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From the observed datasets, we should be able to produce curve surfaces that have the
same characteristics as the original datasets. For instance, if the given data are positive,
then the resulting curve or surface must be positive on entire given intervals,
i.e., everywhere. In this study, a new partial blended rational bi-quartic spline with C1

continuity is constructed through the partially blended scheme. This rational spline is
defined on four corners of the rectangular meshes. The sufficient condition for the positivity
of rational bi-quartic spline is derived on four boundary curve networks. There are eight free
parameters that can be used for shape modification. The first-order partial derivatives are
estimated by using numerical techniques. We also show that the proposed scheme is local
quadratic reproducing such that it can exactly reproduce the quadratic surface. We test
the proposed scheme to interpolate various types of positive surface data. Based on
statistical indicators such as the root mean square error (RMSE) and coefficient of
determination (R2), we found that the proposed scheme is on par with some
established schemes. In fact, it requires less CPU times (in seconds) to generate the
interpolating surface on rectangular meshes. Furthermore, by combining the statistical
indicators’ result and graphically visualizing the test functions, the proposed method has
the capability to reconstruct very comparable smoothing interpolating positive surfaces
compared to some existing schemes. This finding is significant in producing a better
interpolating surface for computer graphics applications since the proposed scheme has a
smaller error compared with existing schemes.

Keywords: rational bi-quartic spline, surface interpolation, quadratic reproducing, positivity-preserving, partially
blended, numerical analysis

INTRODUCTION

Computer-aided geometric design (CAGD) provides the mathematical basis when dealing with
geometric datasets. The term “CAGD” was coined by Barnhill and Riesenfeld in 1974 [1–5]. One of
the main tools in CAGD is a spline function. The spline function was introduced by Schoenberg in
1967 for application in statistics. Since then, the spline has been used extensively in shape designing
especially in car industries, in the design of airplane fuselages and wings at Boeing Company, as well
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as in the development of cartoon movies. General Motors
developed its first computer-aided design/computer-aided
manufacturing (CAD/CAM) system called DAC-I by utilizing
the spline curve and surface techniques initiated by de Boor and
Gordon [5]. Furthermore, in some applications, such as data
visualization, there is a need to reconstruct the curve or surface
for the data collected from the measurement or experimental
laboratory. This task can be achieved by using interpolation or
approximation schemes.

Shape-preserving interpolation is an important topic in
CAGD that can be used to preserve the geometric shape of
the dataset such as positivity, convexity, and monotonicity.
For instance, given positive data, then the final interpolating
curve or surface must be positive everywhere. Any negativity is
meaningless and unacceptable. Some examples of positive data
are the amount of gas discharge during the experiment (Brodlie
and Butt [6], Butt and Brodlie [7], Brodlie et al. [8], Sarfraz et al.
[9]). Meanwhile, monotonicity-preserving concerns about
preserving the monotone datasets, i.e., either monotonically
increasing or monotonically decreasing. For instance, the
approximation of couples and quasi-couples in statistics and
the empirical option model in finance are always involving
monotone datasets [10]. The blood uric acid in patients
suffering from gout is also an example of monotone data.
Meanwhile, convexity always arises in finance and
engineering-based problems such as the optimal control, non-
linear programming, and parameter estimation problems.

In general, the standard cubic Hermite polynomial and cubic
spline interpolation functions are unable to produce the
interpolating curve or surface with shape-preserving
properties. Therefore, to cater this weakness, many researchers
have proposed several methods for shape-preserving
approximation and interpolation. One of the simplest ways is
to use rational splines in many different forms such as cubic/
cubic, cubic/quadratic, cubic/linear, and quartic/quadratic. Those
schemes provided more design parameters which can be used to
modify the interpolating curves or surfaces. In the next
paragraphs, we provide some literature review on positivity-
preserving interpolation schemes.

Themodified quadratic Shepard (MQS) method has been used
widely for visualization of scattered data. For example, Asim et al.
[11, 12] improved the original MQS method for positivity-
preserving on scattered datasets. Their strategy is to reduce the
deviation from the original shape while at the same time
preserving positivity in the sense of least square. Brodlie et al.
[8] constructed the MQS method to interpolate scattered data of
any dimensionality. Their scheme preserves the positivity of the
data for curves or surfaces by forcing the quadratic basis functions
to be positive. They also extended the method to handle modeling
other types of constraints such as the lower bound of 0 and upper
bound of 1 and generalized the constraint to any arbitrary
functions as lower and upper bounds. But from the numerical
results, they indicated that their schemes have 10% error bound
associated with the data values. Wu et al. [13] discussed about
positivity-preserving for curve and surface approximation and
interpolation by using compactly supported radial basis functions
(CSRBFs). To preserve the positivity of data, the optimization

problem needs to be solved. In [14, 15], the multi-quadric (MQ)
function has been used as the quasi-interpolation operator and
the CSRBFs are used to construct the interpolation function that
preserves the monotonicity and convexity of planar datasets.

Most shape-preserving surface interpolation methods are
constructed by extending the work of Casciola and Romani
[16]. Nowadays, their schemes are known as partially blended
rational bi-cubic functions. Brodlie and Butt [6] constructed the
piecewise cubic Hermite interpolant with C1 continuity to
preserve positivity, monotonicity, and convexity, respectively.
Their schemes required one or two extra knots to be inserted
in the interval where shape violation exists without needs for
derivative modification. However, this technique will increase the
total number of data points, and indeed, the computation times
will be increased.

Brodlie et al. [8] extended the Butt and Brodlie [7] idea to
construct the positivity-preserving scheme of positive surface
data over a rectangular grid. The sufficient conditions on first
partial derivatives and twist values are derived where the obtained
values will be projected to the valid interval through the efficient
knot insertion algorithm. However, their scheme has increased
unnecessary computation time.

Schmidt and Hess [17, 18] derived the necessary and
sufficient conditions for the positivity of rational quadratic
splines and for the positivity of cubic spline interpolation on
intervals. Schmidt [19] described the positive, monotone, and
S-convex surface interpolation for data arranged on rectangular
grids. The C1 rational quadratic spline has been used, and the
necessary conditions for positivity, monotonicity, and S-convex
surface are derived. However, no numerical results were
presented. Hussain et al. [20] constructed C0 shape-
preserving surface schemes for 3D positive and convex
surface data. The rational bi-quadratic function with eight
parameters was used to construct the positive and monotone
rational interpolant. But their scheme was unable to produce
smooth surfaces as well as no free parameters to alter the final
resulting interpolating surfaces. Chan and Ong [21] described a
local scheme for range-restricted scattered data interpolation by
using cubic triangular Bézier patches. The piecewise
interpolating surface is obtained through a convex
combination of three cubic Bézier triangular patches. The
sufficient conditions for the non-negativity of a cubic Bézier
triangle on the Bézier ordinates were derived with respect to a
lower bound. The gradients (first-order partial derivatives) at
the data sites are modified if necessary, to ensure that the non-
negativity conditions are fulfilled. Luo and Peng [22] described
the C1 rational spline as a piecewise rational convex
combination of three cubic Bézier triangular patches sharing
the same boundary Bézier ordinates. The sufficient conditions
for non-negativity were derived on the boundary Bézier
ordinates of the adjacent triangle and the normal derivatives
at the data points. If in any triangular patch non-negativity was
lost, then the gradients at the data points and normal derivatives
at the edge knots will be modified to ensure positivity is
preserved. Indeed, their main scheme also requires the
modification of the first-order partial derivative and the
normal derivatives if shape violation is found.
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Piah et al. [23] improved the lower bound of Bézier ordinates
obtained in the work of Chan and Ong [21] by proposing an
alternative scheme which is simpler and has more relaxed
conditions of positivity. The new lower bound for Bézier
ordinates can become infinitely smaller compared to the
lower bound of Bézier ordinates in [21]. Some numerical
results were presented to show the capability of the
alternative scheme. The main drawback of their scheme is
that the actual first-order partial derivative needs to be
adjusted if positivity on each triangular patch is violated.
Hussain and Hussain [24] constructed positive scattered
data interpolation by using a rational cubic spline defined
by the side-vertex scheme.

