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Deep learning (DL) has been recently applied to adaptive optics (AO) to correct optical
aberrations rapidly in biomedical imaging. Here we propose a DL assisted zonal adaptive
correction method to perform corrections of high degrees of freedomwhile maintaining the
fast speed. With a trained DL neural network, the pattern on the correction device which is
divided into multiple zone phase elements can be directly inferred from the aberration
distorted point-spread function image in this method. The inference can be completed in
12.6 ms with the average mean square error 0.88 when 224 zones are used. The results
show a good performance on aberrations of different complexities. Since no extra device is
required, this method has potentials in deep tissue imaging and large volume imaging.
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INTRODUCTION

Biomedical imaging often suffers from the optical aberrations caused by the highly scattering
characteristic of the biological tissue [1]. As the imaging target goes deeper, more complex
aberrations with increasing high-order components will come into existence because of the
multiple scattering process, which may severely distort the imaging focus and thus greatly
undermine the performance of deep tissue imaging [2]. Adaptive optics (AO) is one of the most
common used techniques to correct the aberrations [3]. In this technique, the aberrations are directly
measured by a wavefront sensor or detected in an indirect way, and then accordingly corrected by a
spatial light modulator (SLM) or a deformable mirror (DM) [4]. Mostly, the pattern on the AO
corrector needs to be inferred through a series of calculating operations [5,6] or multiple
measurements [7–9]. As a result, the AO process can be time-consuming and therefore limits
the imaging speed.

Recently, deep learning (DL) has been applied to find direct mapping relations by training neural
networks on large datasets in various researches [10–13]. For the purpose of accelerating the AO
process, there have also been works that take advantage of DL to simplify some conventional steps.
Among these works, Hu et al. presented a learning-based Shark–Hartmann wavefront sensor
(SHWS) to implement a fast AO with direct aberration measurement [14]. The Zernike coefficients
controlling correction pattern were predicted by a revised AlexNet [15]—one of the most used DL
networks—from a single SHWS pattern. Other works include Suárez Gómez et al. [16], Swanson
et al. [17] and DuBose et al. [18]. Similar with most other direct AO methods, these work can be
effectively adopted in retinal imaging [19] or to relatively transparent samples as zebrafish [20].
However, their further applications to most biological samples are inevitably limited by the fact that
the SHWS can hardly be placed within the sample and the utilization of backscattered light is likely to
lead highly degree of inaccuracy [21,22]. Since a large part of biological sample induced aberrations
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should be measured through an indirect way [9], DL assisted
sensor-less AO techniques have been developed at the same time.
One representative work was carried out by Paine et al. They
trained an adapted Inception v3 network (another well-known
DL network) to determine a desirable starting estimate for
gradient-based wavefront optimization from the point-spread
function (PSF) image so that less iterations were required to
achieve convergence [23]. Jin et al. moved forward to generate the
correction pattern directly from the AlexNet calculated Zernike
coefficients with the PSF image as the input [24]. With this
method, the time consumption caused by the iterations can be
completely eliminated, so the running speed of these techniques
got further promoted. However, because it will be increasingly
difficult to implement the measurement as well as the correction
precisely when the number of Zernike modes gets bigger, this
modal AO approach is only able to correct low-order aberrations
[25]. Though Cumming et al. predicted the aberration function
instead of Zernike coefficients, it is still limited to correct simple
aberrations of the first 14 Zernike polynomials [26]. Since high-
order aberrations severely degrade a large proportion of
biomedical imaging results [2], new AO method is needed to
achieve the correction of more complex aberrations while keeping
the fast speed.

