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In recent years, persistent homology (PH) and topological data analysis (TDA) have gained
increasing attention in the fields of shape recognition, image analysis, data analysis,
machine learning, computer vision, computational biology, brain functional networks,
financial networks, haze detection, etc. In this article, we will focus on stock markets
and demonstrate how TDA can be useful in this regard. We first explain signatures that can
be detected using TDA, for three toy models of topological changes. We then showed how
to go beyond network concepts like nodes (0-simplex) and links (1-simplex), and the
standard minimal spanning tree or planar maximally filtered graph picture of the cross
correlations in stock markets, to work with faces (2-simplex) or any k-dim simplex in TDA.
By scanning through a full range of correlation thresholds in a procedure called filtration, we
were able to examine robust topological features (i.e. less susceptible to random noise) in
higher dimensions. To demonstrate the advantages of TDA, we collected time-series data
from the Straits Times Index and Taiwan Capitalization Weighted Stock Index (TAIEX), and
then computed barcodes, persistence diagrams, persistent entropy, the bottleneck
distance, Betti numbers, and Euler characteristic. We found that during the periods of
market crashes, the homology groups become less persistent as we vary the
characteristic correlation. For both markets, we found consistent signatures associated
with market crashes in the Betti numbers, Euler characteristics, and persistent entropy, in
agreement with our theoretical expectations.
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INTRODUCTION

The earliest success of econophysics is the application of random matrix theory (RMT, which is a
theory combining nuclear physics and statistical mechanics) to the stock market [1–4]. In RMT, one
treats noise as a kind of symmetry, and thus information represents some form of symmetry
breaking. RMT thus allows physicists to discriminate between noise and signal. The next significant
milestone in econophysics is the realization that stock returns follow heavy-tailed Levy distributions
[5] instead of a normal distribution. Also, their dynamical properties can be described in terms of
fractals (in terms for example, of the Hurst exponent) and multifractals [6, 7] instead of the random
walk proposed by Bachelier to model price movements in the stock market. Physicists also love to
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strip problems down to their simplest essence, using information
filtering approaches such as the minimal spanning tree (MST) [8],
planar maximally filtered graph (PMFG) [9], triangular
maximally filtered graph (TMFG) [10], etc. These represent
some of the methodological contributions by econophysicists.

In the PMFG method, important correlations are projected
onto a sphere, which has genus g � 0. This is a good starting point
for understanding the correlated price movements between
different stocks. However, it is possible that the pattern of
dynamic correlations may be explainable more naturally in
terms of some nontrivial geometrical structure with g > 0.
Therefore, the determination of the optimum genus represents
a gap in our understanding of correlations in the stock market.
This best genus can change with time for the same window length.
It can change with window length over the same period, and it can
also depend on which market we are looking at. There is also a
second gap in our understanding of these dynamic correlations,
and that is the problem of overlapping communities. Information
filtering methods like the MST and PMFG are not clustering
algorithms, but there are clustering algorithms based off them.
There are also standard clustering algorithms like k-means and
hierarchical clustering that can be used to study the correlation
structure in a market. However, all clustering algorithms assume
that a stock can be a member-only of one cluster. Ultimately,
classifying stocks into clusters help us better imagine the
geometry of the correlations, but we do not claim that clusters
are independent of each other. We know that within clusters, the
interactions are stronger, and between clusters, the interactions
are weaker. Recently, researchers started to realize that in many
cases, nodes can belong tomore than one cluster, giving rise to the
problem of overlapping clusters. Currently, the identification of
the correct overlapping structures without sacrificing accuracy
and speed remains a daunting challenge. These hinder a deeper
understanding of co-authorship networks, protein-protein yeast
networks, and word association networks. Topological data
analysis (TDA) is a method that will kill both birds with one
stone. It is ideally suited to 1) identify geometrical structures that
are like clusters, and 2) elucidate the weak connections
between them.

So how do TDA concepts like simplicial complexes and
persistent homology help in filling these gaps? First, once the
size of the sliding window is decided, TDA can be quite robust in
deciding which topological space or genus to use for projecting
the correlation matrices. Indeed, TDA lets the data speak for itself
on choosing the optimal topological space and the value of the
genus. Second, by appealing to persistency, we do not presuppose
which correlation threshold value to use. Instead, we scan
through a full range of correlation threshold values, to
determine which range the topological structure is most
persistent. Third, TDA homologies are very robust to random
noises, and as a result, we can avoid technical nuisances such as
‘accumulation of noises’ or ‘overfitting the data’ when clustering
data in higher dimensions. Lastly, persistent homology can be
presented in the form of persistence barcodes, persistence
diagrams, persistence landscapes.

In this paper, our research problem is to use TDA to
understand topological changes accompanying crashes in the

Singapore and Taiwan stock markets in terms of simplicial
complexes, persistent homology, and other metrics. Our
hypothesis is that in different market states, different
topological features emerge, and TDA can be effective in
elucidating these changes. This paper is organized as follows:
In Data Section, we briefly introduce how to collect data on the
daily returns of the Straits Times Index (STI), the Taiwan
Capitalization Weighted Stock Index (TAIEX), and how to
preprocess them. In Topology, and Persistent Homology
Section we introduce the mathematical background of
simplicial complexes, persistent homology, and filtration. In
TDA Toolkits Section, we introduce TDA toolkits like
barcodes, persistent diagrams, Betti numbers, and Euler
characteristics. In TDA of Toy Models and Hypothesis on
Real Markets Section, we introduce toy models of TDA and
the hypothesis on real markets. In Results and Discussion
Section, we show our numerical results computed by TDA
and discuss how they confirm our hypothesis. Finally, in
Conclusion Section, we give concluding remarks and
perspectives.

MATERIALS AND METHODS

Data
Data Collection
First, we show how to collect price data from stocks in the
Singapore Exchange (SGX) [Taiwan Stock Exchange (TWSE)]
using Python pandas, and its function web. DataReader, and use
the Yahoo Finance API option. Second, to use this option, we
need to prepare all the tickers symbols in SGX (TWSE). The
procedure is as follows: 1) we go to the ‘My Screeners’ tab in
https://sg.finance.yahoo.com/, and choose ‘Singapore’ in the
‘Saved Screeners/Region’ tab, before choosing ‘Find Stocks’ to
see a list of ticker symbols. For SGX, there are 672 ticker symbols;
2) copy and save all of them into a file, and 3) using this file of
ticker symbols and pandas. web.DataReader’s Yahoo API to fetch
historical data between January 1, 2017 and April 30, 2019 from
the Yahoo Finance database and save as a CSV file. The Python
code to do so is shown in Code 1, and this code can be modified to
the TWSE (January 1, 2017 to March 31, 2020) or other markets.

Data Cleaning and Preprocessing
After we collected the raw data, the data needed to be cleaned.
First, some ticker symbols are duplicated, so we keep only one
copy. Second, for some ticker symbols, the Yahoo Finance API
gave an error and caused the program to halt, so we needed to
identify these and removed them from the ticker symbol list.
Finally, some of the data may include ‘NaN’s and we needed to
replace them with ‘0’s. However, if the time series contains more
than 50% ‘0’s, we also remove this ticker symbol from the list.
After cleaning, we ended up with the times series data for 560
distinct stocks.

Before we computed the cross correlations between stocks
from the time-series data to obtain the correlation matrices, three
procedures are necessary. First, we standardized the daily prices,
which is δxi � xi−xi�����������∑ (xi− xi)2/(t−1)

√ , where xi is the raw stock price for
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the ith stock, xl is the average stock price for the ith stock, t � 120
is the number of trading days over a six-month period. Second,
we smoothed the time series by averaging over a sliding time
window of 15 days (for a detailed explanation on why we choose a
15-days window, please see Supplementary Figure S1). Lastly,
we converted the daily stock prices to their derivatives, i.e.
Δxi(t) � δxi(t) − δxi(t − 1). In Figure 1A we show the stock
price derivatives within a 6-month period after pre-processing,
and in Figure 1B, we show the correlation matrix generated from
the derivative data. We converted the correlation matrix to a
distance matrix using the formula dij �

��������
2(1 − ρij)

√
. Finally, we

generated distance matrices for successive 6-month periods
that are one month apart, to use as input data for subsequent
TDA calculations. Other data formats acceptable for
TDA include point clouds, networks, or digital images. To
be more clear, the procedures are shown in a flowchart
(Figure 2).

Topology, and Persistent Homology
TDA is a mathematical apparatus developed by Herbert
Edelsbrunner, Afra Zomorodian, Gunnar Carlsson, and his
graduate student Gurjeet Singh [11–13]; it was popularized by

Carlsson’s paper [14] that later turned TDA into a hot field in
applied mathematics, and also found many applications in data
analytics. The foundations of TDA had been laid years before by
others in the fields of topology [15–19], group theory [20, 21],
linear algebra [22, 23], and graph theory [24–26].

