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The precise determination of diffusive properties is presented for a system described
by the generalized Langevin equation. The time-dependent fractional diffusion function
and the Green-Kubo relation as well as the generalized Stokes-Einstein formula, in the
spirit of ensemble averages, are reconfigured. The effective friction function is
introduced as a measure of the influence of frequency-dependent friction on the
evolution of the system. This is applied to the generalized Debye model, from which
self-oscillation emerges as indicative of ergodicity that breaks due to high finite-
frequency cutoff. Moreover, several inconsistent conclusions that have appeared in
the literature are revised.
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1 INTRODUCTION

In the early 20th century, Brownian motion became the subject of a theoretical investigation by
Einstein, Langevin, Smoluchowski, and others [1–3]. The well-known conclusion was that the mean
squared displacement of a force-free particle grows linearly in time. Because the Brownian
trajectories were relatively short, Jean Perrin in 1908 used an ensemble average over many
particle traces to obtain meaningful statistics. A few years later, Ivar Nordlune conceived a
method for recording much longer time series. This let him determine time average individual
trajectories and thus avoid average ensembles of particles that were probably not identical [3]. The
average can be understood either as an ensemble average over a large number of trajectories or as a
temporal moving average over a very long time trajectory. Nevertheless, the time average diffusion
coefficient might be a random variable different from that of the ensemble, albeit the measurement
time is long [4–6]. Since the ergodicity is broken in this sense, the diffusion coefficient can only be
calculated by using the ensemble average. In theory, one mostly considers ensemble average; in the
experiment, however, it is sometimes the former that taken the place of time averages because only
one realization of a process is recorded. For an ergodic system, the time average is the same as the
ensemble average [7]. The ensemble averaging result can be regarded as a comparable criterion.

Superseding Einstein’s theory of Brownian movement, anomalous diffusion is characterized by
the variance of the position of a diffusing particle increasing with time in a power-law form [8–11].
From an analysis of experimental data, the variance of the position for a force-free particle may be
written in scalar form,

〈Δx2(t)〉 � 2DαL1(t)tα + L2(t), (1)

where 〈/〉 denotes the ensemble average and 0< α≤ 2. This setup allows for various sorts of
different physical realizations. The expectation for the particular behaviors of L1(t) and L2(t) is:
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L1(t)> 0, L1(t→∞) � 1, L2(0) � 0, and limt→∞t−αL2(t) � 0.
There have been a number of attempts to calculate the coefficients
of transport for apparently dissipative systems, the Fourier
transform of the velocity autocorrelation function (VACF)
being widely used in semi-phenomenological spectral studies
of fluids, magnets, and other systems [12]. Furthermore, the
diffusion constantDα and exponent α deduced from data analyses
need to be addressed accurately. In the anomalous diffusion
sense, the generalization of the two basic statistical-dynamics
laws—the Green-Kubo and the Stokes-Einstein
relations—regarding measurable approaches for arbitrary
frequency-dependent friction also has importance. This aids
our understanding of the characteristic behaviors of
anomalous, diffusive, and nonergodic systems [7, 13].

There are many formalisms that describe anomalous diffusion,
and growing interest has gathered around using the generalized
Langevin equation (GLE) [14–16] as a viable alternative for
investigating anomalous diffusion. One of the key features of the
GLE is that it contains an after-effect function, termed a memory
function [17, 18], which can be obtained from experiments or
molecular dynamics simulations [19, 20]. Previous works on
anomalous diffusion using the non-Ohmic friction model without
high-frequency decaymodulation showed that theVACF varies with
time governed by theMittag-Leffler function [21–25]. Indeed, a little
transitive friction information can be extracted, although one knows
that the diffusion coefficient determined by standard approaches
vanishes for subdiffusion and diverges for superdiffusion.
Furthermore, the issue of long-term memory [26] is always of
central importance in nonequilibrium statistical mechanics, but
there are several grounds for doubt [27], e.g., the dynamical
effect related to the sharp cutoff in the spectrum being widely
used, that require clarification.