Saaban et al. [25] constructed the positivity-preserving scheme
by using quintic triangular Bézier patches. The surface is
constructed by using a convex combination comprising of
three local quintic triangular Bézier patches. They
implemented their proposed method by using rainfall data
collected at various meteorology stations in West (Peninsular)
Malaysia.

Hussain et al. [26, 27] extended the application of rational
quartic spline given by Wang and Tan [28] to preserve positivity,
constrained data, and convexity. The data-dependent sufficient
conditions for the rational interpolant to satisfy the shape-
preserving properties are derived. It was proved by Harim
et al. [29] that their sufficient conditions may not successfully
produce positive and convex interpolating curves on entire given
intervals.

Liu et al. [30] described a new bivariate rational quartic spline
(quartic/quadratic) for positivity- and monotonicity-preserving
interpolation. The rational bi-quartic spline has four parameters,
and the sufficient conditions for positivity and monotonicity are
derived on all parameters. Thus, there is no free parameter for
shape modification. They have compared the performance of
their schemes against that of Hussain and Sarfraz’s [31] for
positivity-preserving interpolation. No error measurement is
given to show the superiority of the proposed scheme. Han
[32, 33] discussed the rational quartic spline with a quadratic
denominator. Harim et al. [29, 34, 35] constructed a new rational
quartic spline (quartic/quadratic) with three parameters for shape
modification. Karim et al. [31, 36, 37] discussed the positivity-
preserving interpolation and constrained surface modeling by
using rational bi-cubic spline interpolation with 12 parameters.
Qin et al. [38] proposed a new method to derive the sufficient
condition for the positivity of rational bi-cubic spline
interpolation. However, their method requires extra
computation time.

In this section, we have given a comprehensive review on the
existing schemes of positivity-preserving interpolation. Table 1
summarizes the comparison of various shape-preserving
interpolation schemes related to our studies.

From Table 1, we have come out with our main objectives of
the study. There are three main objectives given as follows:

1) We extend the univariate rational quartic spline with three
parameters from Harim et al. [34] to the bivariate rational
quartic spline interpolation. We employ the partially blended

scheme initiated by Casciola and Romani [16]. There are three
free parameters on each boundary of the rectangular meshes.
This will give 12 parameters that can be used to control the
shape of the interpolating surface.

2) To derive the sufficient condition for the positivity of the
rational bi-quartic spline on each boundary, we also derive the
quadratic polynomial reproducing.

3) Finally, to compare the performance between the proposed
scheme for positivity-preserving interpolation and some
established schemes such as Abbas et al. [50] and Karim
et al. [36], the root mean square error (RMSE) and coefficient
of determination (R2) are used as statistical goodness-of-fit
measurements [53].

Furthermore, we identified several advantages of the proposed
partially blended rational bi-quartic spline interpolation for
positivity-preserving:

TABLE 1 | Comparison of shape-preserving schemes.

Bil Scheme Features

1 Gregory [39], Hussain and Ali [37],
Hussain and Hussain [40], and Tian
et al. [41]

No free parameters for shape
refinement. Therefore, we cannot
control the final interpolating curves
and surfaces.

2 Hussain et al. [20, 42] Cannot produce positivity-preserving
interpolation on entire given intervals
as shown by Harim et al. [29].

3 Asim and Brodlie [43], Asim et al.
[11], Brodlie and Butt [6], Butt and
Brodlie [7], Fiorot and Tabka [44],
and Peng et al. [45]

Additional knots are inserted. This will
increase the CPU times.

4 Fristch and Butland [46], Fristch and
Carlson [47], and Wang and Tan
[28, 48, 49]

Shape-preserving with modification of
derivatives. Cannot interpolate first
derivatives.

5 Hussain et al. [20] The interpolating curve and surface
are C0 continuous. Thus, the surface is
not smooth and not suitable for
shape-preserving interpolation.

6 Abbas et al. [50, 51] and Karim
et al. [36]

RMSE is a bit higher and smaller R2

value. They did not prove whether their
schemes are local quadratic
polynomial reproducing or not.

7 Wu et al. [13, 14] Requires solving an optimization
problem that will increase
unnecessary CPU times (in seconds)
to produce the curves.

8 Ibraheem et al. [52] The interpolating surface is not
smooth as well as not visually pleasing
as seen in their study.

9 Ashraf et al. [43] Use the subdivision scheme to
preserve the shape of the data.

TABLE 2 | Data from function F1(x, y).

y/x 0 2 4 6

0 1.33000 0.011261 0.10505 0.41710
2 1.79240 0.619300 0.39739 0.45990
4 0.41370 0.020814 0.16294 0.33635
6 0.39537 0.281670 0.30087 0.33560
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1) There are 12 parameters in the description of the rational bi-
quartic spline, and eight are free parameters for shape
modification. Meanwhile, Hussain and Ali [37], Hussain
and Hussain [40], Tian et al. [41], and Sarfraz et al. [9]
schemes have no free parameters for shape modification.

2) Unlike existing schemes such as Karim et al. [36], Abbas et al.
[50, 51], Hussain and Ali [37], Hussain andHussain [40], Tian
et al. [41], and Sarfraz et al. [9], the proposed scheme is local
quadratic reproducing. This is one of the main novelties of the
proposed scheme.

3) Based on statistical indicators, i.e., root mean square error
(RMSE) and coefficient of determination (R2), the proposed
partially blended rational bi-quartic spline is the best
compared with the works of Abbas et al. [50] and Karim
et al. [36]. In fact, the proposed scheme has a smaller RMSE
error and higher R2 compared with Brodlie et al.’s scheme [7].

4) Furthermore, the proposed scheme is direct and not involving
any iterative scheme via the subdivision scheme as discussed
by Ashraf et al. [43].