To explain the concept of persistent homology, imagine we have
collected a bunch of data points that we refer to as a data cloud.
Next, imagine that there is a control parameter called the
proximity parameter ϵ, which defines the radius of an
imaginary ball centered at each of these data points. When
we gradually increase ϵ, the balls will grow outwards and
eventually touch other balls. The overlapping of these balls
form a unique topological characteristic that is unique to this
dataset, and hence we can use this unique topological
characteristic to differentiate nuances in the topologies of
different point clouds. This filtration process can be
demonstrated and visualized in Figure 3.

Through this encoding process, we can convert a point
cloud that is made from brain functional signals, or a
correlation matrix from financial time series data, to
filtration diagrams. From these filtration diagrams, we can
calculate barcodes, persistence diagrams, and other TDA
metrics for further applications.

FIGURE 1 | (A) The derivative data of a 6-month period collected from STI. (B) The cross correlation matrix is generated from the derivative data in (A). For the time
series and correlation matrices in this work, we will not show error bars to not distract the readers from the overall features.

CODE 1. | A Python code that implements the data collection procedure.
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Simplicial Complexes
A simplicial complex is an abstract collection of entities, which
consists of nodes (i, j, k, . . .), or sets of nodes
({i}, {i, j}, {i, j, k}, . . .). These collections of nodes or sets can
then be used to construct links, surfaces, and higher-dimensional
objects. For example, we can decompose an arbitrary simplicial
complex into its 0-simplexes (nodes), 1-simplexes (links), 2-
simplexes (faces), 3-simplexes (tetrahedrons) components. In other
words, simplexes are generalizations of a triangle in arbitrary
dimensions, and a simplicial complex is an outcome of performing
triangulation in arbitrary dimensions of the raw data. The simplicial
complex is a unique signature that characterizes the topological
structure of the data. Some of the common simplicial complexes
include Vietoris-Rips (VR) complexes [27], Čech complexes [16, 18],
Delaunay complexes [28], Alpha complexes [29], witness complexes
[30], as well as others. In this work, we used the VR complex for our
TDA calculations. VR is appealing because it approximates the more
exact Čech complexes but is more efficient to calculate [31].

Suppose we collected two sets of time-series data of the same
duration from a stock market. After we encode them into
simplicial complexes, these may be different in terms of their
local and global topologies. We then can use TDAmetrics such as
Betti numbers, Euler characteristics, barcodes, persistence
diagrams, persistence landscapes, and Wasserstein distance as
topological descriptors to quantify these differences. In the
following subsections, we introduce some of these
terminologies, their respective definitions, and elaborate on them.

Filtration
Here let us formalize the definition of the filtration procedure,
which is commonly done to obtain barcodes. By changing the
proximity parameter ϵ, we control the size of the balls and thus
their overlaps. At a specific ϵ value, some balls overlap while
others do not, and therefore we have a collection of 0-simplexes
(isolated nodes), 1-simplexes (pairs of linked nodes), 2-
simplexes (triangles), 3-simplexes (tetrahedrons), and so on.

Such a collection is called a sub-complex. If we increase ϵ further,
the sub-complex (and its topological features) may or may not
change. This procedure resembles what we see in physics: by
changing the external fields, e.g. temperature, or magnetic fields,
the system changes from one symmetry group to another. We call
this symmetry breaking. A filtration is conceptually similar to varying
the external fields, and observe how they result in different symmetry
groups. The difference is that in performing filtrations, we look at
how the topological features evolve. Mathematically, a filtration can
be described as a sequence

∅ � Σ04Σ14Σ2/4Σm � Σ,

where Σm � Σ is the simplicial complex, ∅ � Σ0 is the empty set,
and Σk4Σk+1 indicates that the kth sub-complex is included in
the (k+1)th sub-complex. In performing the filtration, we witness

FIGURE 2 | Flowchart of the procedure implemented. There are two parts; the first part involves data collection and pre-processing. The second part regards TDA-
related computations.

FIGURE 3 | A schematic diagram showing a data cloud, and how the filtration process results in outcomes of various overlapping of balls from different proximity
parameters ϵ (shown in the upper column). The bottom column is barcodes scanning through a full-range of proximity parameter ϵ values. β0 and β1 denote the 0-dim
and 1-dim Betti numbers, which can be deduced from the subfigures to be roughly 18→ 11→ 4→ 1, and 0→ 0→ 1→ 2, respectively.

FIGURE 4 | A pyramid illustrating sequential procedures of how we
make use of the original data and convert them into different forms of sets, i.e.
simplicial complexes, and to groups, fields, and rings. At the topmost stage,
we can use them for various applications, such as ML, and statistical
learning, etc.
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at that at ϵ � ϵk, there is a topological transition from Σk to Σk+1.
By tracking all these ϵkS, we know how the simplicial complex’s
topology changes. We can then characterize these topological
changes in terms of Betti numbers, Euler characteristics,
barcodes, persistence diagrams, and persistence landscapes.

TDA Toolkits
Homology Group
In a filtration process, one can imagine that for smaller ϵ, the
data points will have lesser overlaps; while we increase ϵ
further, balls start to grow in size and eventually touch
other balls, resulting in more overlaps; this continues until
ϵ become so large that all the balls overlap with each other,
leaving no space for holes to persist. Thus, for an intermediate
ϵ, we expect to see balls making some overlaps but not too
much, and the extents of these overlaps constitute different
topological characteristics in terms of ‘n-dimensional holes’.
Homology is a mathematical theory for studying these
n-dimensional holes that exist in simplicial complexes by
identifying which entities constitute these n-holes, and how
many there are.

As mentioned before, SCs are obtained from performing
a triangulation in arbitrary dimensions of the input data,
or a way to represent the data in terms of ‘sets’. But looking
at sets is sometimes hard to develop an overall,
comprehensive picture of the data, and also less

convenient for executing mathematical operations on
them. For this reason, mathematicians convert SCs, and
other topological sets into groups, rings, or fields, so that in
these constructs, they not only can discern between different
sets, but also can impose structures like associative binary
operations, the identity element, and the inverse element on
them. See Figure 4 for the procedures of encoding the raw data
into sets, TDA metrics, allowing for further applications.

Unlike manifolds, which are continuous sets of points, SCs
comprise discrete points instead. Although both can describe
topological features in the data space, there is one advantage in
using SCs, and that is one uses a triangulated (coarse-grained)
surface instead of a continuous one. Practically, we are interested
only in the n-holes and their numbers, and we only have limited
data. In this sense, SCs and their homology are adequate to fulfill
these goals.

Betti Numbers and Euler Characteristics
An Euler characteristic is used to classify different polyhedrons, it
reads:

χ � V − E + F � 2(1 − g),
where χ is the Euler characteristic of a polyhedron, V, E, and F are
the numbers of nodes, links, and surfaces, respectively. In this
formula, g is the genus of the polyhedron. χ can also be calculated
as a sum of Betti numbers,

FIGURE 5 | (A) Barcodes in 0, 1, and 2 dimensions. Each bar represent a generator of the homology group, i.e. H{p,q}
n (Σ), where {p, q} marks a lifetime, the rank of

H{p,q}
n (Σ) equals Betti number of homology groups in the nth dimension, the length of {p, q} signifies the persistence of the nth Betti number. (B) The barcodes can be

converted into persistence diagrams, where one of the bars in (A) is equivalent to one point in the persistence diagram. The lifetime of each bar in (A) can be transformed
into a perpendicular distance concerning the diagonal lines in (B). If A point that is farther away from the diagonal line implies a more persistent topological feature,
whereas a point that is closer to the diagonal line represents a less persistent feature.We found that the barcodes are rather robust and do not show fluctuations once the
dataset is fixed, thus we do not include error bars in all barcodes appearing in this paper.
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χ � ∑
{n≥ 0}

(−1)nβn(Σ),

where the nth dimensional Betti number βn is the dimension of
the nth homology group Hn(Σ) of the SC Σ. These are important
metrics that characterize the topology of the data.

Barcodes and Persistence Diagrams
Barcodes help us visualize the n-dimensional homology group
Hn(Σ) in terms of its generators. We understand that each bar
represents a generator of the persistent homology group
H{p,q}

n (Σ). This representation tell us that the number of bars

that are born at or before the pth filtration stage that are still alive
at the qth filtration stage is precisely the rank of H{p,q}

n (Σ), which
includes the essential classes that do not die with filtration [32].

The rank of the homology group in nth dimensions equals the
nth Betti numbers, which we use to calculate the Euler
characteristics χ. For more persistent bars, their topological
features are more important, whereas the topological features
of those that are less persistent can be treated as noises. Here, we
convert the barcodes into persistence diagrams in Figure 5.
Persistence diagrams carry similar topological information as
barcodes. It is more useful in constructing statistical topological
models that can be used to design weighted kernels.

