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In this paper, we have extended and deepened the study on fractional order phase
transition (FPT) of a charged AdS black hole. We have carried out a detailed analysis of FPT
for several AdS black hole prototypes: black hole surrounded by quintessence
background, 5D Gauss-Bonnet, D dimensional RN-AdS BH, and lastly Kerr black
holes. We have shown that the 4/3 order FPT at critical points holds for the first three
black holes systems, while for Kerr black holes, the fractional order is rather 1/3. These
results suggest two remarkable features: Firstly 4/3 order phase transition can be assumed
for asymptotically AdS black holes spherical solutions; secondly the fractional order is not
universal and can be affected by the geometric symmetry.
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1 INTRODUCTION

Thermodynamic properties and particularly phase transitions of black holes in asymptotically Anti
de-Sitter spacetime have been investigated extensively. This growing interest in phase transitions
originates from their relation to holographic superconductivity in the context of the AdS/CFT
correspondence [2]. Recently, many studies of black holes criticality have identified the cosmological
constant with thermodynamic pressure and its conjugate quantity with thermodynamic volume
[3–6]. Furthermore the inclusion of the P − V term in the first law of thermodynamics has led to
identification of the black hole mass with the enthalpy of the event horizon (H ≡ M) [7]. Then, the
analogy with the Van de Waals P − V criticality has been established [8] and the first- and second-
order phase transitions have been readily found [6]. Generalization to thermodynamics structure of
Reissner-Nordström black holes surrounded by quintessence has also been carried out [9–13].

Originally outlined by Ehrenfest who used the discontinuities in derivatives of the free energy to
probe and classify thermodynamic phase transitions, Ehrenfest’s classification scheme is based on the
experimental observation of the density contrast between coexisting phases and latent heat during a
phase transition. When a system undergoes a phase transition at a critical temperature, Ehrenfest
defines its order of phase transition as the smallest integer n≥ 1 such that the n − th derivative of
g(T) has a discontinuity at the critical point. More formally this criterion generally reads as

lim
T→T+

c

dng(T)
dTn

� A+ ≠A− � lim
T→T−

c

dng(T)
dTn

, (1)

where g(T) denotes the free energy as a function of temperature T.
Hawking-Page phase transition is an example of first-order transition. The critical point is

commonly presented as a witness of second-order phase transition in the sense of Ehrenfest. A much
more general classification scheme based on fractional derivatives, viz. a derivative with noninteger
order, along arbitrary curves in the thermodynamic state space, has been revealed [15–17]. Fractional
phase transitions (FPT) go back to the work of Nagle on dipalmitoyl lecithin (DPL) system [18],
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where it has been observed that the order ↔ disorder phase
transition is neither of first nor of second type but is rather of 3/2
order (see also Ref. 19). Besides, 4/3 order FPTs have also been
found in Van der Waals fluids [14].

The generalized Ehrenfest classification holds for all
thermodynamic systems having phase structures, including
AdS black holes with analogous behavior to Van der Waals
gases. Indeed, a first study recently performed by Ma [1]
showed that RN-AdS black holes can undergo 4/3 order FPT.
In this paper, we aim to explore further this issue and see
whether this fractional order holds for any AdS black hole
solution, as in VdW systems. To this end, we consider four
prototypes: First the charged AdS black hole surrounded by
quintessence field to show the effect of an external source.
Second, we use a D dimensional RN-AdS and five-
dimensional Gauss-Bonnet-AdS black hole to probe
whether higher spacetime dimensions, d > 4, and higher
derivative corrections can affect and modify the FPT order
near the critical point. At last, we also study FPT beyond
spherical symmetric static black holes through Kerr black
holes and verify the role played by the geometric symmetry
when dealing with FPT.

This paper is organized as follows. In the next section, first
we present the following AdS black hole solutions: Kiselev, D
dimensional RN-AdS, and 5D Gauss-Bonnet solution, and
their corresponding thermodynamic quantities. Then, we
study their fractional phase transitions at critical points via
the Caputo derivative of Gibbs free energy. Section 3 is
devoted to the analysis of Kerr-AdS black hole and
derivation of its FPT order. Our conclusion is drawn in the
last section.

