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We introduce a lattice gas model with a modified Hamiltonian considering different energy
for cycles of connected atoms. The system can be interpreted as a chalcogenide glass
with pollutants forming floppy and rigid structures. We consider an energetic penalization
for redundant bonds in the network. This penalization allows us to incorporate the topology
constraints of rigidity in the network to study the thermodynamics of the system. We
observe, depending on the parameter used for the penalization, that the system exhibits a
typical first-order phase transition, or a stepped transition between the low and high
density while varying the chemical potential. We also observe a hysteresis loop in the
density and energy of the system. We use the area of these loops to calculate the
irreversible enthalpy. There are two regimes, one where the enthalpy decreases linearly
and the other with almost constant enthalpy. As the enthalpy is almost constant and very
low, we interpreted this as the intermediate phase of the chalcogenide glasses.
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1 INTRODUCTION

Lattice gas models are among the simplest thermodynamic models that exhibit a phase transition
with an exact solution in 2D. The nearest neighbor interaction and limitation of occupation in
volume allows emulating a real gas in potentials such as Lennard-Jones [1]. This model has proven to
be useful in different contexts, such as condensation of DNA [2], or the absorption in controlled-pore
Glasses [3]. There is also a direct relationship with the Ising model, which was first used to study
ferromagnetic materials [4], and then many other materials as spin-crossover materials [5], or spin
glasses [6] among others. On the other hand, chalcogenide glasses seem to be some of the most
promising materials for future technology, with important applications [7–9], ranging from solid
state batteries [10, 11] to optics and photonics infrared devices [12, 13]. Topology and rigidity of the
network are characterizing properties of these glasses [14, 15].

Experimental modulated differential scanning calorimetry (MDSC) and computational molecular
dynamics (MD) studies near the glass transition over chalcogenide materials have found anomalies
in the behavior of the macroscopic variables of these materials, giving rise to what is known as the
intermediate phase [16–18]. Although theoretical explanations regarding the significance and
existence of this phase exist, as far as we know, no microscopic model which recovers the
thermodynamic macroscopic properties of the system has been constructed to this date. The
purpose of the paper is to provide a simplified microscopic model that reproduces the behavior of
thermodynamic variables in the intermediate phase.
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2 INTERMEDIATE PHASE AND RIGIDITY IN
CHALCOGENIDE GLASSES

The anomalies mentioned previously, along with most of the bulk
properties of chalcogenide glasses, have been related to a
microscopic property of their covalent network called rigidity
[19]. It can be defined as the property of atoms being able to move
without deforming current bond angles and lengths. More
precisely, a whole mathematical formalism can be developed
to study rigidity [20].

Independently of the mathematical theory of rigid networks,
simplified models have been extensively used to study the rigidity
of glasses, with particular focus on reproducing the transition
between rigid and floppy modes [21]. The most relevant of them
is the percolation rigidity model, based on constraint counting,
which can be exactly solved using mean-field
approximations [22].

Besides the obvious complexity arising from the absence of
long-range order in amorphous solids, the challenge in building a
model that recovers macroscopic properties relies on the
difficulty of representing the vibrational entropy accumulated
near the boson peak and the inherent degeneracy of most of the
configurations [23].

Such difficulty is directly related to the problem of effectively
quantifying the rigidity of the network so it can be incorporated
into the microscopic model. Mean-field theories are incapable of
describing the microscopic scale accurately. In the particular case
of two-dimensional networks, the pebble game algorithm [24] is
capable of decomposing a network onto its rigid components
with sufficient speed, but it does not give a method of relating
rigidity to thermodynamic variables.

The algorithm relies on Laman’s theorem [25] which
characterizes exactly the rigidity of a network embedded in a
two-dimensional Euclidean space. The referred theorem hasn’t
been successfully extended to other dimensions due to the
difficulty of the exactly characterizing the rigid components of
a network embedded in an arbitrary geometry. For dimensions
greater than two, approximations are commonly used [26]. As we
are only interested in quantifying the rigidity as a function of
thermodynamic variables in a more accurate way than the mean-
field theories, we could aim to use a non-precise but a simplified
model of the network by using a modified lattice gas model. This
model should take into account the results obtained by the pebble
game algorithm when simulating the transition to a rigid system.