The purpose of this paper is to set the diffusion coefficient and
scaling exponent for anomalous diffusion processes; in particular,
we will introduce another quantity, the effective friction function
related to non-Stokesian relaxation, to account for the after-effect
of anomalous diffusion. A measurement of this function does not
present major difficulties for experiments yet provides a novel
characterization of the underlying evolutionary process. The
following questions also arise: What forms do the generalized
Green-Kubo and Stokes-Einstein relations take in regard to
anomalous diffusion? Can the coefficient of diffusion and the
exponent be measured accurately? How strong is the effect of the
high finite-frequency cutoff on the dynamics? The answers will
become clear in the present study.

2 RELATIONS BETWEEN VARIOUS
TEMPORAL FUNCTIONS
2.1 Time-Dependent Fractional Diffusion
Function
To extract the pre-time coefficient Dα in Eq. 1 when the exponent
α is known, we have to generalize the definition of the coefficient
of diffusion [28] using L’Hôpital’s rule. The “fractional diffusion
function” is assumed to be time-dependent, i.e.,

~Dα(t) � 1
2 0z

α
t 〈Δx2(t)〉, (2)

where 0zαt denotes a fractional Riemann-Liouville derivative of
order α [23–25]. Here, ~Dα(t) is related to DαL1(t) in Eq. 1, which
converges asymptotically to the constant Dα. For normal
diffusion with α � 1, Eq. 2 reduces to the standard diffusion
function defined as D(t) � 1

2
d
dt 〈Δx2(t)〉 [28, 29]. The latter has a

clear physical meaning representing the temporal expansion rate
of the spatial distribution. We establish a relation between the
above two diffusion functions:

~Dα(t) � dn

dtn
∫t

0

(t − t′)β− 1
Γ(β) D(t′)dt′, (3)

where Γ(β) is the gamma function, and setting α � n − β + 1,
where n � 0, 1, 2, . . . is a non-negative integer and β≥ 0 a real
number. In calculations concerning subdiffusion and
normal diffusion (0< α≤ 1), we choose n � 1 and then; for
superdiffusion and ballistic diffusion [30, 31] (1< α≤ 2), we
choose n � 2 and then β � 3 − α. To date, no systematic
numerical results regarding the fractional diffusion
function for any contexts have been provided. However,
they are required to understand the experimental
observations.

2.2 Generalization of Two Famous
Statistical-Dynamics Relations

The motion of a particle driven by a Gaussian distributed noise
ε(t) is described by the following GLE:

m _v +m∫t

0
M1(t − t′)v(t′)dt′ + U ′(x) � ε(t), (4)

where M1(t) is the memory function and U(x) the potential. In
general, colored noise ε(t) has a vanishing mean and is not
correlated with the initial velocity. The noise correlation and
memory function satisfy the fluctuation-dissipation theorem,
expressed as 〈ε(t)ε(t′)〉 � mkBTM1(|t − t′|), where kB denotes
Boltzmann constant and T the temperature. We emphasize that,
under the physical requirements of noisy dynamics [28, 32, 33], a
rather free choice of the memory kernel or of the noise
autocorrelation function is possible [34].

When the external potential is absent, i.e., when dealing with
free diffusive motion, the formal solution of Eq. 4 is obtained by
means of the Laplace-transform technique [35–38], which yields
v(t) � v(0)h(t) + 1

m ∫t

0
h(t − t′)ε(t′)dt′ and

x(t) � x(0) + v(0)H(t) + 1
m ∫t

0
H(t − t′)ε(t′)dt′. The Laplace

transform of the velocity relaxation function h(t) yields
ĥ(s) � [s + M̂1(s)]− 1, where M̂1(s) is the Laplace transform of
the memory function given by M̂1(s) � ∫∞

0
M1(t)exp(−st)dt and

H(t) � ∫t

0
h(t′)dt′. The average position of the particle is

{〈x(t)〉} � {x(0)} + {v(0)}H(t). Herein we indicate by {/} the
average with respect to the initial values of the state variables and
by 〈/〉 the average over the noise ε(t). The mean squared
displacement (MSD) is expressed in the general form,
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{〈x2(t)〉} � {〈x(t)〉2} + {〈Δx2(t)〉}
� {x2(0)} + 2{x(0)v(0)}H(t) + {v2(0)}H2(t)

− kBT
m

H2(t) + 2kBT
m

∫t

0
H(t′)dt′. (5)

The sum of the first three terms represents the square of the
average position, and the sum of the latter two terms is the
position variance. Note that the position variance is independent
of the initial preparation of the particle.