2 THERMODYNAMIC CRITICALITY AND
FRACTIONAL ORDER PHASE
TRANSITIONS OF ADS BLACK HOLES
WITH SPHERICAL SYMMETRY

In this section, we consider three spherical symmetric solutions of
static asymptotically AdS black holes, namely: a charged AdS BH
surrounded by quintessence, D dimensional RN-AdS BH, and a
5D Gauss-Bonnet AdS black holes. We first calculate their
thermodynamic quantities and then describe the behaviors of
corresponding Gibbs free energy and their fractional derivatives
nearby the critical points. Our objective is to probe whether the
extra factors, as quintessence parameter, higher dimensions, and/
or higher derivatives in Gauss-Bonnet term parameters, could
affect the FPT order.

2.1 Charged AdS Black Hole Surrounded by
Quintessence
From high precision astronomical observations, it has been
shown that the Universe is currently undergoing a phase of
accelerated expansion [20, 21], which might be due to dark
energy acting as a repulsive gravity. A possible origin of this

phenomenon could come from the so-called quintessence field,
which obeys an equation of state formulated through the relation
between negative pressure and energy density as p � ωqρq, where
the quintessence parameter is constrained as −1<ω< − 1/3 [22].

We consider the Kiselev solution of four-dimensional charged
AdS black holes surrounded by quintessence,

f (r) � 1 − 2M
r

+ Q2

r2
− Λ
3
r2 − α

r3ωq+1, (2)

where a represents a positive normalization parameter, while M
and Q are the mass and electric charge of the black hole,
respectively. As usual, we treat the cosmological constant as a
dynamical pressure of the black hole [7],

P � −Λ
8π

, (3)

The Hawking temperature related to the surface gravity via the
formula 2πT � κ is then expressed as [13]

T � 1
4π

⎡⎣1
rh
− Q2

r3h
+ 3ωqα

r
3ωq+2
h

+ 8πrhP⎤⎦, (4)

where the horizon rh is determined from the condition f (rh) � 0.
The equation of state for the charged AdS black hole surrounded
by quintessence is given by

P � 2πT
2πv

− 1
2πv2

+ 2Q2

πv4
− 3 × 21+3ωqαωq

2πv3ωq+3 , (5)

where the specific volume v associated with the fluid volume is
related to the horizon radius since v � 2rh. The first law of black
hole thermodynamics in the extended phase space can be written
as [11]

dM � TdS + VdP + ΦdQ +Qdα, (6)

where the conjugate quantities of the parameters P,Q, and a read,
respectively, as

V � 4πr3h
3

, Φ � Q
rh
, Q � − 1

2r
3ωq

h

, (7)

while the Smarr relation is formulated by

M � 2TS − 2PV + ΦQ + (3ωq + 1)Qα. (8)

Thereafter, without loss of generality, we will set ωq to the value
ωq � −2/3. In this case, we can determine the critical point
analytically as

Tc �
�
6

√ − 9Qα
18πQ

, vc � 2
�
6

√
Q, Pc � 1

96πQ2
. (9)

For subsequent analysis, it is more appropriate to introduce the
following variables:

p � P − Pc

Pc
, t � T − Tc

Tc
, ] � v − vc

vc
. (10)

Thus with the new set of variables (t, p, ]), the critical point lies at
(t � p � ] � 0), while the equation of state reduces to a quartic
equation in ],

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 8 | Article 6204302

Chabab and Iraoui Fractional Order Phase Transition in Black Holes

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


3p(] + 1)4 + 4t(] + 1)3(3 �
6

√
Qα − 2) + ]3(3] + 4) � 0. (11)

Besides, the rescaled Gibbs free energy now takes the form

g(t, p) � 8 − ]4 − 4]3 + 8] − (] + 1)4p
4

�
6

√ (] + 1) . (12)

Next we probe the behavior of Gibbs free energy g(t, p)
and its fractional derivatives near critical point. First
we use the expansion series of ](t, p) derived from Eq. 11
and substitute it into the g(t, p). The resulting expression
reads as

g(t, p) ≈ [ �
2
3

√
+ p
2

�
6

√ + . . .]
−[ �

2
3

√
− 3Qα − (2 − 3

�
6

√
Qα)

61/6
(p1/3 − 19

4 × 62/3
p2/3) + . . .]t

− [21/6(2 − 6
�
6

√
Qα + 27Q2α2)

9 × 31/6
(25/3
p2/3

− 13
91/3p1/3

) + . . .]t2
+O[t3].

