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Mucus is a complex fluid that coats multiple organs in animals. Various physicochemical
properties can alter the diffusion of microscopic particles in mucus, impacting drug
delivery, virus infection, and disease development. The simultaneous effect of these
physicochemical properties in particle diffusion, however, remains elusive. Here, we
analyzed 106 published experiments to identify the most dominant factors controlling
particle diffusion in mucus. The effective diffusion—defined using a one-second sampling
time window across experiments—spanned seven orders of magnitude, from 10–5 to
102 μm2/s. Univariate and multivariate statistical analyses identified the anomalous
exponent (the logarithmic slope of the mean-squared displacement) as the strongest
predictor of effective diffusion, revealing an exponential relationship that explained 89% of
the variance. A theoretical scaling analysis revealed that a stronger correlation of the
anomalous exponent over the generalized diffusion constant occurs for sampling times
two orders of magnitude larger than the characteristic molecular (or local) displacement
time. This result predicts that at these timescales, the molecular properties controlling the
anomalous exponent, like particle–mucus unbinding times or the particle to mesh size
ratio, would be the most relevant physicochemical factors involved in passive
microrheology of particles in mucus. Our findings contrast with the fact that only one-
third of the studies measured the anomalous exponent, and most experiments did not
report the associated molecular properties predicted to dominate the motion of particles in
mucus. The theoretical foundation of our work can be extrapolated to other systems,
providing a guide to identify dominant molecular mechanisms regulating the mobility of
particles in mucus and other polymeric fluids.

Keywords: anomalous diffusion, mucus, microscopic particle, meta-analysis, random forest (bagging) and machine
learning

INTRODUCTION

Mucus is a complex fluid secreted by animals [1,2]. It protects organs against the invasion of
pathogens and promotes the interaction with commensal microbes [3–5]. The diffusivity of particles
in mucus is paramount for animal health. The infectivity of animal viruses, like HIV, decreases when
their diffusion in mucus is impeded [6]. On the flip side, enhancing the diffusivity of biomolecules in
mucus facilitates the delivery of medical drugs in the body [7], and reducing the diffusivity of
commensal viruses that infect bacteria in the gut can increase their infectivity and protection against
pathogens [8,9]. Multiple factors modify the diffusivity of particles in mucus, including particle size
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[7,10], particle charge and ionic strength [11–15], pH
[1,6,14,16,17], and the concentration and polymeric
organization of the characteristic glycoproteins in mucus
called mucins [9]. However, the combined effect of these
physicochemical factors controlling particle diffusion in mucus
remains puzzling.

Small biomolecules and biomolecular complexes tend to
diffuse more readily through mucus, while larger particles are
caught in the mucin network [7,10]. On the other hand,
nonadhesive polystyrene particles with a diameter of 500 nm
diffuse faster than smaller particles (200 nm) of the same type
[18]. These contrasting results highlight the major impact of
parameters other than size in particle diffusion in mucus. In fact,
neutrally charged particles display higher diffusivity in mucus
than charged particles of the same size with a net negative charge
[11–15]. An increase in salt concentration shields charged
particles, leading to diffusivities similar to neutrally charged
particles [12–14]. Low pH increases the distribution of
negative charges in mucins and alters mucus’ viscoelasticity,
reducing the diffusivity of most particles [1,6,14,16,17]. Low
pH also thickens mucus, reducing the diffusion and infection
rate of viruses like HIV [6]. Interaction with mucins also alters the
diffusivity of particles in mucus. Commensal viruses that infect
bacteria and reside in the gut display immunoglobulin-like
domains that are attracted to mucins. This interaction reduces
their diffusivity and increases their infectivity against bacteria
[8,9]. Some of these observations may seem contradictory.
However, the fact that mucus has been selected across animals
suggests that there could be a more comprehensive emerging
effect when these different physiochemical factors are
combined [19].