FIGURE 6 | The toy models illustrating three different sequences of topological changes. (A)We start with two spherical shells of radius one and move them closer
until their surfaces touch, overlap, and finally merged into a larger single spherical shell. (B)We generate a sequence of surfaces of revolution that starts with a torus, then
one with a smaller hole, then a horn torus, a spindle torus, and finally a spherical shell. We also show a solid sphere. (C)We start with a spherical shell and then deform it
into ellipsoids, whose semi-axis we increase from 5→ 10→ 20.
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Computational Methods
TDA Toolkits
Numerically, we used two softwares to perform the TDA
calculations. The first software is called Ripser [33], which
is included inside the Python package TDA [34]. Another is a
Java program called Javaplex [35], which we used to calculate
Betti numbers and Euler characteristics. Javaplex supports
parallel computation in MPI and OpenMP, shortening the
computing time for calculating persistent homology in higher
dimensions. We installed Javaplex on Nanyang Technological
University High-Performance Computing Centre’s NYA2,
equipped with Sandy-Bridge Processors-cores (Intel(R)
Xeon(R) CPU E5-2680 @ 2.70 GHz), and 64 GB RAM per
Node. NYA2 runs Red Hat Enterprise Linux Server release 6.3
(Santiago) and manages job queues using the Load Sharing
Facility (LSF).

For some of the time windows, the Javaplex calculations failed
with the error message “OutOfMemoryError: Java heap space”
and “OutOfMemoryError: GC overhead limit exceeded”. Here we
offer two solutions. The first is to utilize more than 100 GB of
memory on client computers, which can be switched on by
adding a line “#BSUB -q MEM128G-S” in the LSF script. This
option allows the submitted jobs to access up to 128 GB of
memory. If the first solution fails, a second solution is to
reduce the upper limit of the filtration value, say a value near
1.0. These two options can in general solve the problem of the
memory shortage issue. On average, a job submitted to NYA2
accessing 16 CPU cores requires 1–3 days to finish. For each of
the calculations, we saved barcodes figures, n-dimensional Betti
numbers, Euler characteristics in separate folders for further
analysis.

TDA OF TOY MODELS AND HYPOTHESIS
ON REAL MARKETS

Before we analyze the SGX and TWSE data, and discuss their
results, as a proof-of-concept we first digress to demonstrate the
main idea behind our work by applying TDA to three toy models
with definite topological changes. In these three cases, we
randomly sampled data points on the surfaces or in the
volumes and then saved these data points in separate files.
Then, we use the Javaplex software to read in the files and
calculate the persistent homology and respective Betti numbers
up to dim 2. Finally, we use χ � ∑

{n≥ 0}
(−1)nβn(Σ) to calculate the

Euler characteristic. These results are shown in Figure 6.
In the first case (Figure 6A), we started with two spherical

shells of radius one that do not overlap. We then moved the two
shells closer until their surfaces touch, before we moved them
even closer that they overlap. For this sequence of configurations,
we saved the data points and thereafter invoked the Javaplex
software. In the third, overlapping configuration, we manually
deleted those data points that lie inside the spherical shells.
Finally, we compared this sequence of configurations against a
larger spherical shell. We found that χ went from 4→ 3→ 2→ 2,
which was consistent with the analytical results. The sequences of
Betti numbers provided even more information. As we went

through the sequence of configurations, β0 changed from
2→ 1→ 1→ 1, which agrees with what we expected, since β0
tells us how many connected components there are in the
configuration. We also found β1 � 0 throughout the sequence,
since it is the number of irreducible closed loops, and in all
configurations, we can always shrink a closed loop to a point.
Finally, we found β2 changing from 2→ 2→ 1→ 1, since it is the
number of voids enclosed within the different surfaces, so this
becomes 1 after the two spherical shells overlap.

For the second case (Figure 6B), we went through a sequence
of surfaces of revolution of two circles at increasing closer
distances. When the two generating circles were far apart, we
obtained a torus with a big hole, and when the two generating
circles were closer but still non-overlapping, we obtained a torus
with a small hole. When the two generating circles touched each
other, we ended up with a horn torus, which is a critical surface
with no holes but is pinched at a point. When the two generating
circles overlapped each other, we obtained a spindle torus, which
has an inner as well as an outer surface. Finally, when the two
generating circles overlapped completely, we obtained a spherical
surface. This last configuration is then compared against a solid
sphere. For this sequence, we found χ going from
0→ 0→ − 4→ − 1→ 2→ 1, which is the result of an
interesting interplay between the Betti numbers. Going
through the sequence, we found β0 � 1 throughout, because
there is only one connected object. In contrast, β1 went from
2→ 2→ 5→ 3→ 0→ 0 and β2 � 1 for all configurations, except
for the spindle torus (β2 � 2), and the solid sphere (β2 � 0). Since
β2 is the number of voids enclosed, we understand why β2 � 1 for
the spherical shell configurations, and why β2 � 2 for the spindle
torus. In this sequence, the most interesting change occurred
in β1.

For the final case (Figure 6C), we started with a spherical shell
and increased its eccentricity to get longer ellipsoids, with semi-
axis a going from 5→ 10→ 20. For all these different ellipsoids,
we found that χ � 2, confirming the fact that deformation alone
cannot change the topology or the Euler characteristic. We also
found β0 � 1, β1 � 0, and β2 � 1 for all these surfaces, as expected.

For all cases, we also computed the corresponding barcodes
and persistent diagrams for better insights into how they evolve
with topological deformations. These are shown in
Supplementary Figure S2.

Generally speaking, the cross correlations in a stockmarket will be
in the form of a high-dimension topological space, with more
complicated features than those shown above. Nevertheless, we
believe the insights derived from the toy models can help us grasp
the topological changes that occur during a stock market crash
(shown schematically in Figure 7). Just before the market crash
(Figure 7A), we show the cross correlations of the stock market as a
single giant cluster with four holes, which tells us that β0 � 1 and β2 �
4, while β1 will depend on the detail shape of the topological surface.
This strongly interconnected situation is typically generated by a
bubble in the market and can be viewed as the starting point of a
market crash [36, 37]. When the market crash starts (Figure 7B),
parts of the surface will break (red circles inFigure 7B) but overall the
giant cluster remains. The breaking of these two handles results in β2
going from 4 to 2, while β0 remains 1. For every handle broken, β1
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also decreases by 2. As the market crash progresses, the giant cluster
starts to crumble, giving rise to additional small clusters like the ones
shown in Figure 7C. When the number of connected components
increases, β0 goes from 1 to 5, and β2 decreases further to 1, because
there is only one hole remaining. The small clusters do not contribute
to β2 if they are homomorphic to spheres. Finally, at the end of the
market crash, many small clusters are produced by the dissociation of
the giant cluster, so β0 increases dramatically, but β1 and β2 become
small. Such a cluster fusion-fission scenario has been proposed
previously [38, 39], but we suspect TDA will provide additional
information regarding subtle topological changes that these models
cannot provide.

Armed with these insights, we proceed next to the research
question, that is to use TDA to examine the topological changes

associated with market crashes in the SGX and TWSE, to see how
well our hypothesis holds out.

RESULTS AND DISCUSSION

In this work, we examined two stock markets, i.e. the
Singapore Stock Market (STI), and the Taiwan Stock
Exchange (TAIEX). Both markets consist of roughly 600
stock components, and the economic scales of Taiwan and
Singapore are comparable. The time durations that we collect
data are from Jan 2017 to Apr 2019 for STI, and from Jan 2017
to March 2020 for TAIEX. For TAIEX, there is a small market
crash from Sep 2018 to Jan 2019, and a major crash in Mar

FIGURE 7 | A schematic diagram illustrating different states in the stock market across a market crash. (A) All stock components are interconnected and form a
single giant cluster with holes. (B) As themarket starts to crash, some of the connections are broken, but the single giant cluster remains as in case (A). (C) As themarket
crash progresses, the giant cluster remains, but part of it has fragmented into four smaller clusters. (D) At the end of the market crash, the stocks are now organized into
many small and disjoint clusters.

FIGURE 8 | The correlation matrices of STI from Jan 2017 to Apr 2019.
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2020 that is caused by the COVID-19 pandemic, whereas no
market crash was found for the STI.

Correlation Matrices
We visualize the complex dynamics in the two stock markets by
computing correlation matrices over six-month periods that are one

month apart. We used a heat map color scheme, where the highest
correlation value of 1 is red, and themost negative correlation of−0.1
is blue. These are shown in Figures 8 and 9 for STI, and TAIEX.