2.1 Description and Behavior of
Chalcogenide Glasses
Chalcogenide glasses are amorphous solids built upon members
of the 16 group of the periodic table (S, Se, Te) by doping them
with members of another group, most commonly group 15
(As,Sb). To a molecular level they can be completely described
by a continuous random network (CRN) [27]: a molecular
network where each edge represents a covalent bond.
Although van der Waal forces between pairs of free electrons
are normally present in the system, those interactions are weak
enough to be left out of the CRN model.

Raman Spectroscopy allows us to obtain the resonant
frequencies of the vibrational modes of the network, which is
related to the different molecular structures (components) of the
network. This information allows to calculate the entropy by
using the formula S � ∑ xilog(xi) where xi is the relative fraction
of each component [28]. This approach has been particularly
useful in numerical studies [23].

The relationship between the topology of the network and its
rigidity to the macroscopic properties of the system via the
changes in its density of states was first proposed by Phillips
[14, 15] and further confirmed from mean-field constraint
counting approaches to rigidity by Thorpe [19, 29].
Experiments have also shown that when examining glasses of
the same compound but different stoichiometries, which is
equivalent to changing the mean coordination number of the
network, macroscopic properties change as a function of the
stoichiometries and present a transition when passing for
coordination numbers similar to the theoretically predicted by
mean-field theory [30, 31]. In addition, when performing
experimental MDSC calorimetry studies of chalcogenide
glasses, we can measure the heatflow during endothermic and
exothermic processes of the system. With these measurements,
the irreversible enthalpy when passing through the glass
transition can be obtained. When analyzing such data as a
function of the stoichiometry of the glass, a reversibility
window is found, in which the irreversible enthalpy vanishes
[16]. Such a window can not be directly associated with a rigid or
floppy phase of the CRN; it forms a new phase called intermediate
phase [16].

The importance and existence of the intermediate phase are
confirmed by the exotic behavior of other macroscopic properties
of the glasses in such a window [32], such as ionic conduction
[33] and infrared reflectance [34]. The intermediate phase has
also been observed by measuring the configurational entropy of
the system [23, 28, 35, 36]. Studies on other chalcogenide glasses
and oxide glasses also exhibit an intermediate phase with similar
anomalies in the macroscopic variables [17], and it can also be
observed in molecular dynamics simulations [18].

Such experiments have also measured quantities that are
directly related to the average coordination number and the
number of floppy modes (see for example [17] and references
inside), which can be used to quantify the constraint density [16].
Those quantities have been also developed in analytical and
numerical treatment of this materials [14, 17].

Despite the experiments and simulations carried out the
intermediate phase is still controversial especially due to
contradicting experimental studies in which a structural origin
of the phase isn’t found [37–41].

2.2 Microscopic Models
Besides the experimental controversy, some efforts have been
made in order to construct a microscopic (structural) model that
reproduces the exotic behavior of the macroscopic variables of the
system. Outside of the intermediate phase context, several
microscopic models have been developed [27, 42], more
recently putting effort into describing the glass transition and
the Arrhenius-like behavior [43, 44].
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One of the first models [45], uses a random bond network that
allowed to control the number of rings of bonds, which are
problematic in the rigidity percolation theory. The authors used a
computer simulation that allowed constructing the network
beginning in a floppy mode and growing it by adding bonds
that restrict movement in a non-redundant way (i.e., the bonds
reduce the degrees of freedom of the system). After all of the
independent bonds have been placed, the bond allocation
continues and its performed at random. With this model, the
authors were able to observe a transition from a floppy state to a
rigid, non stressed (i.e., without redundant bonds) and from there
to a stressed network. The key element in the model is in the
procedure of the building that allows for self-organization in the
network.