The remainder of this paper is organized as follows.Materials
and Methods is devoted to materials and methods used in this
study. This includes the method to estimate first derivatives using
the arithmetic mean method (AMM) and geometric mean
method (GMM), a review on the rational quartic spline, the
derivation of the rational bi-quartic spline, and local control and
quadratic reproducing properties. Meanwhile, Positivity-
Preserving Interpolation discusses the construction of positive
rational bi-quartic spline interpolation on each boundary curve
network. Furthermore, an efficient algorithm is presented in
detail. Results and Discussion is devoted to the results obtained
and discussion. Conclusion gives the concluding remarks.

MATERIALS AND METHODS

Derivative Estimation
In most applications, the first derivative needs to be estimated by
using some numerical methods. Three common methods are the
arithmetic mean method (AMM), geometric mean method
(GMM), and harmonic mean method (HMM) [54].

Arithmetic Mean Method
Given scalar datasets {(xi, fi) : i � 0, 1, ..., n}where x0 < x1 < ...< xn.
Let the step size hi � xi+1 − xi and the gradient Δi � fi+1−fi

hi
,

i � 0, 1, ..., n − 1. The first derivatives di at the data point
xi, i � 0, 1, ..., n, can be estimated as follows.

At both end points x0 and xn, the first derivatives are [54]

d0 � Δ0 + (Δ0 − Δ1)( h0
h0 + h1

), (1)

dn � Δn−1 + (Δn−1 − Δn−2)( hn−1
hn−1 + hn−2

). (2)

Meanwhile, at the interior points, xi, i � 1, 2, ..., n − 1, the values
of di are estimated using the following formula:

di � hi−1Δi + hiΔi−1
hi−1 + hi

. (3)

Formulas in Equations (1)–(3) can be extended to 3D data as
follows.

Given 3D datasets {(xi, yj, Fi,j) : i � 0, 1, ..., n; j � 0, 1, ...,m}.
Let hi � xi+1 − xi, ĥj � yj+1 − yj, Δi,j � fi+1−fi

hi
, and Δ̂i,j � fi,j+1−fi,j

ĥj
.

The first partial derivatives are given as follows.
The first partial derivative in the x direction is given as

Fx
0,j � Δ0,j + (Δ0,j − Δ1,j) h1

(h1 + h2), (4)

Fx
n,j � Δn−1,j + (Δn−1,j − Δn−2,j) hn−1

(hn−1 + hn−2), (5)

Fx
i,j �

Δi,j + Δi−1,j
2

(6)

for i � 1, 2, ..., n − 1, j � 0, 1, ...,m.
The first partial derivative in the y direction is given as

Fy
i,0 � Δ̂i,0 + (Δ̂i,0 − Δ̂i,1) ĥ1(ĥ1 + ĥ2), (7)

Fy
i,m � Δ̂i,m−1 + (Δ̂i,m−1 − Δ̂i,m−2) ĥm−1(ĥm−1 + ĥm−2), (8)

Fy
i,j �

Δ̂i,j + Δ̂i,j−1
2

(9)

for i � 0, 1, 2, ..., n, j � 1, 2, ...,m − 1. Meanwhile, the twists
(mixed derivative) at the interior points can be estimated by

Fxy
i,j �

Fy
i+1,j − Fy

i−1,j
hi−1 + hi

+ Fx
i,j+1 − Fx

i,j−1
ĥj−1 + ĥj

, i � 1, 2, ..., n − 1,

j � 1, 2, ...,m − 1.

(10)

Geometric Mean Method
The first derivatives also can be calculated by using the GMM.
Given 2D data {(xi, fi) : i � 0, 1, ..., n}, at the end points x0 and xn,
the first derivatives are given as

d0 �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if Δ0 � 0 or Δ2,0 � 0

Δ
(1+h0h1)
0 Δ

(−h0h1)
2,0 otherwise,

(11)

with Δ2,0 � f2−f0
x2−x0, and

dn �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if Δn−1 � 0 or Δn,n−2 � 0

Δ
(1+hn−1hn−2)
n−1 Δ

(−hn−1hn−2)
n,n−2 otherwise,

(12)

with Δn,n−2 � fn−fn−2
xn−xn−2.

Meanwhile, at interior points, xi, i � 1, 2, ..., n − 1, the values of
di are estimated by

di � Δ
( hi
hi−1+hi)

i−1 Δ
( hi−1
hi−1+hi)

i . (13)
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The advantages of using this choice are the values of di are
always positive. This method is suitable for monotonically
increasing data.

Rational Quartic Spline Interpolation
Given scalar datasets {(xI , fi), i � 0, 1, 2, ..n} where
x0 < x1 < ...< xn and the first derivative di, at the respective
point. Then, the RQS scheme with three shape control
parameters αi > 0, βi > 0 , and ci ≥ 0 on the interval is given by
[29, 34, 35]

S(x) � Pi(θ)
Qi(θ), (14)

where

Pi(θ) � (1 − θ)4αifi + (1 − θ)3θAi + (1 − θ)2θ2Bi + (1 − θ)θ3Ci + θ4βi fi+1
Qi(θ) � αi(1 − θ)2 + ci(1 − θ)θ + βiθ

2 ,

with hi � xi+1 − xi, Δi � fi+1−fi
hi

, and θ � x−xi
hi
.

The RQS scheme defined in Eq. 14 gives the C1 continuity at
the knots and satisfies the following conditions:

S(xi) � fi, S(xi+1) � fi+1,
S(1)(xi) � di, S(1)(xi+1) � di+1.

(15)

From Eq. 15 and after some derivations, the unknown Ai, Bi, and
Ci are given as [34]

Ai � (2αi + ci)fi + αihidi,
Bi � (αi + ci)fi+1 + (βi + ci)fi,
Ci � (2αi + ci)fi+1 + βihidi+1.

(16)

Partially Blended Rational Bi-Quartic Spline
Interpolation
We construct a new rational bi-quartic spline based on the
partially blended scheme of Casciola and Romani [16]. There
are four curve networks on each edge of the rectangular domain.
Figure 1 shows the arrangement of the partially blended rational
bi-quartic spline interpolation on a rectangular domain.

Let the function S(x, y) be arranged over a rectangular domain
Ω � [a, b] × [c, d]. The partition of the intervals [a, b] and [c, d] is
defined as π : a � x0 < x1 </< xn � b and π : c �
y0 < y1 </< ym � d. Let Fi,j, Fx

i,j, and Fy
i,j indicate the data values

and the first partial derivatives with respect to x and y at the node
(xi, yj). The partially blended rational bi-quartic function over each
rectangle [xi, xi+1] × [yj, yj+1], i � 0, 1, ..., n − 1; j � 0, 1, ...,m − 1, is
defined as follows:

S (x, y) � −AFB T , (17)

with

F � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 S(x, yj) S(x, yj+1)

S(xi, y) S(xi, yj) S(xi, yj+1)
S(xi+1, y) S(xi+1, yj) S(xi+1, yj+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
A � [−1 a0(θ) a1(θ) ],
B � [−1 b0(φ) b1(φ) ],

where

a0(θ) � (1 − θ)2(1 + 2θ), a1(θ) � θ2(3 − 2θ),
b0(φ) � (1 − φ)2(1 + 2φ), b1(φ) � φ2(3 − 2φ),

θ � x − xi
hi

, φ � y − yj

ĥj
,

and

hi � xi+1 − xi, ĥj � yj+1 − yj.