We have found that the time-dependent diffusion functions,
calculated by taking the time-derivative of the position variance
and the MSD, are different. If the particle is confined initially at
the origin x(0) � 0 and its velocity obeys theMaxwell equilibrium
distribution with {v2(0)} � kBT/m rather than rest, using Eq. 5
and H(t) � ∫t

0
h(t′)dt′ � kBT

m ∫t

0
~Cv(t′)dt′, the MSD is

expressed as

{〈x2(t)〉} � 2kBT
m

∫t

0
dt′ ∫t′

0
dτ~Cv(τ). (6)

Therefore, the diffusion function obtained by differentiating
Eq. 6 yields D(t) � ∫t

0
Cv(τ)dτ with Cv(t) � kBT

m
~Cv(t). This is

specifically an expression of the time-dependent Kubo relation
encountered in the literature [11]. From the time derivative of the
variance of position, i.e., Eq. 5, we obtain a rigorous exact relation
between the standard diffusion function and the two relaxation
functions, i.e., D(t) � 1

2
d
dt 〈Δx2(t)〉 � kBTm−1[1 − h(t)]H(t)

[38]. Indeed, h(t) may be expressed as a normalized VACF,
i.e., h(t) � 〈v(t)v(0)〉/{v2(0)} � ~Cv(t). The VACF is calculated
numerically from a homogeneous integro-differential equation,
_~Cv(t) � −∫t

0
M1(t − t′)~Cv(t′)dt′ with ~Cv(0) � 1. Here, we report

a generalized time-dependent Green-Kubo relation,

D(t) � kBT
m

[1 − ~Cv(t)] ∫t

0

~Cv(t′)dt′. (7)

This expression is valid for anomalous diffusion and
nonergodic processes as well as for arbitrary initial
preparations. Equation 7 is referred to as the generalized
time-dependent Kubo relation. In particular, under the
condition Cv(t→∞) � 0, D(t) approaches a constant when
the upper limit of the integral is set to infinity, and, under
{v2(0)} � kBT

m , Eq. 7 reduces to the standard Kubo relation [28].
The standard Stokes-Einstein expression that has just been

reviewed applies to steady motion only and should be regarded as
a zero-frequency theory. It is not consistent with using a
coefficient of friction derived assuming steady motion
describing changes in velocity. For this reason, the
generalization of the Stokes-Einstein formula for an arbitrary
frequency is of interest. For a broad class of systems, relaxation
into the stationary state is exponentially fast; however, this is not
true for all physical systems. Some systems may possess a
stationary process, but the relaxation toward this state may be
slow, and the well-known Stokes-Einstein formula thus needs to
be generalized more. For anomalous diffusion, with a stationary
VACF, the limiting result of the ratio of the time-dependent

diffusion function to the velocity relaxation time, we report a
generalized Stokes-Einstein relation:

lim
t→∞

D(t)
τv(t) �

kBT
m

(1 − b). (8)

Here τv(t) � ∫t

0
~Cv(t′)dt′ is called the non-Stokesian

relaxation time, which may become zero or infinity, and b �
~Cv(t→∞) � (1 + M̂′

1(0))− 1
represents the nonergodic strength

of the first type [39, 40]; however, b � 0 for ergodic processes.
In fact, Eq. 8 involves a spectral result [19],

limt→∞[D(t)∫t

0
M1(t′)dt′] � kBT

m , which also differs from
recent work on the generalized asymptotic Einstein relation
[20]. The latter reported a scale-dependent asymptotical
Einstein relation for anomalous diffusion,
i.e., limt→∞[D(t)∫ t

0
M1(t′)dt′] � 2C(0)/m2Γ(α)Γ(2 − α),

where C(0) is the noise correlation strength [20]. Fortunately,
the present result [Eq. 8] seems universal as long as the integral
over the VACF is used to replace that over the memory function.