In Figure 8 for STI, it is clear that the average correlation is low
over most periods. The exceptions are the periods (Sep 2017, Feb
2018), (Oct 2017, Mar 2018), (Nov 2017, Apr 2018), and (Dec

FIGURE 9 | The correlation matrices of TAIEX from Jan 2018 to Mar 2020.

FIGURE 10 | The barcodes, and corresponding persistence diagrams for data collected from Apr 01, 2019 to Sep 30, 2019 in TAIEX.
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2017, May 2018). In Figure 9 for TAIEX, however, we observe
more drastic changes. The correlation matrix first becomes reddish
for the (May 2018, Oct 2018) period, and remains reddish until the
(Oct 2018, Mar 2019). It then became reddish again in the (Oct
2019, Mar 2020) period because of the COVID-19 pandemic.
Particularly, the few correlation matrices preceding the COVID-
19 crash were blue, making the reddening very sudden.

In the literature, spectral reddening can be used as early
warning signals to inform critical transitions [40–43]. Before
market crashes, the co-movement among stocks becomes
stronger, variations become increasingly concentrated at low
wavenumbers, and result in a reddish color in the spectral
density. Although inspecting different properties, both show
early warning signals by turning into red colors when
approaching these critical transition points.

Barcodes and Persistence Diagrams
The barcodes and their corresponding persistence diagrams for
TWSE data between Apr 2019 and Sep 2019 are shown in
Figure 10. In Figure 10, the left three figures are the barcodes
in 0-dim, 1-dim, and 2-dim, respectively, whereas the right three
figures are the corresponding persistence diagrams. In the right
three figures, the x-axis refers to the time of birth, while the y-axis
refers to the time of death for each homology group, represented
by a dot on the figures. We also use red arrows to indicate which
bar in the left figures corresponds to which dot in the right ones.
When the period is varied, the shape of these figures also changes,
revealing the dynamics of the topological structures.

For the persistence diagrams, the dots in the 0-dim figure
only move vertically in time, whereas for those in 1-dim, and
2-dim, the data points can cluster together forming a small
bump, flatten out along the diagonal line, or translate toward
or away from the origin along the diagonal line. During
market crashes, intriguing dynamical properties can be
seen in these figures. To make a clearer comparison, we
show in Figure 11 the aggregated STI and TAIEX 5-years
historical data and discuss the features seen in Supplementary
Appendix Figure A1 and Supplementary Appendix Figure
A2, where we show all the barcodes and persistence diagrams
for the data collected from SGX and TWSE.

In Figure 11A, we find a local market minimum from Sep
2018 to Jan 2019, spanning roughly five months following a small
crash in Sep 2018. From the barcodes and persistence diagrams in
Supplementary Appendix Figure A1, we discover an interesting
feature related to this small crash. When we compare the 1-dim
and 2-dim persistence diagrams for the (Mar 2018, Aug 2018)
period (not including the crash) against those of the (Apr 2018,
Sep 2018) (including the crash) in Supplementary Appendix
Figure A1, the data points flatten out along the diagonal line,
suggesting that in these two dimensions, the persistence of the
homology groups weakens. However, the 0-dim result shows no
signs of change when we compare these two subfigures. This
episode of a persistence-weakening in 1-dim and 2-dim
continued until the (Oct 2018, Mar 2019) period in
Supplementary Appendix Figure A1 when the flattening-out
phenomenon disappears. Looking at the barcodes in the same
period, we witnessed that the 1-dim and 2-dim bars, which are
generally wider before the (Mar 2018, Aug 2018) period,
becoming visibly shorter in the period (Apr 2018, Sep 2018)
to (Oct 2018, Mar 2019). To aid visualization, we used red-shaded
windows in Supplementary Appendix Figure A1 to identify
those barcodes manifesting persistence weakening. In the
Supplementary Figure S4, we also show schematically how
bars in the barcodes become dots in the persistent diagram
during a normal market phase and a market crash phase.

We observed an even stronger persistence weakening for
the (Oct 2019, Mar 2020) period than for the small crash.
Going back to the barcodes, we found the widths of the bars
becoming smaller as the distribution of data points flatten in
the persistence diagram. We also found a large gap of
1.2< ϵ< 1.4 between the death of one bar, and the birth of
the next bar in the 2-dim barcode. To unravel how this
persistence-weakening phenomenon occurs, we reduced the
time windows’ sizes to 2, 3, 4, and 5 months, and show the
results in Figure 12.

In Figure 12, we witness some interesting features. First, in the
0-dim persistence diagram, the dots seem to be lower compared
to those periods without market crashes. This corresponds to a
shorter life expectancy for the homology groups, which can also
be observed in the barcodes. In the 1-dim and 2-dim barcodes, we

FIGURE 11 | The (A) TAIEX and (B) STI index for the past five years, which include the period we collected our data. For TAIEX, the period is from Jan 01, 2017 to
Mar 31, 2020. For STI, the period is from Jan 01, 2017 to Apr 30, 2019. In this figure, the gray bands are periods seen from Figure 14 where the Euler characteristic is
positive.
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find the barcodes falling off rapidly between ϵ � 0 and ϵ � 0.2,
and more slowly thereafter. This suggests that ϵ � 0.2 (ρ � 0.97)
is a characteristic scale that emerged only during the COVID-19
crash. To quantify the persistence-weakening phenomena in
TWSE, we selected three periods and analyzed the H1 and H2

persistence diagrams (see Supplementary Figure S3). In the
normal market state during the six periods (Jan 2017, Jun
2017) to (Jun 2017 to Nov 2017), the two principal variances
were found to be σ21 � 0.361 ± 0.036, and σ22 � 0.066 ± 0.003 for
H1. For H2, we found that σ21 � 0.371 ± 0.07, and
σ22 � 0.036 ± 0.001. For the period (Sep 2018, Feb 2019),
which covers the mini-crash, we measured σ21 � 0.763, and σ22 �
0.046 for H1; for H2, we measured σ21 � 0.860, and σ22 � 0.024.
Finally, for the period (Oct 2019, Mar 2020), we obtained σ21 �
0.770 and σ22 � 0.041 in H1; for H2, σ21 increased to 0.931, while σ

2
2

become 0.020. To conclude, during the two market crashes in
TWSE, the second principal variance was reduced, implying a

shortened persistence lifetime, a manifestation of the persistence-
weakening phenomena that come along with crashes.

Another way to quantify the persistence weakening is through

the persistent entropy, E(F) � − ∑n
i�1

pilog(pi) where F is the

distribution of lifetimes li � yi − xi (xi, yi are the birth time
and the death time of homology group i in the barcode with n
segments), SL � ∑n

i
li is the sum of all lifetimes, and pi � li/SL can

be thought of as the ‘weight’ of homology group i in the barcode
[44, 45]. The persistent entropy E(F) is maximum when all
homology groups have the same lifetimes, and is minimum
when the lifetimes of homology groups are all different. E(F)
thus allows us to distinguish between narrow and broad
distributions of lifetimes, as well as smoothly varying and
multimodal distributions of lifetimes. We chose to compute
E(F) for the same three periods used to calculate the covariance
matrix and principal variances. For the normal market state during

FIGURE 12 | The barcodes and persistence diagrams covering the pandemic COVID-19 crash in March 2020. The first column is a two-month window result, and
the subsequent columns correspond to 3, 4, 5, and 6-months time windows, respectively.
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the six periods (Jan 2017, Jun 2017) to (Jun 2017 to Nov 2017), we
found that E(F) � 2.8185 ± 0.004, 2.741 ± 0.028, 2.733 ± 0.072
in 0–2 dim respectively; for the period (Sep 2018, Feb 2019), E(F)
remained roughly the same at 2.80 for 0-dim, but decrease to 2.55
for 1-dim, andmore significantly to 2.1 for 2-dim. For the COVID-
19 crash, E(F) for 0-dim remained at 2.80, while for the other two
dims, they became 2.40 and 1.94. This suggests that E(F) for 2-dim
changes most dramatically across market crashes.

For SGX (Supplementary Appendix Figure A2), the
persistence-weakening phenomena are less significant,
except for (Sep 2017, Feb 2018), (Nov 2017, Apr 2018), and
(Dec 2017, May 2018). In these periods, persistence-weakening
only occurs in the 2-dim persistence diagrams but not in their
1-dim counterparts. This is rather different from those
observed in the two TAIEX crashes. We believe this is
because over the period Jan 2017 to Apr 2019, the largest
downward movement of the STI is still smaller than the
smaller TAIEX crash, as such the persistence weakening is
less prominent. Referring to Figure 11B, we believe these
downward movements were market corrections in the STI,
and the analysis we introduced thus far cannot help to classify
them. Consequently, we introduce the Betti numbers and Euler
characteristics in the next subsection to resolve this issue.