S(x, yj), S(x, yj+1), S(xi, y), and S(xi+1, y) are rational quartic
functions defined in Equations (18)–(21) arranged on the
edges of the rectangular domain [xi, xi+1] × [yj, yj+1], i �
0, 1, ..., n − 1; j � 0, 1, ...,m − 1 (see Figure 1). They are defined as

S(x, yj) � ∑4
i�0 (1 − θ)4−iθiAi

q1(θ) , (18)

with

A0 � αi,jFi,j, αi,j > 0,

A1 � (2αi,j + ci,j)Fi,j + αi,jhiF
x
i,j, βi,j > 0, ci,j ≥ 0 ,

A2 � (αi,j + ci,j)Fi+1,j + (βi,j + ci,j)Fi,j,
A3 � (2βi,j + ci,j)Fi+1,j − βi,jhiF

x
i+1,j, A4 � βi,jFi+1,j,

q1(θ) � (1 − θ)2αi,j + ci,jθ(1 − θ) + θ2βi,j;

S(x, yj+1) � ∑4
i�0 (1 − θ)3−iθiBi

q2(θ) , (19)

with

B0 � αi,j+1Fi,j+1, αi,j+1 > 0,
B1 � (2αi,j+1 + ci,j+1)Fi,j+1 + αi,j+1hiFx

i,j+1, βi,j+1 > 0, ci,j+1 ≥ 0
AB2 � (αi,j+1 + ci,j+1)Fi+1,j+1 + (βi,j+1 + ci,j+1)Fi,j+1,
B3 � (2βi,j+1 + ci,j+1)Fi+1,j+1 − βi,j+1hiF

x
i+1,j+1,

B4 � βi,jFq2(θ) � (1 − θ)2αi,j+1 + ci,j+1θ(1 − θ) + θ2βi,j+1;

S(xi, y) � ∑4
i�0 (1 − φ)3−iφiCi

q3(φ) , (20)

FIGURE 1 | Rational bi-quartic spline defined on a rectangular patch
boundary.
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with

C0 � α̂i,j Fi,j, α̂i,j > 0,
C1 � (2α̂i,j + ĉi,j)Fi,j + α̂i,jĥjF

y
i,j, β̂i,j > 0, ĉi,j ≥ 0 ,

C2 � (α̂i,j + ĉi,j)Fi,j+1 + (β̂i,j + ĉi,j)Fi,j,
C3 � (2β̂i,j + ĉi,j)Fi,j+1 − β̂i,jĥjF

y
i,j+1,

C4 � β̂i,jFi,j+1, q3(φ) � (1 − φ)2α̂i,j + ĉi,jφ(1 − φ) + φ2β̂i,j

S(xi+1, y) � ∑4
i�0 (1 − φ)3−iφiDi

q4(φ) (21)

with

D0 � α̂i+1,j Fi+1,j, α̂i+1,j > 0,
D1 � (2α̂i+1,j + ĉi+1,j)Fi+1,j + α̂i+1,jĥjF

y
i+1,j, β̂i+1,j > 0, ĉi+1,j ≥ 0,

D2 � (α̂i+1,j + ĉi+1,j)Fi+1,j+1 + (β̂i+1,j + ĉi+1,j)Fi+1,j,
D3 � (2β̂i+1,j + ĉi+1,j)Fi+1,j+1 − β̂i+1,jĥjF

y
i+1,j+1,

q4(φ) � (1 − φ)2α̂i+1,j + ĉi+1,jφ(1 − φ) + φ2β̂i+1,j.

The partial derivatives Fx
i,j and Fy

i,j are estimated by using the
AMM given in Equations (4)–(10).

Local Control Shape Property Analysis
The proposed rational bi-quartic spline defined by Eq. 17 has
local control properties. Some observations can be made as
follows:

1) The proposed scheme is symmetrical, i.e., the surface can be
constructed either in x and y directions or in y and x
directions. This is one of the main properties in CAGD.

2) When the parameters αi,j � αi,j+1 � βi,j � βi,j+1 � 1, α̂i,j �
α̂i+1,j � β̂ i,j � β̂i+1,j � 1, and ci,j � ci,j+1 � ĉi,j � ĉi+1,j � 2, the
partially blended rational bi-quartic spline in Eq. 17 reduced to
a standard bi-quartic polynomial spline. Usually, in this case,
the resulting interpolating surface is not shape-preserving.

3) When ci,j →∞ or αi,j, βi,j → 0, the partially blended rational
bi-quartic spline defined by Eq. 17 is reduced to a bilinear
surface, i.e., flat surface, since all four curve networks are
reduced to a straight line (see [34]):

lim
ci→∞

S(x, yj) � lim
αi,βi → 0

S(x, yj) � (1 − θ)Fi,j + θFi+1,j. (22)

• Similarly, we can obtain the following observations:

lim
ci,j+1→∞

S(x, yj+1) � lim
αi,j+1,βi,j+1 → 0

S(x, yj+1) � (1 − θ)Fi,j+1 + θFi+1,j+1,

(23)

lim
ĉi,j →∞

S(xi, y) � lim
α̂i,j ,̂βi,j

→ 0S(xi, y) � (1 − φ)Fi,j + φFi,j+1, (24)

lim
ĉi+1,j →∞

S(xi+1, y) � lim
α̂i+1,j ,̂βi+1,j → 0

S(xi+1, y) � (1 − φ)Fi+1,j + φFi+1,j+1.

(25)

Based on Equations (22)–(25), we conclude that the final
interpolating surface is a bilinear surface.

Theorem 1. The partially blended rational bi-quartic spline
interpolation defined in Eq. 17 is C1 continuous everywhere
provided that all free parameters are positive.

Theorem 2. The proposed rational bi-quartic spline
interpolation given in Eq. 17 is shape-preserving provided that
all four curve networks defined in Eqs. 18–21 are shape-
preserving.

Theorem 3. The partially blended rational bi-quartic spline
S(x, y) defined by Eq. 17 is a C1−continuous degree-nine
piecewise rational surface (degree seven in the numerator and
degree two in the denominator).

The proof of Theorems 1–3 can be obtained by generalizing
Proposition 3 in the study of Casciola and Romani [16].

The behavior of local control of the proposed partially blended
rational bi-quartic spline based on the observations given in
Equations (21)–(25) is given in Example 1.

Example 1. Data from the following function are truncated to
five decimal places [50]:

F1(x,y)� e−(x2+y2)/15(sin(x)+ cos(y))+0.33, 0≤x,y≤6. (26)

Figure 2 shows the interpolating surface by using the proposed
scheme for data listed in Table 2.