This model was further developed by Chubynsky et al. Ref. 46
in order to work with networks in thermodynamic equilibrium, as
the network construction process of the original model could lead
to highly atypical networks for the system. This model changes
the original only in a small way: it grows the network from a
floppy state by adding independent bonds, but every time it adds
a bond it deletes and creates a bond that doesn’t change the stress
(i.e., the redundancy of another bond) of the network.

Another model Ref. 47 also uses the self-organization of the
network, in this case by explicitly describing the Hamiltonian as
the number floppy modes. The network is restricted to a Bethe-
like lattice (of finite size). The system is then studied using Monte
Carlo simulations, switching configurations by rewiring two
randomly selected nodes. The intermediate phase is found in
terms of changes in the probability of a stressed cluster that exists
and percolates through the entire lattice.

It must be acknowledged that the three mentioned models
depend on the Pebble Game algorithm in order to describe the
independent bonds of the network. Other models have been
studied before those mentioned [48]. They do not depend directly
on the exact description of the rigid components of the network,
but instead approximate those components via loops or cycles of
the covalent graph. They are also known as tree-like percolation
models. Most of these models do not produce a uniform ensemble
with equal probability for all tree-like structures, although they
can be treated as if they were in thermodynamic equilibrium.
Tree-like percolation models also include self-organization by
avoiding the building of loops.

Models that directly attack the thermodynamic properties
from the hamiltonian either analytically [49] or numerically
via stochastic descriptions [23] have also been developed.
Another important aspect of the models in this subsection is
the fact that most of them are designed only to describe the
system in moments where we can accurately characterize the
vibrational entropy of the atoms. Such an assumption implies that
the temperature T of our systems is much smaller than the Debye
temperature TD.

3 MODEL

Similar to tree-like percolation models, we can argue that in two-
dimensions the redundant constraints put by adding a bond to an

atom with zero degrees of freedom is equivalent to whether the
connectedness of the graph will depend on such bond. In a lattice
gas model, an independent bond will be a bridge edge of the
graph, and rigid components become equivalent to components
isomorphic to cycles. To obtain the macroscopic variables from
the microscopic model, we need its hamiltonian. We will base our
model in the lattice gas model, which has the following
hamiltonian:

H � −μ∑
i

ni − J∑
〈i, j〉

ninj (1)

where μ is the chemical potential, ni is 1 or 0 depending if the site i
is or not occupied, and J is the energy of the bound between two
nearest neighbors represented by 〈i, j〉.

This hamiltonian will be modified to take into account the
energy cost of stress (redundant constrains). In our model these
redundant constrains are the bonds forming cycles. Then, adding
a cost energy of the bonds belonging to a cycle to Eq. 1, we obtain:

H � −μ∑
i

ni − J∑
〈i, j〉

ninj + C ∑
〈i, j〉 ∈ L

ninj � Hchem +Hint +Hrig (2)

here L is the set of all the nearest neighbors that form clusters
without bridge edges. This is equal to the set of all the edges
between vertices in cycles. C > 0 represents a penalization for
forming rigid clusters that delay the normal phase transition of
the system between a low-density and a high-density state. This
allows our system to find new non-rigid configurations and stay
near them for large simulation times. Figure 1 shows occupied
sites as circles, while the bridge edges are in black, and cycles are
plotted in purple.

Our model differs from the original tree-like percolation [50]
due to the fact that, although it is also an Ising-like model, in the
tree-like model the connectedness problem arises as an

FIGURE 1 | Search of rigid clusters for a 16×16 square lattice system
with closed boundary conditions.
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interpretation of the system, meanwhile that in our model we are
explicitly modifying the hamiltonian with a new term.

In the limit T→ 0 we can approximate how the system in a
square lattice will behave in order to orient the range of
parameters of the Hamiltonian for which we will see certain
transitions.