2.3 Typical Long-Range Memory
We now consider a generic noise spectral density (NSD)
generated by a model for non-Ohmic friction [21, 22], for
which the memory function takes the form

M1(t) � cδ
2
π
∫∞

0
(ω
~ω
)δ− 1

f (ω)cos(ωt)dω, (9)

where ~ω denotes the reference frequency for friction cδ having the
dimensions of viscosity for any δ and f (ω) the modulation
function of the frequency. In addition, the constant cδ allows
for GLE (4) to have the correct dimension as well as f (ω) is a
frequency modulate function. When 0< δ < 2, the diffusive
exponent α � δ in Eq. 1, one can safely set f (ω) � 1 [21];
nevertheless δ > 2, α � 2, a decay form for f (ω), must be
addressed.

In Figure 1, we plot the time-dependent fractional diffusion
function calculated numerically using Eq. 3 combined with Eqs
7,9. All values of quantities used here on in are stated in
dimensionless form, (i.e. kBT � 1, m � 1, cδ � 1, and ~ω � 1).
The scale-dependent fractional derivative is sufficient to
produce finite fractional coefficients of diffusion in the long-
time limit as expected. Notably, an overshooting peak arises
during intermediate time periods, implying a strongly
temporal “diffusion rate”. For sub-diffusive situations, because
of thermal fluctuations, the diffusion function starts from zero,
increases with time, and finally decays to zero at late times. Hence,
it remarkably ensures the existence of a temporal diffusive
maximum.

3 EFFECTIVE FRICTION FUNCTION

3.1 Self-Consistent Extraction
More importantly, we want to introduce the temporal effective
friction function, which is extracted consistently from Eq. 7 by
assuming
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D(t) � kBT
mceff (t)

. (10)

Starting from experimental sampling of the velocities of tagged
particles with injection velocity v(0), we express the two
functions h(t) and H(t) in alternative forms,

h(t) � 〈v(t)〉
v(0) ,H(t) � t

1
t
∫t

0

〈v(t′)〉
v(0) dt′ � 〈v(t)〉

v(0) t. (11)

An effective friction function that depends on both the
physical features and the underling process is then defined,

ceff(t) � [(1 − 〈v(t)〉
v(0) ) 〈v(t)〉

v(0) ]t−1. (12)

The advantage of this approach is that the entire
configurational details are reduced to the particle’s velocity,
which is easily measured. Theoretically, it is easier to discuss a
double average, one over time and the other over the ensemble of
different trajectories.

For example, for the Ohmic friction (δ � 1) with
f (ω) � ω2/(ω2 + ω2

c ), the Ornstein-Uhlenbeck (OU) colored
noise is reached as M1(t) � c1ωc exp(−ωct) (the noise
correlation time is τc � ω−1

c ). Then the effective friction
function can be obtained analytically,

ceff (t) � [1 − A exp(z1t) − B exp(z2t)]− 1
· (A

z1
[exp(z1t) − 1] + B

z2
[exp(z2t) − 1])− 1

, (13)

where A � (ωc + z1)/(ωc + 2z1), B � (ωc + z2)/(ωc + 2z2),
z1 � −1

2ωc + 1
2ωc

���������
1 − 4c1/ωc

√
, and z2 � −1

2ωc + 1
2ωc

���������
1 − 4c1/ωc

√
.

Hence, ceff(t→∞) � c1. When ωc →∞, which results in
Markovian Brownian motion, we have
ceff(t) � c1[1 − exp(−c1t)]− 2. In addition, ∫t

0
M1(t′)dt′ � c1[1 −

exp(−ωct)].
Figure 2 shows the time-dependent effective friction function

for various δ. It starts from infinity because the system does not
yet receive any dissipative energy from its environment at the
initial time. This function approaches a constant value for normal
diffusion, i.e., the low-frequency Markovian friction strength

FIGURE 1 | Time-dependent fractional diffusion function calculated using Eq. 3 for various known values of the exponents δ. Here, f(ω) � exp(−ω/ωc) and
ωc � 2.0 are used.