To tackle this problem, we performed a meta-analysis of
published experimental data measuring the passive diffusion of
microscopic particles in mucus. The correlation between
physicochemical properties and particle diffusion in mucus was
investigated using univariate andmultivariate correlationmethods.
A theoretical scaling analysis was applied to derive a theoretical
framework justifying the empirical results. This framework
provided a quantitative understanding of the regulation and
control of particle diffusion in mucus and other hydrogels. Our
findings predict an effective particle size (and diffusion threshold)
where the anomalous exponent becomes dominant, anomalous
exponent values for experiments that did not measure it, and
molecular factors associated with the anomalous exponent that
were not reported inmost experiments but should be paramount to
understand particle diffusion in mucus.

MATERIALS AND METHODS

The GitHub repository https://github.com/luquelab/Cobarrubia_
etal_FrontPhys_2021 contains the codes and instructions
necessary to implement the methods and replicate the research.

Data Extraction
We screened 24 published articles reporting diffusion of particles
in mucus or mucus-like hydrogels (Supplementary Data S1).

Ten studies contained diffusion data for microscopic, spherical
particles that could be compared at the same sampling time
window [6,9,11,14,17,18,20–23]. WebPlotDigitizer [24] was used
to extract 106 measurements of effective diffusion, Deff, measured
at a time window of one second, Δteff � 1 s, that is,

Deff � 〈MSD〉
2kΔteff

(1)

where, 〈MSD〉 was the ensemble mean-squared displacement of
a particle, and k was the dimensions of particle diffusivity [25].
The following variables were obtained in all the experiments
analyzed: particle hydrodynamic diameter (d), particle type,
mucus source, dominant mucin expression, and temperature
(T). If a study did not report the temperature explicitly, room
temperature (298 K) was assumed. The following variables were
obtained or derived when possible: anomalous diffusion
exponent (α), particle effective surface charge (ζ), mucus pH,
mucus salt concentration, and mucin concentration. The
anomalous exponent, also known as the logarithmic slope of
the mean-squared displacement in the microrheology
community [26], was obtained from the subdiffusion equation:

〈MSD(Δt)〉 � 2kDαΔtα . (2)

here, Dα is the generalized diffusion and Δt is the sampling time
window [27–29]. It is important to note that subdiffusion is
predicted to be a transient regime in viscoelastic fluids [30]; at
very short timescales, particles’motion is dominated by a ballistic
motion and by non-anomalous diffusion at long timescales.
Nonetheless, subdiffusion is a relevant phenomenon observed
in mucus and other polymeric fluids at a range of timescales
important in biological systems, from milliseconds to days
[7,31,32]. The experiments analyzed in this study fall within
this time window where subdiffusion can be important.

Some references shared measured diffusion relative to particle
diffusion in water; in these cases, the particle diffusion in water
was inferred applying the Stokes-Einstein equation, using the
reported temperature and hydrodynamic particle diameter [33].
It is worth noting that the Stokes–Einstein relation was used only
to infer particle diffusion in water. Particle diffusion in mucus is
better described using the generalized diffusion equation due to
mucus’ viscoelastic properties [1]. However, neither the
Stokes–Einstein relation nor the generalized diffusion equation
was applied to obtain the particle’s effective diffusion in mucus.
All the diffusion values in mucus were empirical and independent
of theoretical assumptions regarding the generalized diffusion
equation. The particle types were defined as a qualitative measure
of particle-mucin bonds: COOH (carboxylated), pegylated
(PEG), virus, amine, antibody/protein, or chitosan. The full
data set containing the measurements collected in all
experiments is available in Supplementary Data S2.