For C ∼ μ ∼ J , if we have N atoms with a fraction l of them
forming rigid clusters, we can suppose than adding a new atom
adds three rigid bonds and change two normal bonds to rigid
bonds on average (see Figure 2), which becomes equally likely
when

Hchem(N) +Hint(N) + Hrig(lN)<Hchem(N) − μ +Hint(N) − 3J

+Hrig(lN) + 5C,

(3)

which gives a critical value μc1 for the chemical potential when the
inequality becomes an equality:

μc1 � 5C − 3J (4)

and suggests a change between medium and high density.
Physically, this medium density corresponds to the case where
adding particles in rigid, non stressed components is favored.
This can be related to the constrain density nc of the network, so
that μ> μc1 will correspond to high constrain density nc (fully
connected system).

For μ, J≫C orC ≈ 0 we have the same behavior than a normal
lattice gas, and the critical value for μ is expected at μc2 � −2J with
a jump between low and high density.

For sufficiently high values of C≫ μ, J energy minimization
will be achieved by having as less cycles as possible. For N atoms
in the system not belonging to a cycle, it will be equally probable
to add or remove atoms if:

Hchem(N + 1) + Hint(N + 1) � Hchem(N) + Hint(N) (5)

which happens for μc3 � −J and predicts a transition between
high and low density states. μ< μc3 will correspond to a floppy
system with low constrain density nc ∼ 0. For μc1aμc3, which is
obtained for Cca2J/5 we can expect only a double transition in
the system.

Summarizing, μc1 the critical value for the transition from a
medium to high density (rigid to stressed), μc2 is the typical
critical value from zero density to one in the lattice gas model, and
μc3 correspond to the value where appear a transition from zero to
non zero (floppy to rigid) density.

4 SIMULATIONS

We studied the model performing Markov Chain Monte Carlo
simulations, based on the Metropolis-Hastings algorithm. The
stability and convergence of chains were analyzed to determine
the number of Monte Carlo Sweeps (algorithm steps per lattice
site) needed to achieve convergence. For τ � 100 Monte Carlo
Sweeps all the systems are thermalized. This is also confirmed
after seeing a drastic reduction of the standard deviation of
samples between the whole system and the last τ/2 states.

We simulated for 41×31 equally spaced values of (μ,C) in the
[−3.5, 0.0] × [0.5, 1.2] interval and fixed J � 2, KBT � 0.5 over
four independent square lattices with periodic boundary
conditions of side L � 32 and 40. Macroscopic variables were
calculated as the average of the thermalized values as shown in
Figure 3.

The simulation was coded in the Julia Language [51], and can
be found online in a public repository at: https://github.com/
sayeg84/latticeModels

5 DISCUSSION

5.1 Macroscopic Variables
In a canonical ensemble, the probability to be in a particular state
is proportional to exp(−H/KT) � exp(−βH). This give us a
relation between temperature and the parameters of the
hamiltonian. Developing this expression we obtain
exp(−βH) � exp(βμ∑ ni)exp(−β(Hint +Hrig)). Given so,
varying the parameter μ is roughly equivalent to varying
β � 1/KT , by this we mean both variables can be used to
induce the transitions in a similar way, but the corresponding
critical exponents are different [52]. Varying the other two
parameters is not equivalent to varying β, since these are not
multiplied not by the sum of ni, but by the sum of the product (for
many configurations, the product βC∑ ninj � 0). However, these
parameters can be useful to extend the model to study the effects
of pressure or to perform simulations varying T instead of μ.

Changing pressure on the system is equivalent to deforming
the lattice (change the volume V) which translates into a change
of the potential energy because J � J(V) and C � C(V). The
probability to be in a particular state in the NPT isothermal-
isobaric ensemble is proportional to exp − β(H + PV −
Nlog(V)/β) [53]. This probability looks like the probability for

FIGURE 2 | New bonds (green) created by adding a new atom next to a
rigid cluster (purple) in a square lattice.
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FIGURE 3 |Macroscopic variables for a square lattice model: density ρ (top left), internal energy U (top right), density susceptibility χ (bottom left) and heat capacity
at constant volume CV (bottom right), for L � 40 as a function of chemical potential μ and the parameter C.

