating the
electrostatic potential without shape approximation in all-
electron band structure methods for applications of periodic
solids, and since we have extended it to a modified pseudo-
charge method with only minor modifications involving
some radial integrals, this now allows to treat the screened
Coulomb potentials without shape approximation described
by the modified Helmholtz equation with all-electron
methods. The screened Coulomb or Yukawa potential
typically occurs in single particle or mean-field theories to
the problem of many charged particles, where all charged
particles contribute effectively to the screening of the bare
Coulomb potential.
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APPENDIX

PROPOSITION 1. Let R> 0, κ> 0 and fℓ be either the spherical Bessel
function of the first kind, fℓ � jℓ , or the modified spherical Bessel
function of the first kind, fℓ � iℓ . Then

∫R

0
(r2 − R2)nrℓ+2fℓ(κr)dr � (−2)nn!Rℓ+n+2 fℓ+n+1(κR)

κn+1

holds for all n ∈ N0 and all ℓ ∈ N0.
PROOF by mathematical induction on n. The base case n � 0

follows immediately from the differentiation property Eq. 49 of
the functions jℓ and iℓ , by

∫R

0
rℓ+2fℓ(κr)dr � κ−ℓ−3 ∫κR

0
rℓ+2fℓ(r)dr � κ−1Rℓ+2fℓ+1(κR).

The induction step uses the property for n − 1 and ℓ + 1 and
partial integration with u(r) � (r2 − R2)n and v′(r) � rℓ+2fℓ(κr),
to derive the statement for n and ℓ. Let

F(n, ℓ) � ∫R

0
(r2 − R2)nrℓ+2fℓ(κr)dr

be the left-hand side of Eq. 1. Then

F(n, ℓ) � [(r2 − R2)nκ−1rℓ+2fℓ+1(κr)]R0
− ∫R

0

n(r2 − R2)n− 12rκ−1rℓ+2fℓ+1(κr)dr
� −2nκ−1F(n − 1, ℓ + 1) � (−2)nn!Rℓ+n+2 fℓ+n+1(κR)

κn+1
,

where we used the induction hypothesis in the last equation, and
thus the proposition follows. ∎

PROPOSITION 2. For nonnegative λ and R, and ] ∈ N

i](λR)
λ]

≥
R]

(2] + 1)!!
holds, with equality if and only if λ � 0 or R � 0.

PROOF. Since i](x) � i−vj](ix) and j] has the expansion [18]

j](x) � x]

(2] + 1)!! ∑
∞

s�0

(−1)s
s!(] + 3

2)s (
x
2
)2s ,

where (·)s is the Pochhammer symbol defined for general a ∈ R

and s ∈ N0 by

(a)0 � 1 , (a)s � a(a + 1)/(a + s − 1) ,
i] can be expanded by

i](x) � x]

(2] + 1)!! ∑
∞

s�0

1

s!(] + 3
2)s (

x
2
)2s .

i](λR)/λ] thus becomes

i](λR)
λ]

� R]

(2] + 1)!! ∑
∞

s�0

1

s!(] + 3
2)s (

λR
2
)2s

and it remains to show that

∑∞
s�0

1

s!(] + 3
2)s (

λR
2
)2s

≥ 1 .

The first term of the sum for s � 0 is always 1 irrespective of the
values of λ and R. The other summed terms for s> 0 are positive, if
both λ and R are positive, and zero, if one of the two variables is
zero. ∎
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