In this article, we propose a DL assisted zonal adaptive
correction (DLZAC) method. Instead of correcting aberrations
by Zernike modes, we equally divide the distorted wavefront into
a number of zones and correct the aberration in each zone
independently. In this way, correction with much more
degrees of freedom can be easily achieved with most local-
element based active devices and thus deal with complex

aberrations effectively. It is noted that this sort of zonal
adaptive correction method has already been used in multiple
researches to overcome complex aberrations from biomedical
imaging. Some typical examples include the pupil-segmentation
based AO method by Ji et al. [9] and multidither coherent optical
adaptive technique by Liu et al. [25]. However, all these former
methods require repeated measurements to decide how to correct
different wavefront zones, and thereby slow down the speed by a
large scale. Here we creatively utilize a revised ResNet-34 network
[27] to infer the correction phases of all the 224 valid zones on a
SLM from a single PSF image in one shot.With the acceleration of
a graphic processing unit (GPU), the whole inference process can
be even much faster than the DL assisted modal adaptive
correction (DLMAC) method mentioned above [24]. We
introduce complex aberrations by phase masks to test the
inference accuracy of the network as well as the correction
ability of our method. Furthermore, the performance of
DLZAC is compared with that of DLMAC on aberrations of
different complexities to demonstrate the superiority of our
method.

METHODS

Optical System
The optical system for DLZAC is illustrated in Figure 1A. In this
system, a 488 nm wavelength laser beam is applied as the light
source. Two lenses (L1 and L2) are located immediately after the
source to serve as a beam expander. The pinhole (PH1) between
L1 and L2 is used to collimate the beam. Then the expanded beam

FIGURE 1 | The schematic diagram of DLZAC. (A) An optical system for DLZAC: L1-L5, lens; PH1-PH2, pinhole; HWP, half-wave plate; PBS, polarized beam
splitter; BB1-BB2, beam block; P, linear polarizer plate; M, mirror; BS, beam splitter, 50:50 (R:T); SLM(256 × 256), spatial light modulator; OBJ1-OBJ2, objective lens
(Nikon, 20X/0.75 NA); S, sample plane; CMOS, complementary metal oxide semiconductor camera. (B) The 224 × 224 input PSF image (scale bar: 1 μm). (C) The phase
mask. (D) The correction pattern. (E) The architecture of the DL network.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 6219662

Zhang et al. Deep Learning Assisted Adaptive Correction

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


passes through a half-wave plate (HWP) and a polarized beam
splitter (PBS) to adjust its power into an appropriate range. The
PBS only allows horizontally polarized light to pass, so it also
controls the beam polarization into the right state for SLM
modulation together with a linear polarizer (P). After this, the
beam is directed into a SLM for phase modulation. When the
SLM is utilized for correction, it will be equally divided into 16 ×
16 square zones with 224 of them is valid because of the round
pupil. Each zone on the SLM is treated as one phase element to
implement correction by a single ensemble phase. The SLM is
further conjugated to the back-pupil plane of the objective (OBJ1)
by two relay lenses (L3 and L4). Another pinhole is placed
between the relay lenses to block out the unwanted diffraction
light generated by SLM. When the modulated beam reaches the
objective, it is then focused on the sample plane. In order to
obtain the PSF image, here another objective (OBJ2) is straightly
mounted on the other side of the focal plane for detection. The
light collected by OBJ2 is finally focused by a lens (L5) and
recorded by a CMOS camera.

Deep Learning Network
To acquire the mapping relation between the PSF image and the
zonal correction phases in DLZAC, the architecture of the neural
network is correspondingly designed and shown in Figure 1E. To
adapt the possible PSF of larger area as well as more complicated
distribution induced by complex aberrations, the whole network
architecture is based on ResNet-34, which is a powerful DL
network with 34 weighted layers proposed by He et al. in 2016
[27]. The input of the network is a normalized 224 × 224 PSF
image as shown in Figure 1B. The input size is set based on three
considerations. First, the PSF should be covered as much as
possible to minimize the margin feature loss; Second, the
resolution of the PSF image should be as high as possible to
minimize the fine feature loss; Third, the input size should be as
small as possible to minimize the network computing cost. The
network starts with a 7 × 7 convolutional layer of 64 kernels
followed by a 3 × 3 max-pooling layer. Both of these two layers
down-sampling the input by a stride of 2. Afterwards, the down-
sampled feature maps are encoded by a series of layer blocks. In
these blocks, the block input is filtered by two stacked 3 × 3
convolutional layers. Batch Normalization (BN) is adopted on
both of the two convolutional layers before the activation and
dropout is used after the first convolutional layer. To obtain the
final block output, a special shortcut connection is implemented
on every block by adding the block input to the output of the last
block layer in an element-wise manner channel by channel. To
make sure that the input dimension matches the dimension of the
output, a 1 × 1 convolutional layer is used to operate the input
before the addition. There are 16 blocks in total which can be
further divided into four sequential groups by the channel
number. The four groups consist of three blocks with 64
channels, four blocks with 128 channels, six blocks with 256
channels and three blocks with 512 channels respectively. It is
noted that every time when the channel number doubles, the size
of feature maps is halved to keep the time complexity. The output
of the last block is further converted into a vector by a 7 ×
7 average-pooling layer without padding. At the end of