FIGURE 4 | Macroscopic variables for a square lattice: density ρ (top left), internal energy U (top right), density susceptibility χ (bottom left) and heat capacity at
constant volume CV (bottom right) for constant C � 0.92 for L � 40 as function of μ. Dark line in U separates positive and negative energies.
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the NVT-ensemble, except that instead of H, now we have
H′ � H + PV − Nlog(V)/β. For the Monte-Carlo simulation,
this means that we need to add the possibility to change the
volume of the system instead of changing a node in the lattice.
The only missing part is a model for J and C. A goodmodel for J is
J(V) � A0V2, where A0 is the harmonic contribution to the
elastic interaction energy between two neighbors [54].
However, we still don’t have a good model for C(V). This
ensemble is also probably more suitable to variate the
temperature than the NVT-ensemble, since the experiments
are performed at constant pressure, and if the volume is fixed,
when the temperature increases the probability to change a node
tends to 1, whichmeans that the density tends to 1/2, so the whole
transition is not reached, the reason why we used μ instead. We
would now like to give an interpretation of C.

Average coordination number 〈r〉 and rigidity are correlated
and are considered as the defining parameters for the study of the
intermediate phase. Redundant bonds have an energy cost that we
related with C in Eq. 2. In this case, the total energy cost is the
product of all the redundant bonds times C. We can variate then
the energy cost by varying the number of redundant bonds (so, by
varying 〈r〉) or by varying C. So, we can interpret the variation of
C as the variation of the percentage of pollutants if the reached
configuration is the same. Then, small values of C correspond to
flexible configuration and high values of C to rigid or stressed
configurations.

The susceptibility χ and the specific heat Cv show two large
jumps near values μc3 � ≈ − 2.5 and μc1 > μc3. We observe that
μ> μc1 shows a high density state, while μc1 > μ> μc3 gives a
medium density state and μc3 > μ returns to low density.

Because a medium-density state could be unexpected for a
model of this kind, we checked that its existence is independent of
system size by performing simulations for smaller sizes. It occurs
for every size and even becomes more stable asN grows. We define
μc1 as the value of μ where there is a transition from medium to
high density. In Figure 3 we can see that this also corresponds to
the value of μ that maximizes the derivatives of the variables, that in
this case result in the density susceptibility χ and the specific heat
Cv . To better visualize these plots, in Figure 4we show a cut of each

macroscopic variable when C � 0.92. We define μc1(Cv) �
argmax(Cv(μ)) and μc1(χ) � argmax(χ(μ)). In Figure 5 is
displayed the relationship between μc1(Cv), μc1(χ) and C.

The linear fit of the data displays parameters close to the
theoretical analysis done previously (section 3, and equation
refeq: mu1) with a high correlation coefficient even if the
analysis was very rough. An analysis of hexagonal and
triangular 2D lattices revels that the macroscopic variables
exhibit the same behavior for those values of μ but for a
different interval of C. This is expected from a theoretical
point of view due to the critical point dependence of the
average rigid bonds added when going from the spanning tree
configuration to a rigid configuration.

5.2 Hysteresis
The simulations presented in the previous subsection were all
performed by initializing the system with a random low-density
configuration and making the simulations over it in a μ-increasing
direction. When performing the same procedure but for
μ-decreasing and beginning with a high-density configuration,
the macroscopic thermodynamic variables show a different
path. This difference in the path is called hysteresis.

Hysteresis is usually related to loss of internal energy and the
work that the system produces [55, 56]. The area of the hysteresis
loop in the density of the lattice gas is directly proportional to the
work ΔW, while the area of the hysteresis loop in the internal
energy corresponds to the loss of energy ΔU in the process. Using
the first law of thermodynamics, we can obtain the heat
ΔQ � ΔW + ΔU , which we associate with the irreversible
enthalpy. The area enclosed by the loop can be positive or
negative depending on how the loop is walk by varying μ. To
correctly define the sign, we will say that the area is positive if the
loop is walked counterclockwise, and negative otherwise.