Figure 2A shows the interpolating surface with
αi,j � βi,j � 1, α̂i,j � β̂i,j � 1, and ci,j � ĉi,j � 2. Meanwhile,
Figure 2B shows the surface with αi,j � βi,j � 1, α̂i,j � β̂i,j � 1,
and ci,j � ĉi,j � 50. Clearly, the surfaces are bilinear or flat. A
similar effect can be seen in Figure 2C, i.e., when
αi,j � βi,j � 0.01, α̂i,j � β̂i,j � 0.01, and ci,j � ĉi,j � 1.Meanwhile,
Figure 2D shows the behavior of the interpolating surface
when αi,j, βi,j, α̂i,j, and β̂i,j become a larger number, i.e., equal
to 50. Finally, Figure 2E shows the surface when ci,j and ĉi,j
become a smaller number, i.e., equal to 0.005.

Furthermore, the parameters cannot be negative because
the interpolating surface will become a rational surface,
i.e., having poles on the surface. This will result in the
discontinuities of the surface. This fact can be seen in
Figure 3. Thus, the parameters are restricted to having
positive values only. This is in line with the existing works
such as Karim et al. [36], Abbas et al. [50, 51], Hussain and Ali
[37], Hussain and Hussain [40], Tian et al. [41], and Sarfraz
et al. [9].

Finally, as the parameters αi,j, βi,j, α̂i,j, and β̂i,j are increased
and ci,j and ĉi,j are fixed, we found that the rational
interpolant is stable, i.e., the produced surfaces are almost
identical to each other. Meanwhile, as the parameters
ci,j and ĉi,j keep increasing while parameters αi,j, βi,j,
α̂i,j, and β̂i,j are fixed,we also found that the rational interpolant
is stable. These results are shown in Figure 4.

Local Quadratic Reproducing
The proposed partially blended rational bi-quartic spline defined
in Eq. 17 is local quadratic reproducing. To prove this property,
we use numerical simulations by using the following quadratic
test function:
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FIGURE 2 | Local control of surface interpolation.

FIGURE 3 | Poles on the surface. (A) αi,j � βi,j � α̂i,j � β̂i,j � −1. (B) ci,j � ĉi,j � −2.
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G(x, y) � x2 + y2, −3≤ x, y ≤ 3.
Figure 5A shows the true function. Meanwhile, Figures 5B–G

show the interpolating surfaces with various parameters and
their values. We can see that all figures are almost identical
to each other. Table 3 shows the values of RMSE, R2,
and maximum absolute error for each figure. Based on
Table 3, we found that as ci,j → 0 or αi,j, βi,j →∞, the
proposed rational bi-quartic spline is local quadratic
reproducing. This property is important since we can use our
scheme to reconstruct any conic sections. Meanwhile, the works
by Karim et al. [36] and Abbas et al. [50] are not local quadratic
reproducing.

POSITIVITY-PRESERVING
INTERPOLATION

The rational bi-quartic spline defined in Eq. 17 is not positivity-
preserving for positive datasets. As seen in Figure 2A, the partially
blended rational bi-quartic spline is not positivity-preserving
interpolation. We can obtain a positive surface by manipulating
all free parameters. However, this approach is not practical and
really time-consuming. Therefore, we want to find an automatic
method to calculate the parameter values that will produce a
positive rational interpolant. To do this, we derive the sufficient
condition for the positivity of the rational quartic splines on all four
boundary curve networks (see Figure 1). On each boundary, there
will be two free parameters. This results in eight free parameters for

shape modification. The derivation of the sufficient condition is
described as follows.

Let (xi, yi,Fi,j) be strictly positive data (to avoid dividing by
zero at later stages) defined over a rectangular grid
[xi, xi+1] × [yj, yj+1], i � 0, 1, ..., n − 1; j � 0, 1, ...,m − 1 , such that

Fi,j > 0, ∀i, j.

The partially blended rational bi-quartic spline in Eq. 17 is
positive if all boundary curves defined in Eqs. 18–21 are
positive, i.e., S(x, yj)> 0, S(x, yj+1)> 0, S(xi, y)> 0, and
S(xi+1, y)> 0, respectively. The following theorem summarizes
the construction of positivity-preserving interpolation using
the proposed rational bi-quartic spline.

Theorem 4. Given strictly positive surface data
Fi,j > 0, ∀i, j, the piecewise partially blended rational bi-quartic
function S(x, y) in Eq. 17 defined over the rectangular mesh
[xi, xi+1] × [yj, yj+1], i � 0, 1, ..., n − 1; j � 0, 1, ...,m − 1, preserves
the positivity of the data if the parameters satisfy the following
sufficient conditions:

αi,j > 0, αi,j+1 > 0, βi,j > 0, βi,j+1 > 0, α̂i,j > 0, α̂i+1,j > 0, β̂i,j > 0, β̂i+1,j > 0
ci,j >Max{0,−αi,j(hiFx

i,j + 2Fi,j)/Fi,j, βi,j(hiFx
i+1,j − 2Fi+1,j)/Fi+1,j}

ci,j+1 >Max{0,−αi,j+1(hiFx
i,j+1 + 2Fi,j+1)/Fi,j+1 , βi,j+1(hiFx

i+1,j+1 − 2Fi+1,j+1)/Fi+1,j+1}
c
�
i,j >Max{0,−α̂i,j(ĥiFy

i,j + 2Fi,j)/Fi,j, β̂i,j(ĥjFx
i,j+1 − 2Fi,j+1)/Fi,j+1}

c
�
i+1,j >Max{0,−α̂i+1,j(ĥiFy

i+1,j + 2Fi+1,j)/Fi+1,j , β̂i+1,j(ĥjFy
i+1,j+1 − 2Fi+1,j+1)/Fi+1,j+1}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(27)

Proof.
To prove the theorem, we adopted the idea from Karim

FIGURE 4 | Stability of the rational quartic interpolant. (A) αi,j � βi,j � α̂i,j � β̂i,j � 100. (B) αi,j � βi,j � α̂i,j � β̂i,j � 1000. (C) ci,j � ĉi,j � 0.005. (D) ci,j � ĉi,j � 0.0005.
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FIGURE 5 | Local quadratic polynomial reproducing. (A) True function. (B) αi,j � βi,j � 1, α̂i,j � β̂i,j � 1, and ci,j � ĉi,j � 1. (C) αi,j � βi,j � α̂i,j � β̂i,j � 1, ci,j � ĉi,j � 0.02.
(D) αi,j � βi,j � α̂i,j � β̂i,j � 1, ci,j � ĉi,j � 0.002. (E) βi,j � α̂i,j � β̂i,j � 10, ci,j � ĉi,j � 1. (F) αi,j � βi,j � α̂i,j � β̂i,j � 100, ci,j � ĉi,j � 1. (G) αi,j � βi,j � 1000, α̂i,j � β̂i,j �
1000, and ci,j � ĉi,j � 1.
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et al. [22]. As conjectured by Casciola and Romani [16], the
surface is shape-preserving if all four curve networks are
shape-preserving. This can be summarized as that the
rational bi-quartic surface S(x, y) is positive if and only if all
four curves are positive.