Other Works Addressing Persistence
In 2015, Teh and Cheong [38] studied dynamics in the SGX
during the Global Financial Crisis using a cluster fusion-fission

approach. They found that before the crisis, a giant cluster of
stocks emerged in the SGX. This later broke up into small clusters
after Lehman Brothers went bankrupt. Also, they found that the
probability that a pair of stock remain in the same cluster decays
exponentially with two time scales i.e. 3 weeks, and 7 weeks. They
called these temporal correlations the ‘persistence’ of stocks. In
our work, since our sliding window size is one month, we can also
measure the persistence in both time scales, in terms of n-holes
that emerge in the two-time windows.

We show the mean value of bottleneck distance D (we pick
three points in Jan 2017 as origins, and calculated D with
subsequent n � 11 months for the origin), and its standard
deviation in SGX over the whole of 2017 in Figure 13. We
discovered that D increased steadily over the next four windows
for H0, and then saturated around 0.25, whereas for H1 and H2, D
also increased but less significantly over the n-windows. A larger
D implies that the homology groups are less persistent, whereas
the converse means the persistence is stronger. As for the case of
TWSE, we investigated two periods. The first period is (Jan 2017,
Dec 2017), the same as the first period studied for the SGX, and
the second is (Sep 2017, Aug 2018), which is in the middle of the
mini-crash. For these two periods, we observe dissimilar features
for H0. In the first period,D grew from an initial value of 0.05, and
saturated around 0.2, before dropping steeply to 0.07. For the
second period, H0 stayed between 0.13 and 0.15, before jumping
to a larger value of roughly 0.22 seven months later. As expected,
the bottleneck distance increases and then decreases over the
course of a market crash.

FIGURE 13 |Bottleneck distances D calculated for (A)H0, (B)H1, and (C)H2 for the origin month (we pick three points in Jan 2017 as origins, and calculatedDwith
subsequent n � 1 months). The solid lines are the mean values, and the vertical bars are the standard deviation for each data point. (D–F) are the same as (A–C) but for
normal market states of TAIEX, and (G–I)we select three points in Sep 2018 as origins, and calculated Dwith subsequent n � 11months, covering the mini market crash
of TAIEX.
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TABLE 1 | (A) Euler characteristics, and kth Betti numbers for k � 0 − 3. Data collected in STI from Jan 2017 to Nov 2018. (B) Euler characteristics, and kth Betti numbers for
k � 0 − 3. Data collected in TAIEX from Jun 2018 to Dec 2018, May 2019 to Oct 2019. Two periods cover the two crashes. We have calculated βk specifically for the
period in TAIEX (Jan 2017 to Jun 2017) 10 times to test if βk fluctuates; our results confirmed that all arrived at the same βk and χ. We therefore will not include the error bars for
the Betti numbers and Euler characteristics.

Intervals χ β0 β1 β2 β3

(A) Euler characteristics, and kth Betti numbers for k � 0 − 3. Data collected in STI from Jan 2017 to Nov 2018
01/17 − 06/17 14 3 7 42 24

02/17 − 07/17 16 4 3 64 49

03/17 − 08/17 30 3 7 69 35

04/17 − 09/17 8 4 5 65 56

05/17 − 10/17 25 4 14 54 19

06/17 − 11/17 10 2 20 47 19

07/17 − 12/17 35 3 22 69 15

08/17 − 01/18 −12 5 22 14 9

09/17 − 02/18 −25 25 53 6 3

10/17 − 03/18 −1 23 35 16 5

11/17 − 04/18 −4 28 38 11 5

12/17 − 05/18 −5 24 41 18 6

01/18 − 06/18 −11 23 58 34 10

02/18 − 07/18 45 5 17 70 13

03/18 − 08/18 63 3 23 100 17

04/18 − 09/18 40 3 30 75 8

05/18 − 10/18 28 3 23 59 11

06/18 − 11/18 15 4 31 64 22

07/18 − 12/18 −7 2 30 69 48

08/18 − 01/19 −9 7 46 43 13

09/18 − 02/19 −19 28 70 28 5

10/18 − 03/19 34 2 29 71 10

11/18 − 04/19 11 3 29 60 23

(B) Euler characteristics, and kth Betti numbers for k � 0 − 3. Data collected in TAIEX from Jun 2018 to Dec 2018, May 2019 to Oct 2019

06/18 − 11/18 23 2 5 62 36

07/18 − 12/18 27 45 21 3

08/18 − 01/19 28 40 16 4

09/18 − 02/19 54 74 18 1

10/18 − 03/19 26 36 21 11 0

11/18 − 04/19 −3 6 34 44 19

(Continued on following page)
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kth Betti Numbers and Euler Characteristics
In the literature, econophysicists use cross correlations to
distinguish between different market states, like the bull and
bear market states, as well as the market correction state. In a
market correction state, the market condition resembles a
random walk process, and thus the cross correlations between
stocks are random matrix-like, and the distribution of their
eigenvalues resembles a Marčenku–Pastur distribution (MPD).
Following Reimann et al. and Santos et al. [46, 47], we can also use
the kth Betti numbers and Euler characteristics as fingerprints to
classify market states in the STI and TAIEX. According to
Reimann et al. and Santos et al., different correlation matrices
can have higher similar fingerprints and thus represent the same
topologies.

In [46, 48], the authors also proposed to use the Euler entropy
Sx � ln(∣∣∣∣χ∣∣∣∣) as an alternative entropy construct, instead of the
conventional Boltzmann entropy. They used the Euler entropy to
inform whether there are topological phase transitions at any
specific time or correlation values. According to their findings, a
negative χ can be geometrically connected to a sheet of

hyperboloid with negative curvature, at χ � 0 the hyperboloid
become cone-like, on the edge of breaking into two hyperboloids,
and finally a positive χ, where the hyperboloid breaks into two
hyperboloids. Hence, when χ changes from a positive value to a
negative one, we can identify a critical point. At these points, the
Euler entropy explodes (ln|0|→ −∞) and become singular. In
statistical mechanics, when the system approaches a critical point,
we expect to see the susceptibility function become non-analytic.
In view of this, we can also use the Euler entropy to analyze and
classify different market states.

Here, we show the kth Betti number and Euler characteristics
for different periods in the SGX (TWSE) in Table 1. For TWSE,
we chose two periods of time, i.e. (Jun 2017, Dec 2018), and (May
2019, Oct 2019), to calculate χ. These periods correspond to the
two TAIEX crashes. Also, we calculated up to 2-dim Betti
numbers, because for TWSE, we were not always able to
compute the 3-dim Betti numbers. From July 2018 to Nov
2018, we found that χ was positive, and become negative in
Dec 2018. From June 2019 to Sep 2019, χ stayed close to zero, and
then suddenly jumped to 98 in Oct 2019, whose time window

TABLE 1 | (Continued) (A) Euler characteristics, and kth Betti numbers for k � 0 − 3. Data collected in STI from Jan 2017 to Nov 2018. (B) Euler characteristics, and kth Betti
numbers for k � 0 − 3. Data collected in TAIEX from Jun 2018 to Dec 2018, May 2019 to Oct 2019. Two periods cover the two crashes. We have calculated βk specifically for
the period in TAIEX (Jan 2017 to Jun 2017) 10 times to test if βk fluctuates; our results confirmed that all arrived at the same βk and χ. We therefore will not include the error bars
for the Betti numbers and Euler characteristics.

Intervals χ β0 β1 β2 β3

12/18 − 05/19 −10 23 44 11 0

05/19 − 10/19 −36 19 79 24

06/19 − 11/19 −2 6 22 28 14

07/19 − 12/19 −38 1 6 10 43

08/19 − 01/20 −33 1 6 23 51

09/19 − 02/20 −7 11 46 31 3

10/19 − 03/20 98 106 10 2

FIGURE 14 | The Euler characteristic χ in (A) TAIEX and (B) STI against dates. Each date represents a six-month period in which the correlation matrix was
constructed. Besides, different dates are associated with different values of ϵ. The gray bands are over the same periods shown in Figure 11 and cover Euler
characteristics that are positive.
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included the COVID-19 crash in Mar 2020. Based on our results,
both crashes seem to be associated with large positive χ values
instead of negative ones. We can understand a positive χ as the
result of many isolated hyperspheres, while a negative χ comes
from averaging the curvature over hyperbolic bridges after some
hyperspheres merged. This conclusion is also supported by the
behavior of β0, whose average values over the two periods are 31.6
and 98 respectively, suggesting that the stock components are
fragmented rather than agglomerated. On the other hand, while χ
is 23 and 27 respectively for (June 2018, Nov 2018) and (Jul 2018,
Dec 2018), the values for β0, β1, and β2 are different, implying that
their topologies are dissimilar. Our findings agree with our
hypothesis that during crashes, stock components tend to
break up into fragments, even though the overall cross
correlations are high.