The hysteresis loops and their areas, corresponding to the
work produce by the system ΔW and the change of the internal
energy ΔU are shown in Figure 6. Figure 7 shows the heat ΔQ �
ΔW + ΔU as a function of C. The integrals used to calculate the
area of the loops were calculated using a trapezoidal rule.

Comparing Figures 3, 6 we can see that the difference in
internal energy ΔU is negative when there is a middle step in the
transition when varying μ. The interval where this occurs is from
C ∈ [0.6, 1.14], and the minimum is reached forC ∼ 1.0. ForΔW,
the function decreases in the interval C ∈ [0.5, 0.65], for
C ∈ [0.65, 85], a local minimum is reached, then the function
becomes increasing until a maximum around C ∼ 1.1 is found,
and then it decreases again until C ∼ 1.14, where ΔW ∼ 0.

As a result ΔQ � ΔW + ΔU is a linearly decreasing function in
the interval C ∈ [0.5, 0.78], while in the interval C ∈ [0.78, 1.14],
ΔQ ∼ c remains constant, with c ∼ 0.1. We associate this interval
C ∈ [0.78, 1.14] (shaded area) with the intermediate phase
reported in chalcogenide glasses when a pollutant is added.
This region was also obtained as the region where there is a
step on the plot of ρ, passing through ρ � 0.5. However for values
C > 1.14, we did not observed an increase of ΔQ as reported in
literature [17], instead we observed ΔU ∼ ΔW ∼ ΔQ ∼ 0. We
associate this with the limitations of the model, where a transition
is not fully achieved when C is too high.

FIGURE 5 | μc1 as function of C taken from both CV and χ. Values of μc1
concide for both variables at all the values of C. The linear fit was performed
jointly for both data.
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Recalling the association of the parameter C with 〈r〉 we see
that our results have qualitatively a similar behavior to the
experimental studies in literature [17]. Comparing with the
other numerical results of microscopic models, our results
display phase separation in terms of the macroscopical
variables related to the hamiltonian. Even if a more concise
comparison with experimental results is not able with our
work, the model is sufficiently generic to be expanded in order
to achieve more precise simulations that could reproduce
experimental results.

6 CONCLUSION

We present a simple model that exhibits a change in enthalpy
behavior when varying the rigidity of the system, a behavior similar
to that reported in chalcogenide glasses when increasing the
amount of added pollutants. The fact that the model is simple
results in efficient simulations, that allows us to make large enough
systems and study how they change by varying different
parameters. In addition, this model allows us to obtain density,
internal energy, density susceptibility, and specific heat.

For certain parameters, the model exhibits a step transition in the
density, while for others the transition is with no medium values of
density. From the values of Cv and χ we observe that the first
transition is not clear while the second seems to be a first-order
transition.We interpreted the twopossible states as “solid” and “fluid”.

We were able to analytically approximate the parameter range
where the transitions would appear. Our numerical results are in
close agreement with such rudimentary approximations.
Furthermore, our model is the first to connect the microscopic
properties with the macroscopic thermodynamic variables.

Studying the hysteresis loops wewere able to observe a change in
behavior of the enthalpy, which is related to the change in density
observed when the chemical potential (or temperature) varies when
the transition becomes stepped width a medium density.

Despite success in qualitatively describing the first transition
(flexible-rigid) to the intermediate phase, we were not able to
reproduce the transition to stressed systems. We speculate that to
see such a transition we would need to vary the temperature
instead of the chemical potential.

FIGURE 6 |Hysteresis in the thermodynamic variables for different values of C. Light colors are forC � 0.64 and darker colors are forC � 1.0367. The integral of the
curve is shown in the right side.

FIGURE 7 | ΔQ � ΔW + ΔU as a function of C for the values obtained in
Figure 6, the shaded area corresponds to the region where there is a step on
the plot of ρ, passing through ρ � 0.5.
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