From Equations (18)–(21), S(x, yj)> 0, if Ai > 0, i � 0, 1, 2, 3.
αi,j > 0, βi,j > 0, ci,j > 0, A0 > 0, A2 > 0, andA4 > 0. Therefore,
S(x, yj)> 0, if and only if A1 > 0 and A3 > 0. Both conditions
can be simplified as follows:

ci,j > − αi,j(hiFx
i,j + 2Fi,j)/Fi,j, (28)

ci,j > βi,j(hiFx
i+1,j − 2Fi+1,j)/Fi+1,j. (29)

Combining conditions in Eqs. 28, 29 results in the following
sufficient conditions for the positivity of S(x, yj) in inequality
form:

ci,j >Max{0,−αi,j(hiFx
i,j + 2Fi,j)/Fi,j, βi,j(hiFx

i+1,j − 2Fi+1,j)/Fi+1,j}.
(30)

TABLE 3 | Error estimation for the interpolating surface in Figure 5.

Figure 5 R2 RMSE Max. error

B 0.9998 0.0084 0.1516
C 1.0000 6.6308e−06 0.0044
D 1.0000 6.7325e−08 4.4267e−04
E 1.0000 1.5515e−04 0.0212
F 1.0000 1.6717e−06 0.0022
G 1.0000 1.6846e−8 2.2144e−04

FIGURE 6 | Interpolating surface for Example 2. (A) Default surface. (B) xz-view for (A). (C) yz-view for (A). (D) The proposed scheme. (E) xz-view for (D). (F) yz-
view for (D). (G) Other view for (D). (H) Karim et al. [36]. (I) Abbas et al. [1].
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Likewise, the remaining three boundary curves
S(x, yj+1), S(xi, y), and S(xi+1, y) are positive if the following
sufficient conditions are satisfied.
S(x, yj+1)> 0, if and only if B1 > 0 and B> 0 :

ci,j+1 > − αi,j+1(hiFx
i,j+1 + 2Fi,j+1)/Fi,j+1, (31)

ci,j+1 > βi,j+1(hiFx
i+1,j+1 − 2Fi+1,j+1)/Fi+1,j+1. (32)

S(xi, y), if and only if C1 > 0 and C3 > 0:

ĉi,j > − α̂i,j(ĥjFy
i,j + 2Fi,j)/Fi,j, (33)

ĉi,j > β̂i,j(ĥjFy
i,j+1 − 2Fi,j+1)/Fi,j+1. (34)

S(xi+1, y), if and only if D1 > 0 and D3 > 0:

ĉi+1,j > − α̂i+1,j(ĥjFy
i+1,j + 2Fi+1,j)/Fi+1,j, (35)

ĉi+1,j > β̂i+1,j(ĥjFy
i+1,j+1 − 2Fi+1,j+1)/Fi+1,j+1. (36)

Combining the inequality conditions stated in Eqs. 31–36 leads
us to the following conditions:

ci,j+1>Max{0,−αi,j+1(hiFx
i,j+1 +2Fi,j+1)/Fi,j+1,βi,j+1(hiFx

i+1,j+1 −2Fi+1,j+1)/Fi+1,j+1} ,
ĉi,j>Max{0,−α̂i,j(ĥjFy

i,j +2Fi,j)/Fi,j, β̂i,j(ĥjFy
i,j+1 −2Fi,j+1)/Fi,j+1} ,

ĉi+1,j>Max{0,−α̂i+1,j(ĥjFy
i+1,j +2Fi+1,j)/Fi+1,j, β̂i+1,j(ĥjFy

i+1,j+1 −2Fi+1,j+1)/Fi+1,j+1}.
(37)

Then from Eqs. 30, 37, the sufficient conditions for the positivity
of all the four curve networks S(x, yj), S(x, yj+1), S(xi, y), and
S(xi+1, y) are obtained. This completes the proof.The sufficient
conditions in Eq. 27 can be rewritten as

αi,j > 0, αi,j+1 > 0, βi,j > 0, βi,j+1 > 0, α
�
i,j > 0, α

�
i+1,j > 0, β

�

i,j > 0, β
�

i+1,j > 0
ci,j >Max{0, − αi,j(hiFx

i,j + 2Fi,j)/Fi,j , βi,j(hiFx
i+1,j − 2Fi+1,j)/Fi+1,j}

ci,j+1 >Max{0, − αi,j+1(hiFx
i,j+1 + 2Fi,j+1)/Fi,j+1 , βi,j+1(hiFx

i+1,j+1 − 2Fi+1,j+1)/Fi+1,j+1}
c
�
i,j >Max{0, − α

�
i,j(h�iF

y
i,j + 2Fi,j)/Fi,j, β�i,j(h�jF

x
i,j+1 − 2Fi,j+1)/Fi,j+1}

c
�
i+1,j >Max{0, − α

�
i+1,j(h�iF

y
i+1,j + 2Fi+1,j)/Fi+1,j , β�i+1,j(h�jF

y
i+1,j+1 − 2Fi+1,j+1)/Fi+1,j+1}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

(38)

where the parameters

ki,j > 0, li,j > 0, mi,j > 0, ni,j > 0.

Theorem 5. The positive partially blended rational bi-quartic spline
S(x, y) constructed by using shape parameters calculated using Eq. 38
is a C1−continuous degree-nine piecewise rational surface with
positivity-preserving properties with respect to the positive datasets.

Proof. This is a consequence from Theorem 3.The following
algorithm can be used to implement the proposed positivity-
preserving interpolation.

FIGURE 6 | (Continued).

TABLE 4 | Positive surface data from function F1(x, y).

y/x 0 2 4 6

0 1.33000 0.011261 0.10505 0.41710
2 1.79240 0.619300 0.39739 0.45990
4 0.41370 0.020814 0.16294 0.33635
6 0.39537 0.281670 0.30087 0.33560
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Algorithm 1
Input: Strictly positive data points (xi, yj, Fi,j), i �
0, 1, ..., n; j � 0, 1, ...,m.
Output: Positive interpolating surfaces and RMSE and R2 values.
Step 1: Calculate the first partial derivative values Fx

i,j, F
y
i,j, F

xy
i,j by

using numerical techniques, i.e., AMM.
Step 2: Choose suitable positive values for free
parametersαi,j, βi,j, αi,j+1, βi,j+1, α̂i,j, α̂i+1,j, β̂i,j, β̂i+1,j, and
ki,j, li,j, mi,j, ni,j and compute the values of parameters
ci,j, ci,j+1, ĉi,j, ĉi+1,j by using Theorem 4.
Step 3: Construct the positive surfaces by substituting all the
required parameters into the partially blended rational bi-quartic
spline function in Eq. 17.
Repeat Steps 2 and 3 to generate a different positive surface
through different positive datasets.