FIGURE 2 | Effective friction function calculated from the non-Ohmic
friction model for various δ. Here f(ω) � exp(−ω/ωc) with ωc � 2.0.
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M̂1(0). With observations, a decrease/increase in the effective
friction function corresponds to superdiffusion/subdiffusion. In
contrast to the usual understanding, the effective friction function
emphasizes the process dependence rather than the static result.
From Eq. 13, the steady value of ceff(t) increases with decreasing
ωc. Indeed, friction does vanish, but there is still no thermal
excitation when ωc → 0. This implies that the effective friction
function reflects its diffusive nature in that two effects are
combined, the memory damping force and the random force,
in generalized Brownian motion.

4 SELF-OSCILLATION DIFFUSION

4.1 Determination of Diffusive Exponent
Lastly, the thorny problem is the measurement of the power-law
exponent α from observed data. Of note is the fact that if L2(t) in
Eq. 1 is a non-stationary function of time, the local differential
method should be invalid for this situation. Although the leading
term in the variance of the position may exceed the L2(t)
oscillation term, as long as the time derivative of this variance
is performed, the oscillating behavior is revealed. Previously, the

approach α � limt→∞(t d ln〈Δx2(t)〉dt ) was used to evaluate the

power exponent [41]. However, what is not valid for the
situation of diffusion accompanied by oscillation when the
spectral density of driving noise is the cut at finite or infinite
frequency. Here, we propose a whole approach using the slope of
the logarithm of the coordinate at large times,

α � ln〈Δx2(t2)〉 − ln〈Δx2(t1)〉
ln t2 − ln t1

, (14)

where t1 and t2 are two observation times at which the system has
evolved into the asymptotic state.

4.2 The Effect of High-Frequency Cutoff
In contrast to usual understanding, the notion of the effective
friction function proposed here is dependent on underlying
processes rather than the static result. It is concluded from
Figure 2, (e.g., the comparison between solid and dashed lines
when δ � 1) and Eq. 13 that the steady value of ceff(t) increases
with a decrease of ωc. In fact, the friction does vanish, but there is
yet no thermal excitation when ωc → 0. This implies that the
effective friction function reflects a diffusive feature, which
combines two effects of the memory damping force and
random force in generalized Brownian motion.

Nevertheless, the first choice in Eq. 9 cannot be adopted
when δ > 2, which results in that the noise correlation function
corresponding to the memory function does not approach
vanishing at long times. This violates Kubo’s requirements of
noisy dynamics [28]. However, the cutoff function f (ω) in Eq. 9
should be applied safely. It is known that the treatment of high-
frequency cutoff has been applied widely as well as α � δ when
0< δ < 2 and α � 2 when δ > 2 [21]. However, little attention was
given to the influence of this cutoff on dynamics.

The Laplace transform of the memory function for the non-
Ohmic friction model combining with f (ω) � Θ(ωc − ω), where
Θ(ωc − ω) is the Heaviside function, equaling unity when ω≤ωc

and vanishing when ω>ωc, is given by

M̂1(s) � cδω
δ
c

πΓ(1 + δ/2) 2F1(1, δ2, 1 + δ

2
;−ω

2
c

s2
)s−1, (15)

where 2F1 denotes the hypergometric function. In particular,
when δ � 1, 2F1(1, 1/2, 3/2,−x2) � ��

π
√

arctan(x)/x. Assuming
that s � s1 + is2,

arctan(ωc

s
) � 1

2i
⎡⎢⎢⎢⎢⎢⎢⎣ln

���������������������(s21 + s22 − ω2
c )2 + 4(s1ωc)2

√
s21 + (s2 − ωc)2 + i(θ + 2πn)⎤⎥⎥⎥⎥⎥⎥⎦(n � 0, ± 1, ± 2, . . . ),

(16)

where θ � arctan[(2s1ωc)/(s21 + s22 − ω2
c )]. Although M̂1(s) is a

multi-value function on the complex plane, where exists at least a
fair of pure complex roots (i.e., s � ± is2) for the characteristic
equation: s + A arctan(ωc/s) � 0, which is given by s2 �
A
2 ln[(s2 + ωc)/(s2 − ωc)] with s2 >ωc. This results in a time-
oscillation part appear in the VACF and thus the ergodicity is
broken.