The above equation can well be expressed in the Taylor series of t
and written in a simple form as

g(t, p) � A(p) + B(p)t + D(p)t2 +O[t3]. (13)

Several definitions of fractional derivatives exist in literature [23].
Here we rely on Caputo definition which enables easy use of
conventional boundaries and initial conditions [24]:

Dβ
t g(t) � 1

Γ(n − β)∫ t

0
(t − τ)n− β− 1 z

ng(τ)
zτn

dτ, n − 1< β< n,

(14)

where ß is the order of derivative and n an integer. As a result of
calculation we get

Dβ
t g(t, p)∣∣∣∣∣p �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2D(p)
Γ(3 − β)t2−β + (β − 2)B(p)

Γ(3 − β) t1−β, t > 0; 0< β< 1,

− 2D(p)
Γ(3 − β)|t|2− β − (β − 2)B(p)

Γ(3 − β) |t|2− β, t < 0; 0< β< 1,

2D(p)
Γ(3 − β)t2−β, t > 0; 1< β< 2,

− 2D(p)
Γ(3 − β)|t|2− β, t < 0; 1< β< 2.

(15)

According to Refs. 11 and 13, the equation of state near the
critical point (t≪ 1, ]≪ 1) simplifies to

p ≈ kt + O[t2, t]], (16)

where the slope k is given by

k � Tc

Pcvc
� 8
3
− 4

�
6

√
Qα. (17)

Therefore, we can calculate the values of Dβ
t g(t, p) for 1< β< 2 in

the limit (t→ 0, p→ 0) by substituting Eq. 16 into Eq. 15. Thus,
we obtain

lim
t→ 0 ±

Dβ
t g(t, p) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 for β< 4/3,

∓ (2 − 3
�
6

√
αQ)4/3�

6
√

Γ(2
3
) for β � 4/3,

∓∞ for β> 4/3.

(18)

Obviously, for β � 4/3 case, we see a jump discontinuity,

lim
t→ 0−

Dβ
t g ≠ lim

t→ 0+
Dβ

t g. (19)

When β> 4/3, the ß-order fractional derivatives of the Gibbs free
energy diverge. Hence, as for 4D RN-AdS black holes [1], the FPT
order of the RN-AdS black hole surrounded by quintessence is

FIGURE 1 | Left panel: The behavior of fractional derivativesDβ
t g for ß equal to 9/6 (purple line), 9/8 (red line), and 4/3 (blue line) near the critical point of charged AdS

black hole surrounded by quintessence. Input: Qα � 0.55. Right panel: Jump magnitude near the critical point as a function of a for β � 4/3.
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β � 4/3. This is clearly illustrated by the left panel of Figure 1
where the fractional derivative Dβ

t g is plotted as a function of the
reduced temperature t for several values of β: β � 9/6, 9/8, and 4/3
near the critical point. One can see that this plot is continuous at
Tc for β< 4/3 and becomes progressively steeper as ß approaches
4/3 but behaves as discontinuous at Tc for β � 4/3 and fully
divergent once β> 4/3. It is also worth to notice the behavior of
the magnitude (4−6 �

6
√

αQ)4/3�
6

√
Γ(2

3) for β � 4/3 shown in Eq. 18. This
magnitude monotonically decreases as far as a increases and
becomes 44/3�

6
√

Γ(2
3) when α→ 0, whereas it fades away in the limit

α→
�
6

√
/(9Q), that is, Tc → 0, as shown by the right panel of

Figure 1.
This result clearly shows that, for spherical symmetric AdS black

hole in quintessence background, the FPT still stands at 4/3 order.
Therefore, the fractional phase transition is not affected by the
external quintessence field surrounding the charged AdS black hole.