RESULTS AND DISCUSSION

We test the proposed scheme by using two positive datasets.
Example 2 uses the same data as in Example 1. All
computational, simulation, and graphical results are obtained by
using MATLAB Version 2019a installed on Windows 10, AMD
Ryzen 3 2200Gwith RadeonVegaGraphics 3.50 GHz. As validation,
we calculate RMSE and R2 values and compare the results with those
of Karim et al. [36] and Abbas et al. [50].

Example 2. Positive data from the following function are
truncated to five decimal places [50]:

F1(x, y) � e−(x2+y2)/15(sin(x) + cos(y)) + 0.33, 0≤ x, y ≤ 6.
(39)

Figure 6A shows the default bi-quartic Hermite spline for the
positive data given in Table 4. Figures 6B,C show the xz-view
and yz-view for Figure 6A, respectively. Figure 6D shows
positivity-preserving by using the proposed rational bi-quartic
spline with αi,j � βi,j � 1, α̂i,j � β̂i,j � 1. Meanwhile, Figures 6E,F
show the xz-view and yz-view for Figure 6D, respectively.
Figure 6G shows the other view for Figure 6D. Clearly, the
interpolating surfaces are positive on entire given intervals.
Meanwhile, Figures 6H,I show the positive interpolating
surfaces using Karim et al. [36] and Abbas et al. [50] schemes.

Example 3. Positive data from the following function are
truncated to four decimal places [51]:

F3(x, y) � e−x
2 + e−2y

2 + 0.04, −3≤ x, y ≤ 3. (41)

Figure 7A shows the default bi-quartic Hermite spline for the
positive data given in Table 5. Figures 7B,C show the xz-view
and yz-view for Figure 7A, respectively. Figure 7D shows positivity-
preserving by using the proposed rational bi-quartic spline with
αi,j � βi,j � 1, α̂i,j � β̂i,j � 1. The parameters ci,j and ĉi,j are
obtained by applying Theorem 4, i.e., Eq. 27. Meanwhile, Figures
8E,F show the xz-view and yz-view for Figure 8D, respectively.
Figure 7G shows the other view for Figure 7A. Meanwhile,
Figure 7H shows the other view for the surface in Figure 8D.
We found that the interpolating surfaces are positive everywhere.

FIGURE 7 | Interpolating surface using the proposed scheme for Example 3. Interpolating surfaces for data in Table 5. (A) Default surface. (B) xz-view for (A). (C)
yz-view for (A). (D) The proposed scheme. (E) xz-view for (D). (F) yz-view for (D). (G) Other view for (A). (H) Other view for (D). (I) Karim et al. [36]. (J) Abbas et al. [1].
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Figures 7I,J show the interpolating surfaces using Karim et al. [36]
and Abbas et al. [50] schemes.

We compare the performance between the proposed partially
blended rational bi-quartic spline interpolation and the works of
Abbas et al. [50] and Karim et al. [36] by calculating the root mean
square error (RMSE) and coefficient of determination (R2). Tables
6, 7 summarize the main results. It can clearly be seen that the

proposed rational bi-quartic spline interpolation is on par with the
works of Abbas et al. [50] and Karim et al. [36]. Based on R2, for
both examples, the proposed scheme is the best. Furthermore,
according to Renka and Brown [53] criteria, the proposed scheme
is excellent since the R2 value is in between 0.91 and 0.997.
Meanwhile, based on the RMSE value, we found that the
proposed scheme is the best when the parameters are αi,j � βi,j �
0.1 and α̂i,j � β̂i,j � 0.1. From all numerical simulations, we found
that the proposed scheme requires less computation times (in
seconds) compared with Abbas et al. [50] and Karim et al. [36]
schemes. The speedup is around 10% faster than the other schemes.
Furthermore, based on graphical results, all schemes are looking
competent to each other. Most probably, the proposed scheme is
the best for both examples. Based on this, we conclude that the rank
from the best scheme to the lowest is as follows:

The Proposed Scheme > Karim et al. [36] > Abbas et al. [50]
Our final example shows that the proposed rational

bi-quartic spline for positivity-preserving has the capability to

FIGURE 7 | (Continued).

TABLE 5 | Positive surface data from function F3(x, y).

y/x −3 −2 −1 0 1 2 3

−3 0.0401 0.0404 0.1755 1.0401 0.1755 0.0404 0.0401
−2 0.0583 0.0586 0.1936 1.0583 0.1936 0.0586 0.0583
−1 0.4078 0.4082 0.5432 1.4079 0.5432 0.4082 0.4078
0 1.0400 1.0403 1.1753 2.0400 1.1753 1.0403 1.0400
1 0.4078 0.4082 0.5432 1.4079 0.5432 0.4082 0.4078
2 0.0583 0.0586 0.1936 1.0583 0.1936 0.0586 0.0583
3 0.0401 0.0404 0.1755 1.0401 0.1755 0.0404 0.0401
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reduce the CPU times (in seconds) to construct the interpolating
surface compared with interpolation without positivity-
preserving. Table 8 shows the positive data from the following
function:

F3(x, y) � 0.25((x2 + y2)2 + 1), 0≤ x, y ≤ 6. (42)

Figure 8 shows the examples of various interpolating surfaces for
data given in Table 8. Figure 8A shows the interpolating surface
when the free parameters are αi,j � βi,j � 1, α̂i,j � β̂i,j � 1, and ci,j �
ĉi,j � 2. Figures 8B,C show the xz-view and yz-view for Figure 8A.
Clearly, the surfaces are not positive everywhere. Figure 8D shows
the positive interpolating surface after applying Theorem 4. The free

parameters are αi,j � βi,j � 1, and α̂i,j � β̂i,j � 1. Meanwhile,
ci,j and ĉi,j are obtained through Eq. 27. Figures 8E,F show the
xz-view and yz-view for Figure 8D. From both graphs, the surfaces
are positive and lie above both x and y axes. Figure 8G shows
another interpolating surface with parameters
αi,j � βi,j � 0.1, α̂i,j � β̂i,j � 0.1. However, the surface is not
positive as seen in Figure 8H. Finally, Figure 8I shows the
interpolating surface using the proposed scheme. From
Figure 8J, it is seen that the interpolating surface shown in
Figure 8I is positive everywhere. Therefore, Theorem 4 is
confirmed to produce a positive interpolating surface on
entire given intervals. This is in contrast with what was
claimed by Qin et al. [38]. Therefore, the proposed scheme
indeed has reduced the number of mathematical derivations

FIGURE 8 | Various interpolating surfaces. (A) Default surface. (B) xz-view for (A). (C) yz-view for (A). (D) Positivity-preserving surface. (E) xz-view for (D). (F) yz-
view for (D). (G) Non-positivity-preserving surface. (H) Other view for (G). (I) Positivity-preserving surface. (J) Other view for (I).
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needed to produce a positive rational interpolant. This is very
significant in numerical analysis aspects. We only require lesser
computation time compared with the work of Qin et al. [38].
CPU times (in seconds) are measured by using MATLAB tic and
toc commands.