Going on to the SGX, where the Euler characteristic was
computed up to the 3-dim Betti numbers, we see from
Figure 14B four topological transitions (marked by brown
arrows). These imply that from Jan 2017 to Apr 2019, even
though the signatures were weak in the cross correlations, SGX
switched between different topological phases. We classified the
market period from Jan 2017 to July 2017 as the first market state,
where χ has an average value of around 20. The second market
state was from Aug 2017 to Jan 2018, when χ became negative.
The third market state was from Feb 2018 to Jun 2018, where χ
became positive again. Finally, the fourth market state started
from Jul 2018 and ended in Sep 2018, during which χ turned
negative a second time. Thereafter, χ was positive for the last two
months. The Betti numbers in Table 1 show more subtle
behaviors that the χ alone cannot reveal. For example, in the
first period, we see that β0 ≈ 3 and β2 ≈ 58.5, whereas β1 was
separated into two groups, one averaging 5.5, while the other

averaging 18.6. β3 was also separated into two groups, one having
an average of 41, while the other averaging 17.6. These are in line
with the insights we developed in TDA of Toy Models and
Hypothesis on Real Markets Section, that we cannot deduce the
topology of the data by simply looking at χ, but must also check
the details of βn. We found similar situations for other periods
(Aug 2017 to Jan 2018, Jul 2018 to Sep 2018) in SGX.

To show that we indeed observe in the real market data
topological changes described in our hypothesis in TDA of
Toy Models and Hypothesis on Real Markets Section, we
investigated specifically the mini-crash of TAIEX over four
time periods. One is just before the crash (Jun 2018 to Nov
2018), two is during the crash (Sep 2018 to Feb 2019) and (Oct
2018 to Mar 2019), and the last is just after the crash (Dec 2018 to
May 2019). Here let us point out an important limitation of the
Betti numbers, i.e. they do not tell us how big the clusters are. For
example, the same set of Betti numbers can describe a collection
of clusters that are roughly the same size, some with holes, some
without; this market is not close to a crash. Or it can describe a
collection of clusters, one of which is a giant cluster containing
most of the holes; a market like this is close to a crash. This means
that βn must be supplemented by traditional clustering analysis,
where it is easier to see giant clusters, but difficult to understand
topological changes.

To this end, we show in Figure 15 the results of average-
linkage hierarchical clustering based on the cross-correlation
matrices of the four periods. In the first period, we found one
giant cluster co-existing with two small clusters. β0 � 2 for this
period is close to the number of clusters we found, confirming our
hypothesis that before the crash, we have a growing giant cluster.
By tracking which clusters the 671 stocks belong to, we found that
in the second period, one of the smaller clusters was absorbed by

FIGURE 15 | The hierarchical clustering dendrogram for four periods in TAIEX, i.e. (A) from Jun 2018 to Nov 2018, (B) Sep 2018 to Feb 2019, (C)Oct 2018 to Mar
2019, and (D) Dec 2018 to May 2019.
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the giant cluster. In the third period, this membership
information revealed the initial stages of the giant cluster
breaking up, as it ejected two smaller clusters. For the last
period, we now found 12 different clusters, suggesting that we
were near the end of the market crash. This fusion and fission
phenomenon is in line with the hypothesis we made (see
Figure 7D). To tease out subtle topological changes to the
giant cluster as the market crash progressed, we looked to
changes in the Betti numbers. This is possible because, unlike
the use of a single criterion to group stocks in hierarchical
clustering, TDA uses multiple criteria to accomplish this task.
For example, it is possible for the giant cluster to continue
absorbing stocks while it is ejecting others. The overall change
in the number of clusters is reflected in β0, however with β0 alone
we cannot distinguish between 1 – 2 � −1 and 5 – 6 � −1. These
two scenarios may be differentiated by the other Betti numbers.
Specifically, we found that β2 changed from
62→ 3→ 4→ 1→ 11→ 44→ 11 starting from the period (Jun
2018 to Nov 2018) to the period (Dec 2018 to May 2019),
implying an initial decrease in the number of 2D holes just
before the crash (Figure 7A), becoming 1 in the middle of the
crash (Figure 7B), before increasing again just after the crash
(Figure 7D).

We also wanted to check if there are any handle-breaking
events during real market crashes. For example, if we start with a
torus, the Betti numbers would be β0 � 1, β1 � 2, and β2 � 1. If
the handle of the torus breaks, the object remaining would be
homomorphic to a sphere, which has β0 � 1, β1 � 0, and β2 � 1,
indicating that handle breaking is a topological change whose
signature is (Δβ0,Δβ1,Δβ2) � (0,−2, 0). To track these
topological changes, we kept only the giant cluster in each of
the period, and recomputed the Betti numbers within these
components. During the TAIEX mini-crash, we found the
sequence 1→ 4→ 1→ 2 for β0, which tells us that the giant
cluster for the second period is the least homogeneous. Going
beyond β0, we found the sequence 23→ 61→ 1→ 0 for β1. This
tells us that the initial giant cluster already contained many
irreducible loops, and this number of irreducible loops
increased further in the second period as the giant cluster
increased in size. By the third period, most of these irreducible
loops have disappeared, and by the fourth period, the giant cluster
remaining has a simple topological structure. Finally, for β2, we
found the sequence 78→ 29→ 44→ 2. Specifically, β2 (the
number of enclosed volumes) and β1 (the number of
irreducible loops) can together tell us more about the topology
of the simplicial complex. For example, β1 � 0, β2 � 1 for a
spherical shell, whereas for a torus, β1 � 2, β2 � 1. In the first
period, we found that β1 < β2. This tells us that the giant cluster
contains many enclosed volumes that are not holes (because every
hole in the simplicial complex must be accompanied by
irreducible loops). In the second period, we found instead that
β1 > β2, and in fact β1 ≈ 2β2, suggesting that all the enclosed
volumes have become holes. The number of handles thus
increased from the first period to the second period (although
we cannot exclude the possibility that a few of them might have
broken, although it is unlikely for many to have broken). From
Table 1, we see that the giant cluster broke up most vigorously

during the second and third period. Here we see that beyond this
fragmentation, the topological changes associated with the
second and third periods are very different: in the second
period, enclosed volumes became holes, whereas in the third
period, the handles of these holes broke and more enclosed
volumes emerged. Furthermore, because β2 was large in the
fourth period, the fragmentation products are closer to being
spherical shells than they are to solid spheres.

MST, PMFG, and TMFG
In the econophysics literature, we celebrate insights on stock
markets obtained using correlation filtering methods. From
Mantegna’s work [8], we learned to project an arbitrary
correlation matrix onto a minimal spanning tree, requiring
only N − 1 links when there are N nodes, to visualize the
correlational structure of stock markets. However, there is no
reason why we should admit only N − 1 links. According to
Tumminello et al. [9], the number of non-intersecting links in a
graph G with genus g is at most 3(n − 2 + 2g), and therefore we
may project the correlation matrix onto manifolds with different
genus g to keep more links or fewer links. The simplest such
projection is onto a sphere (g � 0), or other manifolds with a small
genus. The graph that results from projection onto a sphere is
planar and is therefore called a planar maximally filtered graph
(PMFG). A related method, the triangular maximally filtered
graph (TMFG) [10], that checks local planarity but not globally
that the genus is zero. This is computationally more efficient and
can be parallelized for very large datasets. However, there is no
reason to believe that g � 0 is the optimum genus for all
correlation matrices computed from stock markets. We believe
that genus g implied in Table 1 is optimum because they are
computed in an unbiased fashion through the TDA filtration
procedure. We can use this optimum genus to systematically
improve the efficacy of such information filtering methods.

MST methods have been used to track topological changes
during market crashes. To name a few, Onnela et al. [49, 50]
investigated the US stocks during the 1987 Black Monday and
found that the diameter of the MST decreased during the market
crash, so this feature can be used as a universal indicator of
market crashes. We ourselves also used the MST of the 10 US
Dow Jones economic sectors [51] and the 36 Nikkei industry
indices [52] in conjunction with time-series segmentation, to find
a core-fringe structure during crizes. In the same spirit, Wilinski
et al. [53] and Sienkiewicz et al. [54] investigated market crashes
in the Frankfurt Stock exchange (FSE), and the Warsaw Stock
Exchange (WSE), and concluded that a two-transition process
characterizes market crashes universally. The first transition is
from a hierarchical scale-free MST to a superstar-like MST,
followed by a second transition to a power-law MST decorated
with star-like trees or hubs. In using the MST, they have assumed
that loops (β1) in the networks can be ignored. In this sense, the
present is a natural extension to what they have done, where we
take a more detailed look into the topological transitions.