2.2 Charged AdS Black Holes in Higher
Dimensions
Now we consider a D dimensional charged AdS black hole to
check whether higher dimensionD deflects the fractional order of
the phase transition from 4/3. For this case, the metric is given by

ds2 � −f dt2 + dr2

f
+ r2dΩ2

D−2, (20)

f (r) � 1 − m
rD−3

+ q2

r2(D− 3)
− 2Λr2
(D − 2)(D − 1), (21)

m and q are related to the ADM mass M, while Q stands for the
black hole charge [25]:

M � D − 2
16π

ωD−2m, Q �
��������������
2(D − 2)(D − 3)√

8π
ωD−2 q (22)

with ωD veing the volume of the unit D-sphere.
Thermodynamics of higher dimension black holes has been

investigated in Ref. 26 as well as their critical behaviors revealed as
phase transition between small and large black holes. The critical
points were derived at

vc � 4
D − 2

[q2(D − 2)(2D − 5)] 1
2(D− 3),

Tc � (D − 2)(d − 3)2
(2D − 5)

1
4πvc

,

Pc � (D − 3
D − 2

)2 1
πv2c

, (23)

where the specific volume is given, in the geometric units, by
v � 4

D−2rh. As previously once we use the reduced variable, the
equation of state transforms to the following general form:

4t � 2D − 5

(D − 3)(] + 1) −
(] + 1)5− 2D

6 + D(D − 5) +
D(2D − 5)(] + 1)(p + 1)

(D − 2)2

− 2(2D − 5)(] + 1)(p + 1)
(D − 2)2 − 4.

(24)

The rescaled Gibbs free energy is

g(t, p) � (5 − 2D)2(] + 1)3−D
2[(D − 2)(2D − 5)]3/2 +

1
2

������
2D − 5
D − 2

√
(] + 1)D− 3

−
��������
2D − 5

(D − 2)3
√

(D − 3)2
2(D − 1) (p + 1)(] + 1)D− 1, (25)

Note that forD � 4 the results obtained in Ref. 1 for RN-AdS4 BH
are recovered.

Next step, we solve Eq. 24 and expand the Gibbs free energy
for each dimension spacetime D> 5. As illustration, consider
D � 6; then the equation for g(t, p) near the critical point
reduced to

g(t, p) ≈ ( �
7

√
5

+ 9
�
7

√
p

20
+ . . .) + ( − 9�

7
√ + 18

�
33

√
p1/3�
7

√ − 15
4
(32/3 �

7
√ )p2/3 + 60677p

768
�
7

√ + . . .) t

+( − 48
�
33

√
7

�
7

√
p2/3

+ 116 32/3

7
�
7

√
p1/3

+ . . .) t2 +O[t3] ,

(26)

Since the equation of state near the critical point behaves as
p ≈ 4D−8

2D−5 t, and for t approaching 0, we find that the fractional
derivative of g(t, p) is discontinuous function,

lim
t→ 0 ±

Dβ
t g(t, p) �

0 for β< 4/3,

∓ 12
�
63

√

75/6 Γ(5
3
) for β � 4/3,

∓∞ for β> 4/3,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(27)

with a discontinuity taking place at β � 4/3. We summarized the
calculation results for all dimensions D � 4 − 10 in Table 1.

Table 1 decidedly shows that, whatever the dimensionD of the
RN-AdS black hole, the fractional order of phase transition near
the critical point arises decidedly at β � 5/3, with the jump
magnitude increasing as D dimension gets larger.

2.3 5D Gauss-Bonnet-AdS Black Hole
First we briefly introduce the action of Gauss-Bonnet black hole
and its main thermodynamic features.

The action of this theory reads as

TABLE 1 | Limits and fractional order phase transition at the critical point for D
dimensional RN-AdS BH.