the network, a fully-connected layer is applied to perform a
224-variable regression. In the whole network, the activation is
realized by Rectified Linear Unit (ReLU) function and padding is
used to preserve the size of each layer with default stride as one if
not specified. Finally, the network output is a 224 × 1 vector, of
which each element corresponds to the correction phase of a fixed
index SLM zone. Compared with AlexNet previously used by
DLMAC, this revised ResNet-34 possesses larger depth and
complexity, hence the high-level features brought by high-
order aberrations can be better extracted and the correction
phases are likely to be deduced more accurately. The possible
degradation problem of deeper network is addressed by the
shortcut connections in ResNet-34, which further ensure the
superiority. Moreover, this revised ResNet-34 has significantly
lower time complexity than most other deep networks so that the
fast speed of DLZAC can be guaranteed.

To support the supervised learning of the network, datasets
containing 220 thousand input-output pairs are built for training
and testing [28–30]. In order to prepare these datasets, a large
number of phase masks as shown in Figure 1C are randomly
generated and added on the SLM respectively to introduce
different aberrations. To make these phase masks fluctuate
with a certain local smoothness, which is a common
characteristic of actual aberration-distorted wavefront, we
down-sample every phase mask before assign a random phase
value between 0 and 2π to each pixel of it and then restore the
original size by bicubic interpolation during the generation.
According to different phase masks, corresponding PSF images
can be obtained from the CMOS as the input part of the datasets.
To get the reference zonal correction phases for the output
vectors, we calculate the ensemble phase by vector averaging
the phases of all the pixels within each SLM zone on every phase
mask and arrange them by zone index. Finally, by matching each
input with its corresponding output to form pairs, the datasets
preparation can be accomplished.

For the training of the network, we allocate 200 thousand data
as the training set and 10 thousand data for validation. Owing to
the regression task, the loss is defined by mean square error
(MSE). An L2 regularization term with the coefficient being 0.002
is further added on the loss to avoid the overfitting. To realize the
training, the network weights are initialized by Xavier
initialization and then trained for 200 epochs. We use Adam
for optimization during the training with a mini-batch size of 32.
To improve the training efficiency, the learning rate (LR) is
decayed to 0.8 times of its former value every 10 epochs from
0.0001. The dropout ratio is set to 0.5 for the whole training
process. To implement the network training, we apply
Tensorflow framework (GPU version 1.12.0) based on Python
3.6.8 on a personal computer (PC, Intel Core i7 4770K 3.50 GHz,
Kingston 16GB, NVIDIA GeForce GTX970).

Workflow of DLZAC
With the optical system presented in Figure 1A as well as the
well-trained DL network mentioned above, the workflow of
DLZAC can be divided into four steps. First of all, the
distorted PSF is caused by a given aberration and recorded by
the CMOS. Secondly, the PSF image from the CMOS is cropped

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 6219663

Zhang et al. Deep Learning Assisted Adaptive Correction

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


and fed into the trained DL network to calculate the output by
forward propagation. Thirdly, the output, namely the 224-
element zonal correction phase vector, is mapped to a
correction pattern as shown in Figure 1D by the index of
SLM zones. Finally, the correction pattern is loaded onto the
SLM to perform adaptive correction. In this way, DLZAC is
capable of the fast correction of complex aberrations.