As seen in Table 9, by applying the positivity-preserving
interpolation scheme to the given data, the CPU times (in
seconds) needed to construct the interpolating surface are
reduced. This is true for all set of parameters. We also noticed
that the proposed sufficient condition for the positivity of the
rational quartic interpolant is guaranteed to produce a positive
interpolating surface everywhere, i.e., on entire given intervals.
However, we also found that, by applying positivity-preserving
interpolation, R2 values will be reduced, while at the same time,
the RMSE value will be increased. However, the values are not
much different.

Final Remark: Qin et al. [38] have proposed a new approach to
derive the sufficient condition for the positivity of the partially
blended rational spline. They claimed that their condition is

guaranteed to produce a positive interpolating surface
everywhere. However, their method is mathematically more
complicated to apply since it will increase the unnecessary
computation time to produce the positive surface. If we apply
the Qin et al. [38] method, the sufficient condition for the positivity
of the rational quartic spline will take the following form:

FIGURE 8 | (Continued).

TABLE 6 | Root mean square error (RMSE) values.

Method Example 2 Example 3

Abbas et al. [50] 0.0252 0.0024
Karim et al. [36] 0.0233 0.0012
The proposed scheme A 0.0230 0.0012

B 0.0231 0.0012
C 0.0229 0.0013
D 0.0205 0.0007

TABLE 7 | Coefficient of determination (R2) values.

Method Example 2 Example 3

Abbas et al. [50] 0.8991 0.9846
Karim et al. [36] 0.9001 0.9952
The proposed scheme A 0.9013 0.9946

B 0.9007 0.9947
C 0.9016 0.9945
D 0.9129 0.9965

Parameters’ arrangement: A- αi, j � βi, j � 1, α̂i, j � β̂i, j � 1, and ci, j � ĉi, j � 2.
B- αi, j � βi, j � 2.5, α̂i, j � β̂i, j � 2.5, and ci, j � ĉi, j � 0.5.
C- αi, j � βi, j � 0.5, α̂i, j � β̂i, j � 0.5, and ci, j � ĉi, j � 0.5.
D- αi, j � βi, j � 0.1, α̂i, j � β̂i, j � 0.1, and ci, j � ĉi, j � 0.5.

TABLE 8 | Positive surface data from function F3(x, y).

y/x 0 2 4 6

0 0.2500000 0.0147059 0.000972763 0.00019275
2 0.0147059 0.003846154 0.000623441 0.00015615
4 0.000972763 0.0006234414 0.000243902 9.2421e−05
6 0.000192752 0.0001561524 9.242144e−05 4.8216e−05
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S(x, yj) − 1
2
a0(θ)Fi,j − 1

2
a1(θ)Fi+1,j > 0, (43)

S(x, yj+1) − 1
2
a0(θ)Fi,j+1 − 1

2
a1(θ)Fi+1,j+1 > 0, (44)

S(xi, y) − 1
2
a0(θ)Fi,j − 1

2
a1(θ)Fi,j+1 > 0, (45)

S(xi+1, y) − 1
2
a0(θ)Fi,j − 1

2
a1(θ)Fi+1,j+1 > 0. (46)

It is very complicated to solve Eq. 43 until Eq. 46. This is because we
need to simplify all equations to form a new rational function,
i.e., quintic numerator and quadratic denominator. Compared with
our derivation for the positivity of the rational quartic spline which is
direct and easy as shown in Eq. 28 until Eq. 36. Furthermore, based
on all numerical and graphical results presented in this study, we
found that the sufficient condition on all four curve networks is
sufficient to produce positive interpolating surfaces on the entire
given domain and not just on the four boundary curves only. This
fact can be seen clearly in the final example. When we applied the
proposed scheme, we found that, without positivity-preserving
interpolation, the z values are negative. Meanwhile, after we
apply the sufficient condition stated in Theorem 4, we obtain the
interpolating surface as positive everywhere as seen inFigures 6–8 as
well as in Table 9. Therefore, we encouraged the user to use our
proposed rational bi-quartic spline for positivity-preserving
interpolation with the following merits:

1) It will guarantee to produce a positive interpolating surface on
entire given intervals and not just on the four boundary curve
networks as claimed by Qin et al. [38]. From all numerical
examples, we found that, after the positivity conditions are
applied, all points on the surface are positive.

2) It can reproduce an exactly quadratic polynomial unlike
Abbas et al. [50], Karim et al. [36], and Qin et al. [38].

3) Overall, based on R2 and RMSE values, the proposed scheme
is the best compared with some existing schemes.

CONCLUSION

In this study, a new partially blended rational bi-quartic spline
interpolation with C1 continuity is constructed for positivity-
preserving application. The sufficient condition for the positivity
of the rational quartic spline is derived on four boundary curves
defined on rectangular meshes. This condition results in eight free
parameters for shape modification. The proposed scheme is tested
formany positive surface datasets. Based on numerical analysis and
graphical comparison, the proposed scheme is the best, i.e., higher
R2 and smaller RMSE.We also found that the proposed scheme has
the capability to reduce the CPU times (in seconds) when we want
to construct a positive interpolating surface. Furthermore, the
proposed positivity-preserving interpolation scheme is
guaranteed to deliver a positive surface on the entire given
interval. The derivation for the positivity sufficient condition in
this study is easier than that in the study of Qin et al. [38]. By using
our proposed scheme, we have reduced the required numbers of
mathematical derivations, and our scheme is easy to use. On top of
that, the proposed scheme is local quadratic polynomial
reproducing. This is significant when the user wants to
reconstruct any quadric surfaces. Future studies will be
focusing on the construction of general shape-preserving
for scattered data arranged on triangular meshes as well as
its applications in image processing and image denoising
such as in the studies of Karim and Saaban [55], Karim et al.
[56], Walther and Schmidt [57], and Zulkifli et al. [58].
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TABLE 9 | Error estimation.

The
proposed
scheme

R2 RMSE Number of
points below
x and y axes

CPU times
(in seconds)

I Non-PP 0.9227 8.8280e−05 110 2.435965
PP 0.9067 1.0117e−04 0 2.008921

II Non-PP 0.9280 8.2205e−05 56 2.379029
PP 0.9062 1.0173e−04 0 1.971622

III Non-PP 0.9126 9.9883e−05 160 2.968662
PP 0.9153 9.5954e−05 0 1.795824

IV Non-PP 0.9333 7.6204e−05 28 2.28106
PP 0.9335 7.5327e−05 0 1.567297

PP: positivity-preserving.
Note: sets of parameters.
I- αi,j � βi,j � 1, α̂i,j � β̂i,j � 1, and ci,j � ĉi,j � 2.
II- αi,j � βi,j � 1, α̂i,j � β̂i,j � 1, and ci,j � ĉi,j � 3.
III- αi,j � βi,j � 0.5, α̂i,j � β̂i,j � 0.5, and ci,j � ĉi,j � 0.5.
IV- αi,j � βi,j � 0.1, α̂i,j � β̂i,j � 0.1, and ci,j � ĉi,j � 2.
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