According to the Khinchin theorem, if limt→∞Cv(t)≠ 0,
ergodicity is broken [42, 43]. Two situations arise depending
on whether Cv(t→∞) � lims→ 0[sĥ(s)] � b{v2(0)}≠ 0 or
whether it does not exist. We establish here a universal
condition for ergodicity breaking that there exists a zero root
or at least a pair of real complex roots for the characteristic
equation: s + M̂1(s) � 0, namely,

s + 2
π
∫∞

0

ρ(ω)s
s2 + ω2

dω � 0, (17)

and the residues do not equal zero at these poles. The second term
on the l.h.s of Eq. 17 is the Laplace transform of the memory
function. We report also an alternative NSD, which can induce
nonergodicity of three types, i.e.,

ρ(ω) � ρ0(ω)Θ(ω − ωL)Θ(ω1 − ω)Θ(ω − ω2)Θ(ωH − ω), (18)

where ρ0(ω) is a function of the frequency,
0≤ωL <ω1 <ω2 <ωH <∞. Eq. 18 can be used to physically
describe the generalized Debye model [16], the long-
wavelength limit of acoustic phonon [44], the Bethe lattice
[45], and the localized mode [46].

Applying the residue theorem [47, 48], we obtain a general
result for the velocity relaxation function,

h(t) � b + A1 cos(λ1t) + A2 cos(λ2t) + 1
2πi

∫∞

0
( exp(−rt)
−r + M̂1(re− πi)

− exp(−rt)
−r + M̂1(reπi))dr +∑2N

n�1
res[M̂1(sn)]exp(snt),

(19)
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where

b � (1 + 2
π
∫∞

ωL

ρ0(ω)
ω2

dω)− 1

. (20)

The quantity is equal to a constant less than unity as long as
ρ0(ω) ∼ ωδ (δ > 1) at low frequencies when ωL � 0 and
ρ0(ω) ∼ ωδ (δ < 1) at high frequencies if ωL ≠ 0. The
existence of time oscillations in the VACF is because s � ± iλ1
and s � ± iλ2 may be numerical solutions of Eq. 17, which
requires ω1 < λ1 <ω2 and ωH < λ2; also, A1 and A2 are each
twice the residue at its respective pole. The last two terms in
Eq. 19 vanish in the long-time limit because Re sn < 0 for any n.

Clearly, the upper-limit of the summation in Eq. 19 may be
infinity because M̂1(s) calculated using Eq. 18 is a multi-valued
function on the complex plane. Let us perform an integration via
parts in Eq. 17 to render explicit the dependence of M̂1(s) on s,

M̂1(s) � 2
π
[ρ0(ωH)arctan(ωH/s) − ∫ωH

0
arctan(ω/s)ρ′0(ω)dω].

(21)

For a complex variable s, we have arctan(ω/s) �
(2i)− 1 ln|(s + iω)/(s − iω)| + 1

2 (θ + 2nπ) with
n � 0, ± 1, ± 2, . . ., where θ is the angle of the complex
variable (s + iω)/(s − iω) obtained by expressing it as an
exponential function. Further, it is noticed that both the well-
known Mittag-Leffler function [22] and the series solution [43,
44] cannot be used to demonstrate the self-oscillating result at
large times but Eq. 19 is reasonable.

Figure 3 shows the resulting VACF for various δ and two
different modulation functions of the frequency. Evidently, there
exist three types of nonergodicity where the VACF 1) approaches
a positive constant, 2) oscillates with time around a plateau value,
or 3) oscillates with time around zero; the simple conditions
satisfied by the NSD are low-hindering, band-passing, and high-

hindering or band-hindering. This forces the ensemble to become
unstable, although the GLE used is initially stationary. The
oscillation implies that the particle tends to reverse its
direction of motion frequently relative to its former step. This
classification of the nonergodic behavior may be regarded as a
probe of a more precise estimation of the low and high
frequencies distribution for thermal colored noise. In addition,
from the microscopic Hamiltonian viewpoint, ergodicity
breakage is caused by a localized mode with an isolated
frequency from the continued phonon spectrum [46, 49].

In Figure 4, we plot the time-dependent diffusion function for
various situations and show the diffusion function oscillating
with time. Because the diffusion function produced carries out a
time derivative over the MSD, the whole approach [Eq. 14] rather
than a local differential method must be used to determine the
power-law exponent of diffusion. Many models may induce such
a phenomenon, and several famous examples have been
mentioned before. A somewhat surprising result for us is that
the system associated with the Debye frequency-cutoff does not
yield ergodic behavior.