Dimension d Order FPT limt→ 0 ± Dβ
t g(t,p)

D � 4 β � 4/3 ∓ 2 25/6

3
�
3

√
Γ(5

3)
D � 5 β � 4/3 ∓ 8

�
23

√�
36

√
55/6 Γ(5

3)
D � 6 β � 4/3 ∓ 12

�
63

√
75/6 Γ(5

3)
D � 7 β � 4/3 ∓ 32

�
2
3

3
√ �

5
√

9 Γ(5
3)

D � 8 β � 4/3 ∓ 50( 2
11)5/6�

36
√

Γ(5
3)

D � 9 β � 4/3 ∓ 24
�
63

√ �
7

√
135/6 Γ(5

3)
D � 10 β � 4/3 ∓ 196(2

5)5/6
3
�
3

√
Γ(5

3)
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SL � ∫

dDx
���−g√ (R − 2Λ + α′L2). (28)

L2 represents the Gauss-Bonnet term
L2 � Rμ]λσRμ]λσ − 4Rμ]Rμ] + R2, with the Riemann curvature
tensor Rμ]λσ and Ricci tensor Rμ], while R is the Ricci scalar.
α′ is a dimensionless coupling constant.

A spherically symmetric static solution of this theory has been
derived, and the metric function determined through solving the
real roots of a polynomial equation [27, 28].

It is founded to seek a connection between the higher
derivatives in Gauss-Bonnet term and the phase transition,
checking whether it affects the FPT’s order. Here, we use as
prototype D � 5 Gauss-Bonnet-AdS black holes, which exhibit a
critical behavior featured via small/large phase transition, while
for D≥ 6 no phase structure has been unveiled [29, 30]. The exact
solution describing this black hole is given by Ref. 28.

fGB(r) � 1 + r2

2~α
(1 − ����������������

1 − 16πP~α
3

+ 32M~α

3πr4

√ ), (29)

where ~α is a Gauss-Bonnet coupling constant. In the extended
phase space, the equation of states reads as

P � 32~αT
9v3

+ T
v
− 2
3πv2

, (30)

where the specific volume is v � 4
3rh. The thermodynamic critical

point coordinates are

Pc � 1
48π~α

, Tc � 1

2
�
6

√
π

��
~α

√ , vc � 4

���
2~α
3

√
, (31)

while the rescaled Gibbs free energy (G/~α) reads as

g(t, p) � ]3(] + 2)3 + (](] + 2) + 4)(] + 1)4p
8(3](] + 2) + 4) . (32)

As previous analysis, since the equation of state near the critical
point [29] is reduced to p ≈ 4t + O[t2, t]], the fractional
derivative of g can be written as the following form:

lim
t→ 0 ±

Dβ
t g(t, p) �

0 for β< 4/3

∓ 25/3

Γ(5
3
) π for β � 4/3

∓∞ for β> 4/3

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(33)

Again, we find that the phase transition near the critical point
is fractional and happens at order 4/3, which suggest that
neither the spacetime dimension nor the higher derivative
corrections introduced by means of the Gauss-Bonnet term
can alter the fractional order phase transition at the critical
point. Hence we assume that FPT is located at 4/3 order,
whatever the external factors (space dimension, surrounding
background) as far as the AdS black hole solution possesses a
spherical symmetry.

The next legitimate question is what about axisymmetric black
hole solutions? Is the 4/3 order of FPT universal? we attempt to

respond to this issue in the subsequent section using Kerr-AdS
black hole as prototype.

3 KERR-ADS BLACK HOLES

The Kerr solution is the only known family of exact solutions
which could present the stationary axisymmetric field outside a
rotating massive object.

By using Boyer-Lindquist coordinates, the Kerr asymptotically
AdS black hole solutions can read as [31–33]

ds2 � −Δ
ρ2
[dt − asin2θ

Ξ dφ]2

+ ρ2

Δ dr2 + ρ2

S
dθ2

+ Ssin2θ

ρ2
[adt − r2 + a2

Ξ dφ]2

, (34)

where

ρ2 � r2 + a2cos2θ ,Ξ � 1 − a2

l2
, S � 1 − a2

l2
cos2θ ,

Δ � (r2 + a2)(1 + r2

l2
) − 2mr . (35)

The mass M and the angular momentum J are related to the
parameters m and a as follows:

M � m
Ξ2 , J � am

Ξ2 (36)
.