Ultimately, informational filtering methods such as MST or
PMFG are designed to produce connected graphs and are thus
not the best choice for identifying fragmented clusters. To
identify these, we can of course use the minimal spanning
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forest (MSF) [55] or the directed bubble hierarchical tree (DBHT)
[56, 57] methods modified from the MST or PMFG. Here, we
would like to stress that most clustering approaches are limited to
β0 and β1, and cannot differentiate topological changes beyond β1.
TDA is promising because it is an elegant extension beyond 0-
simplices and 1-simplices, allowing us to unravel subtle
topological changes during market crashes.

Outlook and Perspective
Several future directions are possible based on this work. First,
in MST, PMFG, and TMFG Section, we mention that the
upper bound of the number of links for information filtering
methods involving projection to manifolds with genus g is
given by 3(n − 2 + 2g). The Euler characteristic listed in
Tables 1(A, B) can be also be used to calculate the genus g
via χ � 2(1 − g). With this we are not required to assume a
priori that the optimal manifold to project has g � 0 or close to
0. Second, Bubenik [58] had proposed to use persistence
landscapes, which is a Banach space that can be converted
from persistence diagrams. We then can do statistical
averaging of the persistence landscapes, and use the result
to design persistence weighted kernels, see for example this
very recent work [59]. Persistence weighted kernels can fully
maximize the strength of ML algorithms in making stock price
predictions. Third, we identified two market crashes in TWSE
and several topological phase transitions in SGX.

A pearl of commonwisdom that can be gleaned from [47] is that
the number of simplices (kth Betti numbers), in general, will peak at
k � 6 to k � 8, before dropping to zero at k � 11. More computing
resources are required to carry out future works in this direction to
test at which k the number of simplices actually peak, and at which k
it finally dropped to zero. Also, in Reimann’s work, they investigated
directed simplices instead of undirected ones. The former finds
applications in educational science, for example [60]. Also, a recent
work that applied persistent homology in investigating co-
occurrence networks had shown promising results [61].

CONCLUSION

In this work, we collected daily price data from SGX and TWSE
and analyzed them using persistent homology and TDA toolkits.
We then made a case for TDA to be employed alongside the other
state-of-the-art network embedding techniques including the
MST, PMFG, TMFG, in analyzing the topological structures.
We were drawn to the application of Persistent Homology (PH)
and TDA in complex systems for three reasons: ) PH and TDA
are unbiased; ) they scan through a full range of correlation values
instead of using only one or two specific values; and ) it is less
susceptible to random noises.

We then utilize three toy models to illustrate our hypothesis in
Introduction Section, that is “in different market states, their
topological features are also changing accordingly, and TDA can
be effective in scrutinizing these changes.” We showed in these
toy models, including spheres, toruses, and ellipsoids, how χ, the
Betti numbers, the barcodes, and persistence diagrams change
with topological changes. Also, we use schematic diagrams to

illustrate different market states, what the topologies could be
like, and argue what their possible Betti numbers and χ’s could be.

Our results revealed unexpected and promising findings in the
stock markets. In TWSE, we found a small crash from Sep 2018 to
Jan 2019, followed by a larger crash in March 2020, which is due to
the COVID-19 pandemic. For these two crashes, we performed three
tests using TDAmethods. The first test was to quantify a persistence-
weakening phenomenon in the barcodes and persistence diagrams.
This persistence-weakening phenomenon was also discovered in the
SGX, suggesting that it might be universal. However, there were no
reported crashes in the SGX for the period studied. To understand
this apparent inconsistency, in the second test we calculated the Betti
numbers and the Euler characteristic of different 6-months windows
in both markets. Our results suggest that market crashes in TAIEX
and STI are associated with χ > 0, but themarket crash signatures are
stronger and have cleaner interpretations in β0.Whenwe scrutinized
the changes to β0, β1, and β2 of the giant cluster over four time
periods before, during, and after the TAIEX mini-crash, we found
that at the beginning of the crash, the giant cluster has many holes
and many more enclosed volumes. As the market crash progressed,
these enclosed volumes first became holes, before the handles of
these holes broke, to give rise to fragmentation products that were
closer to spherical shells than they are to solid spheres. Finally, in the
last test, we found the dim-2 persistent entropy decreasing
significantly across market crashes. To conclude we found that
TDA confirmed most parts of our hypothesis, but also suggested
that the topological changes surrounding a market crash are more
complex than what we had imagined.

DATA AVAILABILITY STATEMENT

All Python and Matlab scripts are provided, along with
instructions on how to use them. These will download the raw
data from Yahoo! Finance, perform the necessary computations to
give the final results. The files are provided in this link. https://
researchdata.ntu.edu.sg/dataset.xhtml?persistentId=doi:10.21979/
N9/8XMZGF.

AUTHOR CONTRIBUTIONS

SC and PT-WY conceived the study, PT-WY collected the data,
SC and PT-WY analyzed the data and interpreted the results, SC
and PT-WY wrote and reviewed the manuscript.

FUNDING

This research is supported by a startup grant from the Nanyang
Technological University.

ACKNOWLEDGMENTS

We thank our NTU colleagues Melvin Soh Hwee Jin and Jeric
Ho Yew Kee for their assistance in providing advice and

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 57221617

Yen and Ann TDA of STI and TAIEX

https://researchdata.ntu.edu.sg/dataset.xhtml?persistentId=doi:10.21979/N9/8XMZGF
https://researchdata.ntu.edu.sg/dataset.xhtml?persistentId=doi:10.21979/N9/8XMZGF
https://researchdata.ntu.edu.sg/dataset.xhtml?persistentId=doi:10.21979/N9/8XMZGF
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


solutions to our inquiries on high-performance computing-
related issues. P T.W.Y. acknowledges support from ERI@N.
We also thank the two anonymous reviewers for their insightful
and constructive comments that helped improved our revised
manuscript greatly.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2021.572216/
full#supplementary-material.

REFERENCES

1. Laloux L, Cizeau P, Bouchaud J-P, Potters M. Noise dressing of financial
correlation matrices. Phys Rev Lett (1999) 83(7):1467–70. doi:10.1103/
PhysRevLett.83.1467

2. Plerou V, Gopikrishnan P, Rosenow B, Nunes Amaral LA, Stanley HE.
Universal and nonuniversal properties of cross correlations in financial
time series. Phys Rev Lett (1999) 83(7):1471–4. doi:10.1103/PhysRevLett.
83.1471

3. Plerou V, Gopikrishnan P, Rosenow B, Amaral LAN, Stanley HE. A random
matrix theory approach to financial cross-correlations. Phys Stat Mech Appl
(2000) 287(3-4):374–82. doi:10.1016/s0378-4371(00)00376-9

4. Sandoval L, Franca IDP. Correlation of financial markets in times of crisis.
Phys Stat Mech Appl (2012) 391(1-2):187–208. doi:10.1016/j.physa.2011.
07.023

5. Mantegna RN, Stanley HE. Stochastic process with ultraslow convergence to a
Gaussian: the truncated Levy flight. Epub 1994/11/28. Phys Rev Lett (1994)
73(22):2946–9. PubMed PMID: 10057243. doi:10.1103/PhysRevLett.73.2946

6. Mandelbrot BB, Van Ness JW. Fractional brownian motions, fractional noises
and applications. SIAM Rev (1968) 10(4):422–37. doi:10.1137/1010093

7. Mandelbrot BB, Fisher AJ, Calvet LE. A multifractal model of asset returns New
Haven: Yale University (1997).

8. Mantegna RN. Hierarchical structure in financial markets. The European
Physical Journal B (1999) 11(1):193–7. doi:10.1007/s100510050929

9. Tumminello M, Aste T, Di Matteo T, Mantegna RN. A tool for filtering
information in complex systems. Proc. Natl. Acad. Sci. U.S.A (2005) 102(30):
10421–6. doi:10.1073/pnas.0500298102

10. Massara GP, Di Matteo T, Aste T. Network filtering for big data: triangulated
maximally filtered graph. Journal of Complex Networks (2016) 5(2):161–78.
doi:10.1093/comnet/cnw015

11. Zomorodian A, Carlsson G. Computing persistent homology.Discrete Comput
Geom (2004) 33(2):249–74. doi:10.1007/s00454-004-1146-y

12. G Singh, F Mémoli, GE Carlsson, editors. Topological methods for the
analysis of high dimensional data sets and 3d object recognition. Geneva:
SPBG (2007).