5 SUMMARY

This work aims at furnishing a connection between velocity
autocorrelation function (VACF) and frictional kernel in the
generalized Langevin equation (GLE) framework for the
diffusion dynamics. On the one hand, the VACF is a quantity
that can be obtained from experimental or numerical data; on the
other hand, the friction kernel incorporates the noise correlation
properties. However, this relation is hard to achieve by analytical
means, and we thus introduce an effective friction function that
depends solely on the VACF and is supposed to inform on the
retarded memory effects on the dynamics. The notion of effective

FIGURE 3 | VACF for various exponents δ using the non-Ohmic friction
model with f(ω) � exp(−ω/ωc) (dashed lines) and f(ω) � Θ(ωc − ω) (solid
lines). The parameter settings used are cδ � 1.0 and ωc � 2.0.

FIGURE 4 | Diffusion function for various exponents δ using the non-
Ohmic friction model. The corresponding situations and parameter settings
used are the same as in Figure 3.
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friction function has been observed as an echo of the non-
Markovian Brownian motion, which is associated with the
diffusion function and is measured through a tagged particle’s
average velocity. This provides interesting information regarding
the evolution of kinetics. We have obtained alternative time-
dependent Green-Kubo and generalized Stokes-Einstein
relations to universal situations connected with anomalous
diffusion and nonergodic processes. The effect of finite or
high-frequency cutoff as a facile method on the dynamics is
numerically investigated. A self-oscillation phenomenon emerges
as a manifestation of ergodicity breakdown. In particular, several
inconsistent conclusions in the literature, e.g., the analysis
requirement of susceptibility, the friction feature extracted by
the generalized Fokker-Planck equation, and the power-law
exponent obtained from data, have been clarified. We are also
confident that the present results will serviceably impact complex
dissipative systems.
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APPENDIX

The Friction Function in GFPE
An important application concerns non-Markovian Brownian
motion within fluctuating hydrodynamics with a non-
Stokesian drag having a power-law VACF, i.e., Cv(t) ∼ t−3/2
at late times [50], which emerges as subdiffusion.
The asymptotical behavior of the diffusion function
is D(t) ∼ t−1/2 and then limt→∞[D(t)/τv(t)] � kBT/m.
Moreover, the effective friction function proposed here
varies with time ceff(t) ∼ t1/2. Hence our result demonstrates
reliably the characteristic feature of generalized Stokesian
dissipation. Unfortunately, the friction function defined in
the generalized Fokker-Planck equation (GFPE) description
[51] exhibits an identical form of decay in the inverse ratio of
time if the VACF has a power-law form at late times. Starting
from the exact velocity probability density function of a
force-free driven by a Gaussian but non-Markovian noise,
Adelman [51], Fox [50], Volkov and Pokrovsky [52]
obtained the GFPE as

z

zt
P(v, v0; t) � ~c(t) z

zv
[vP(v, v0; t)] + kBT

m
~c(t) z

2

zv2
P(v, v0; t),

(A.1)

where the friction function was defined by ~c(t) � − _Cv(t)/Cv(t).
It is found to be valid only when the memory kernel is a delta

function. Moreover, if Cv(t) ∼ tα−2, the GFPE gives ~c(t) ∼ t−1 at
large times. This contradicts the subdiffusion criterion for 0< α< 1.
Within the framework of GLE associated with the FDT, however,
we observe from Figure 2 that, at large times, the friction function
increases with the increase of time for the subdiffusion situation.
Hence, we deem that the friction function ~c(t) appearing in the
GFPE [A.1] might not provide a self-consistent physical feature.

In addition, Adelman [51] ignored the inertia and then defined
the diffusion function as D(t) � (kBT/m)L−1[sM̂1(s)]− 1 where
L−1 denotes the inverse-Laplace-transform operation.
Correspondingly, our result [Eq. 7] can be rewritten as
D(t) � (kBT/m)[1 − L−1(s + M̂1(s))−1]L−1(s2 + sM̂1(s))− 1. It is
concluded that the former is expressed as a static result and the
latter is dependent of an underlying dissipative process.
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