Knowing that the pressure is still given by Eq. 3 and neglecting all
terms of higher order in J, the equation of state in terms of
temperature, specific volume, and the angular momentum reads
as [26]

P � T
v
− 1
2πv2

+ 48
πv6

J2 +O[J4], (37)

where the specific volume associated with the Kerr black hole is
given by

v � 2(3V
4π

)1/3

� 2r+ + 12
r3+(3 + 8πr2+P)J2 . (38)

The critical point occurs at

vc � 2 × 901/4
�
J

√
, Tc � 903/4

225π
1�
J

√ , Pc � 1
12

��
90

√
π

1
J
. (39)

From the approximation used previously, we derive the
expression of rescaled Gibbs free energy in terms of the
dimensionless parameters given in Eq. 10,

g(t, p) � G/ �
J

√
�

�
54

√ ( − 12
��
104

√ �
J

√ (] + 1)7(p + 1) + 9
�
3

√ (] + 1)4 + �
3

√ )
18 23/4(] + 1)3 ,

(40)

and the reduced equation of state
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]3(10]3 + 36]2 + 45] + 20) + 10(] + 1)6p − 24(] + 1)5t � 0.

(41)

Then, using Eqs 40 and 41, one can readily derive the phase
transition order near the critical point. Indeed, t-expansion of the
rescaled Gibbs free energy becomes

g(t, p) ≈ C1 + [C2 + C3

p2/3
+ C4

p1/3
+ . . .]t + [C5 + C6

p5/3
+ C7

p4/3
+ C8

p2/3

+ + C9

p1/3
+ . . .]t2 +O[t3],

(42)

where the coefficients Ci are functions of J. Moreover, the
pressure behaves as p ≈ 12

5 t near the critical point. Using Eq.
15, we obtain the fractional derivative of g(t, p) with 0< β< 2 in
the limits t→ 0 and p→ 0,

lim
t→ 0 ±

Dβ
t g(t, p) �

0 for β< 1/3,
±
5(103 )2/3(2C3 − C6)

9Γ(11
3
) for β � 1/3,

∓∞ for β> 1/3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(43)

with

C3 �
�
26

√ (23/4 �
3

√ − 16
�
54

√ �
J

√ )
3 × 53/4

;

C6 � 4
�
26

√ (23/4 �
3

√ − 16
�
54

√ �
J

√ )
15 × 53/4

.

(44)

The fractional order phase transition of Kerr-AdS black hole
clearly arises at β � 1/3. Figure 2 illustrates the fractional
derivative Dβ

t g for ß equals to 1/2, 1/6, and 1/3 near the
critical point.

Therefore, near the critical point, we see that fractional order
of the phase transition is no longer β � 4/3. This may suggest 4/3
order FPT is not universal and only holds for static black holes
with spherical symmetry.

4 CONCLUSION

Summarizing, in this paper we have studied the continuous
thermodynamic phase transitions of AdS black holes
according to the generalized Ehrenfest classification. By
using the Caputo fractional derivatives of thermodynamic
potentials for a charged black hole surrounded by
quintessence and 5D Gauss-Bonnet and RN-AdSD black
holes, we find that the fractional derivatives of the Gibbs
free energy are always discontinuous at the critical point for
β � 4/3 order and diverge when β> 4/3. These results suggest
that the 4/3 order phase transition is robust and holds as far
one deals with static black hole with spherical symmetry.
However, this feature is not universal and fails for
axisymmetric solutions, as demonstrated for Kerr black
hole where the phase transition happens at β � 1/3 order.
Nevertheless, further investigations of other black holes
configurations are required to consolidate these findings
and establish a more involved classification of
thermodynamic phase transitions.
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FIGURE 2 | The behaviors of fractional derivatives Dβ
t g for ß equal to 1/2

(purple line), 1/6 (red line), and 1/3 (blue line) near the critical point of Kerr-AdS
black hole, with J � 1.
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