RESULTS

The DLZAC performance largely depends on the inference
accuracy of zonal correction phases. Figure 2A gives the
descent curve of MSE on the training set as well as the
validation set during the overall training process. The inset
at the upper right corner shows the LR variation as the
number of epochs increases. It can be seen that MSE on
both datasets has been lower than 1.0 without obvious
overfitting after the training of 200 epochs. To test the
inference accuracy of the trained network, here we use the
leftover 10 thousand data as the test set. Figure 2B presents
the ideal correction phase pattern of an example in the test

set. The pattern predicted by the trained network from the
input PSF image corresponding to Figure 2B is displayed in
Figure 2C. By comparison between these two patterns, we can
find that they are in good agreement despite some tolerable
differences. The phase differences are shown in Figure 2D
with a white circle used to mark out the border of the pupil. It is
obvious that the average difference of all the SLM zones within
the pupil is quite small. Furthermore, we plot the phase
difference of each zone in a bar chart shown in Figure 2E.
It is easy to observe from the chart that most of the differences
are around 0, which means a good accuracy of the network
inference. The standard deviation σ of all the differences in
Figure 2E is computed to be 0.78. It is noted from the figures
that the comparatively obvious errors tend to appear at the
locations where there are phase jumps among adjacent zones.
After implementing tests throughout the whole set, we
calculate the mean MSE to be 0.88. The time cost of a
single test is 12.6 ms on average based on the PC we
previously utilized for the training. These results
demonstrate that the proposed method is able to deduce the
correction patterns with desirable precision in a rather
fast speed.

FIGURE 2 | (A) The descent curve of MSE during the training process. Subfigure: the LR decay curve. (B) The ideal correction phase pattern. (C) The phase pattern
predicted by the trained network. (D) The phase difference pattern between (B) and (C). (E) The bar chart of the phase difference on every SLM zone from (D), with the
standard deviation σ being 0.78.
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In order to verify the ability of DLZAC to correct
aberrations, we randomly choose six examples from the
test set and compare the PSFs before and after DLZAC. In
Figure 3, each column corresponds to one of the six
examples. The distorted PSFs before the correction are
presented in the first row of Figure 3. It can be seen that
these PSFs are severely distorted by complex aberrations.
Here we introduce focal intensity ratio (FIR) as an indicator
to quantify the distortion level of PSFs. The FIR is defined as
the ratio between the intensity calculus within the Airy disk
radius of the distorted PSF and that of ideal PSF with no
distortion. All the six chosen PSFs are with a FIR below 0.34,
which means that at least two-thirds of the light is scattered
out of the focal area in these PSFs because of the complex
aberrations. The second row of Figure 3 gives the corrected
PSFs after DLZAC. Obviously, all the distorted PSFs are
recovered to approximate diffraction-limited state, which
represents that DLZAC is reliable on complex aberration
correction. The third row of Figure 3 shows the phase
wavefronts before DLZAC of the examples. The fourth row
of Figure 3 shows the residual phase wavefronts within the

pupil of the six test examples after DLZAC. The residual
phase wavefront is obtained by adding the correction phase
pattern to the phase mask. It can be observed that these
corrected wavefronts all have fairly good flatness, which
further demonstrates that the complex aberrations can be
well compensated by our newly proposed AO method. To
support our results quantitatively, we calculate and
summarize the FIR of the PSFs before and after DLZAC in
Figure 3E. Every FIR has enhanced significantly to about
twice of its former value because of the highly effective
correction.

For the purpose of comparing the correction effect of our
DLZAC with that of DLMAC on aberrations of different
complexities, here we produce four kinds of aberrations by
phase masks to control the FIR of distorted PSFs to form a
gradient. In Figure 4, the distorted PSFs are shown in
descending order of FIR from the top to the bottom of the
first column, with each row corresponding to a kind of
aberration complexity. It can be easily observed that the
distortion extent of these PSFs is gradually increased as
the FIR drops from 0.6 to 0.1. When the FIR of the