13. H Edelsbrunner, D Letscher, A Zomorodian, editors. Topological persistence
and simplification. Proceedings 41st annual symposium on foundations of
computer science. Redondo Beach, CA, USA, 2000, IEEE (2000). doi:10.1109/
SFCS.2000.892133

14. Carlsson G. Topology and data. Bull Am Math Soc (2009) 46(2):255–308.
doi:10.1090/s0273-0979-09-01249-x

15. Hatcher A. Algebraic topology. Cambridge University Press (2002).
16. Edelsbrunner H, Harer J. Computational topology: an introduction. American

Mathematical Soc. (2010). doi:10.1007/978-3-540-33259-6_7
17. Ghrist RW. Elementary applied topology. Seattle: CreateSpace Independent

Publishing Platform (2014).
18. Eilenberg S, Steenrod N. Foundations of algebraic topology. Princeton

University Press (2015).
19. Munkres JR. Elements of algebraic topology. New York: CRC Press (2018).
20. Cotton FA. Chemical applications of group theory. John Wiley & Sons (2003).
21. Dresselhaus MS, Dresselhaus G, Jorio A. Group theory: application to the

physics of condensed matter. Springer Berlin Heidelberg (2007).
22. Strang G. Linear Algebra and its applications: thomson. Boston: Cengage

Learning (2006).
23. Lay DC. Linear algebra and its applications. Addison-Wesley (2012).
24. Barabási A-L. Network science. Cambridge University Press (2016).
25. West DB. Introduction to graph theory. Upper Saddle River: Prentice-Hall (2001).
26. Newman M. Networks: an introduction. Oxford: OUP Oxford (2010).

27. Hausmann J-C. On the Vietoris-Rips complexes and a cohomology theory for
metric spaces. Ann Math Stud (1995) 138:175–88. doi:10.1515/
9781400882588-013

28. Toth CD, O’Rourke J, Goodman JE. Handbook of discrete and computational
geometry. Chapman and Hall/CRC (2017).

29. H Edelsbrunner, editor. Smooth surfaces for multi-scale shape representation.
International conference on foundations of software technology and theoretical
computer science. Springer (1995).

30. De Silva V, Carlsson GE. Topological estimation using witness complexes.
SPBG (2004) 4:157–66. doi:10.2312/SPBG/SPBG04/157-166

31. Otter N, Porter MA, Tillmann U, Grindrod P, Harrington HA. A
roadmap for the computation of persistent homology. Epub 2017/01/
01. EPJ Data Sci (2017) 6(1):17, 2017 . PubMed PMID: 32025466;
PubMed Central PMCID: PMCPMC6979512. doi:10.1140/epjds/
s13688-017-0109-5

32. Edelsbrunner H, Harer J. Persistent homology-a survey. Contemp Math (2008)
453:257–82.

33. Bauer U. Ripser: a lean C++ code for the computation of Vietoris-Rips
persistence barcodes. Software (2017). available at. https://github.com/
Ripser/ripser (Accessed September 04, 2020).

34. Carrara N. TDA toolkit (2018). [updated September09/04/2020]. doi:10.5281/
zenodo.1436034

35. Adams H, Tausz A, Vejdemo-Johansson M. Java{P}lex: {A} research software
package for persistent (co)homology. In: Hong H, Yap, CK, editors.
Proceedings of ICMS. 2014 (2014).

36. Sornette D. Why stock markets crash: critical events in complex financial
systems. New Jersey: Princeton University Press (2017).

37. Lux T. Herd behaviour, bubbles and crashes. Econ J (1995) 105(431):881–96.
doi:10.2307/2235156

38. Teh BK, Cheong SA. Cluster fusion-fission dynamics in the Singapore stock
exchange. The European Physical Journal B (2015) 88(10):263. doi:10.1140/
epjb/e2015-60456-y

39. Teh BK, Goo YW, Lian TW, Ong WG, Choi WT, Damodaran M, et al. The
Chinese Correction of February 2007: how financial hierarchies change in amarket
crash. Phys Stat Mech Appl (2015) 424:225–41. doi:10.1016/j.physa.2015.01.024

40. Kleinen T, Held H, Petschel-Held G. The potential role of spectral properties in
detecting thresholds in the Earth system: application to the thermohaline
circulation. Ocean Dynam (2003) 53(2):53–63. doi:10.1007/s10236-002-0023-6

41. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V,
et al. Early-warning signals for critical transitions. Epub 2009/09/04.
Nature (2009) 461(7260):53–9. PubMed PMID: 19727193. doi:10.1038/
nature08227

42. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, et al.
Regime shifts, resilience, and biodiversity in ecosystem management. Annu
Rev Ecol Evol Syst (2004) 35(1):557–81. doi:10.1146/annurev.ecolsys.35.
021103.105711

43. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. Catastrophic shifts in
ecosystems. Epub 2001/10/12. Nature (2001) 413(6856):591–6. PubMed
PMID: 11595939. doi:10.1038/35098000

44. Rucco M, Castiglione F, Merelli E, Pettini M. Characterisation of the idiotypic
immune network through persistent entropy. Proceedings of ECCS Springer
proceedings in complexity. Springer (2014). p. 117–28. 2016.

45. Chintakunta H, Gentimis T, Gonzalez-Diaz R, Jimenez M-J, Krim H. An
entropy-based persistence barcodes. Pattern Recogn (2015) 48(2):391–401.
doi:10.1016/j.patcog.2014.06.023

46. Fan S, Raposo EP, Coutinho-Filho MD, Copelli M, Stam CJ, Douw L.
Topological phase transitions in functional brain networks. Epub 2019/10/
24. Phys Rev E (2019) 100(3-1):032414, 2019. PubMed PMID: 31640025.
doi:10.1103/PhysRevE.100.032414

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 57221618

Yen and Ann TDA of STI and TAIEX

https://www.frontiersin.org/articles/10.3389/fphy.2021.572216/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2021.572216/full#supplementary-material
https://doi.org/10.1103/PhysRevLett.83.1467
https://doi.org/10.1103/PhysRevLett.83.1467
https://doi.org/10.1103/PhysRevLett.83.1471
https://doi.org/10.1103/PhysRevLett.83.1471
https://doi.org/10.1016/s0378-4371(00)00376-9
https://doi.org/10.1016/j.physa.2011.07.023
https://doi.org/10.1016/j.physa.2011.07.023
https://doi.org/10.1103/PhysRevLett.73.2946
https://doi.org/10.1137/1010093
https://doi.org/10.1007/s100510050929
https://doi.org/10.1073/pnas.0500298102
https://doi.org/10.1093/comnet/cnw015
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1109/SFCS.2000.892133
https://doi.org/10.1109/SFCS.2000.892133
https://doi.org/10.1090/s0273-0979-09-01249-x
https://doi.org/10.1007/978-3-540-33259-6_7
https://doi.org/10.1515/9781400882588-013
https://doi.org/10.1515/9781400882588-013
https://doi.org/10.2312/SPBG/SPBG04/157-166
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://github.com/Ripser/ripser
https://github.com/Ripser/ripser
https://doi.org/10.5281/zenodo.1436034
https://doi.org/10.5281/zenodo.1436034
https://doi.org/10.2307/2235156
https://doi.org/10.1140/epjb/e2015-60456-y
https://doi.org/10.1140/epjb/e2015-60456-y
https://doi.org/10.1016/j.physa.2015.01.024
https://doi.org/10.1007/s10236-002-0023-6
https://doi.org/10.1038/nature08227
https://doi.org/10.1038/nature08227
https://doi.org/10.1146/annurev.ecolsys.35.021103.105711
https://doi.org/10.1146/annurev.ecolsys.35.021103.105711
https://doi.org/10.1038/35098000
https://doi.org/10.1016/j.patcog.2014.06.023
https://doi.org/10.1103/PhysRevE.100.032414
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


47. Reimann MW, Nolte M, Scolamiero M, Turner K, Perin R, Chindemi G, et al.
Cliques of neurons bound into cavities provide a missing link between
structure and function. Epub 2017/07/01. Front Comput Neurosci (2017)
11:48, 2017. PubMed PMID: 28659782; PubMed Central PMCID:
PMCPMC5467434. doi:10.3389/fncom.2017.00048

48. Fan S, da Silva LCB, Coutinho-Filho MD. Topological approach to
microcanonical thermodynamics and phase transition of interacting
classical spins. J Stat Mech Theor Exp (2017) 2017(1):013202. doi:10.1088/
1742-5468/2017/1/013202

49. Onnela J-P, Chakraborti A, Kaski K, Kertiész J. Dynamic asset trees and
portfolio analysis. The European Physical Journal B-Condensed Matter and
Complex Systems (2002) 30(3):285–8.

50. Onnela J-P, Chakraborti A, Kaski K, Kertesz J. Dynamic asset trees and Black
Monday. Phys Stat Mech Appl (2003) 324(1-2):247–52.

51. Zhang Y, Lee GHT, Wong JC, Kok JL, Prusty M, Cheong SA. Will the US
economy recover in 2010? Aminimal spanning tree study. Phys Stat Mech Appl
(2011) 390(11):2020–50.

52. Cheong SA, Fornia RP, Lee GHT, Kok JL, YimWS, Xu DY, et al. The Japanese
economy in crises: a time series segmentation study. Economics: the Open-
Access. Open-Assessment E-Journal (2012) 6(2012-5):1–81.
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