FIGURE 3 | (A) The six distorted PSFs before correction (scale bar: 1 μm). (B) The six corrected PSFs after DLZAC. (C) The six phase wavefronts before DLZAC.
(D) The six residual phase wavefronts within the pupil after DLZAC. Each column of (A–D) corresponds to one of the six test examples. (E) The FIR statistics of the PSFs in
(A) and (B).
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distorted PSF equals 0.6, we can notice from Figure 4A1 that
the aberration is relatively simple. Figures 4A2,3 display the
corrected PSFs after DLMAC and DLZAC respectively.
Apparently, both of the two methods have a certain effect
of correction, while DLZAC achieves a better performance.
We further calculate the FIR of two corrected PSFs. The FIR
of DLZAC equals 0.83, which is much higher than that of
DLMAC being 0.65. To compare different PSFs more
intuitively, we plot the intensity profiles along the white dashed
lines representing the central axis shown in Figures 4A1–3 and
gather them in Figure 4A4. The red dashed line shown in
Figure 4A4 gives the profile of the ideal PSF. It can be seen here
that the two profiles belonging to the corrected PSFs have higher
peak than that of distorted PSF and the profile corresponding to
DLZAC is closer to the ideal profile than that of DLMAC. Based on
these results, we can prove the fact that DLZAC is able to correct
simple aberrations better than DLMAC. Afterwards, we then

conduct DLMAC as well as DLZAC on the other three distorted
PSFs of lower FIR. Since more complex aberrations need to be
corrected in these circumstances, it is easy to tell from the
comparisons between Figures 4B1,2,C1,2,D1,2 that the PSFs
remain distinctly distorted after DLMAC. On the other hand, we
can see from Figures 4B3,C3,D3 that the PSFs can still be recovered
to a degree of satisfaction after DLZAC. Even to the highly distorted
PSF with multiple peaks presented in Figure 4D1, DLZAC can still
successfully enhance the FIR to 0.5. Similarly, we compare different
PSFs by intensity profile along the central axis in Figures
4B4,C4,D4. It can be seen that the profiles of DLZAC in these
three figures all have much more desirable shape and higher peak,
whereas basically no improvement can be found in the profiles of
DLMAC, compared to the distorted profiles. Therefore, it is verified
that DLZAC can keep its remarkable correction performance, while
DLMAC loses its correction effect with regard to complex
aberrations.

FIGURE 4 | (A1) The distorted PSF whose FIR equals 0.6 (scale bar: 1 μm). (A2) The corrected PSF from (A1) by DLMAC. (A3) The corrected PSF from (A1) by
DLZAC. (A4) The intensity profiles along the white dashed lines in (A1–3), with an extra profile of the ideal PSF. (B1–4) The equivalents of (A1–4) when the FIR of the
distorted PSF equals 0.4. (C1–4) The equivalents of (A1–4) when the FIR of the distorted PSF equals 0.2. (D1–4) The equivalents of (A1–4) when the FIR of the distorted
PSF equals 0.1.
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DISCUSSION

We present a DLZAC method in this article to achieve complex
aberration AO correction for biomedical imaging in fast speed.
Since the previous DLMAC method can only work on low-order
simple aberrations, our method successfully overcomes this
restriction by conducting the aberration measurement as well
as the correction in a zonal way. To implement our method, we
train a revised ResNet-34 network to infer the vector of 224 zonal
correction phases from the PSF image and realize the correction
by a SLM. With the acceleration of a GPU, the inference can be
finished in 12.6 ms, which is even much faster than DLMAC,
merely on a PC (Intel Core i7 4770K 3.50 GHz, Kingston 16 GB,
NVIDIA GeForce GTX970) with the average MSE being 0.88. As
for complex aberrations introduced by phase masks, which
severely distort the PSF, DLZAC can recover the distorted PSF
to near diffraction-limited state and significantly enhance the
FIR. Compared with DLMAC, DLZAC presents even better
correction on relatively simple aberrations. When the
aberrations become highly complex and far beyond the
correction capacity of DLMAC, DLZAC can still preserve its
desirable correction performance. Since no extra device is
required to implement DLZAC, our method is highly
compatible with most of existing AO systems for biomedical
imaging. The outstanding correction effect of kinds of
aberrations, especially complex aberrations, makes DLZAC
able to applied on a large range of imaging tasks. For deep
living tissue imaging, DLZAC can bring benefits to remove

dynamic complex aberrations caused by tissue movements and
optimize the imaging result. Besides, with the rapid correction
speed, DLZAC can also help to obtain the high imaging quality
while keeping the efficiency as well as the photodamage level of
large volume imaging.
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