The dominant mucin composition from each mucus source
was obtained by evaluating the expression levels of mucin genes
from the genome bioinformatics portal Ensembl [34]. Mucins
were identified assuming the tissue/organ associated with each
mucus or closely associated tissues. Expression levels were
collected by taking the average of the reported median of
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transcript per million (TPM) RNA sequence and the most
explicitly stated low, medium, and high expression levels.
Based on potential gene expression of mucins with reported
levels below the cutoff, TPM measuring below the minimum
(0.05 TPM) was distinguished from experiments with no data due
to possible gene expression. Low, medium, and high expression
levels were obtained over reports of below cutoff in the same
tissue. The dominant mucin was determined by the highest
expression level, and then, if necessary, by the highest average
of median TPM. Identification of mucin expression based on
tissues was associated with each mucus: human respiratory
mucus and human cystic fibrosis mucus were associated with
the human lung mucin genes; human cervical mucus and
cervicovaginal mucus were associated with human cervix or
uterus mucin genes; pig intestinal mucus was originally from
the jejunum part of the small intestine; however, due to a lack of
reports for jejunum tissue, the associated mucin genes were taken
as the average of the median of TPM of pig duodenum and pig
ileum parts of the small intestine based on the close proximity to
the jejunum; pig ileum intestinal mucus was associated with
ileum tissue mucin genes; pig gastric mucus was collected
from pig stomach mucin genes. Supplementary Data S3
contains the full data set obtained from the bioinformatic
analysis.

Statistical Analysis
The multivariate analysis was performed using the
nonparametric statistical method random forest, estimating
permutation p-values in R, using the rfpermute package [35].
Random forest is a statistical learning method that relies on
generating an average ensemble of random decision trees [36].
Here, the effective diffusion was used as the supervised variable
for the regression of the random forest algorithm using the rest of
the variables as inputs. The mean-squared error (%MSE) was
used to identify the importance of each variable as a predictor.
The selection of the most relevant variables was obtained by
applying random forest in two consecutive rounds, discarding the
variables that were not statistically significant in each round
(p-value > 0.05). The average percentage increase of the mean-
squared error (%MSE) was obtained by investigating
permutations of three variables at a time. These permutations
assessed if the p-value obtained was robust.

The single-variable correlation analysis was performed using
the nonparametric Spearman’s correlation coefficient and
parametric linear regressions minimized by the least-squares
method. The effective diffusion was used as the predicted
variable and compared with all the other variables as
predictors. The linear regressions explored logarithmic and
non-logarithmic scales for both the predictor and predicted
variables. The values of the best fit in the linear regression
provided an average response and were compared with the
mid-values from the measured physical factors for consistency.

Theoretical Analysis
A scaling ansatz was applied to the subdiffusion equation, Eq. 2,
to extract the explicit dependence on the anomalous diffusion α.
This theoretical analysis assumed that the microscopic motion of

a particle was associated with a characteristic molecular mobility
timescale, tD, and displacement scale, LD. This first-order
approximation aimed to identify the scaling relationship
between the generalized diffusion coefficient and these
microscopic observables. The rationale and explicit derivation
of this theoretical analysis are included in the Results section.
Logarithmic derivatives of the effective diffusion were calculated
to estimate the impact of each of these three physical
parameters—α, tD, and LD—in the rate of change of the
effective diffusion. This determined the threshold condition
where the anomalous diffusion, α, was predicted to dominate
statistically over the other factors. This theoretical prediction was
compared with the empirical values obtained from the empirical
statistical analysis.

RESULTS

Particles’ Effective Diffusion in Mucus
Spanned Seven Orders of Magnitude
The microscopic particles studied had diameters, d, covering
three orders of magnitude, from 1 to 1,300 nm, and they
displayed an effective diffusion spanning seven orders of
magnitude, from 10–2 μm2/s to 105 μm2/s (see Table 1 and
Supplementary Data S2). The anomalous exponent, α, ranged
from strongly subdiffusive (α ≈ 0.1) to purely diffusive (α ≈ 1),
but it was obtained only from a third of the data set (n � 39;
37%). The zeta potential, ζ , measured the effective surface
charge of particles in solution [37]. The values ranged from
−70 mV to +40 mV and were obtained for half of the data set
(n � 57; 52%). The temperature range was narrow, 295–310 K.
The pH ranged from mildly acidic (pH � 3.0) to slightly
alkaline (pH � 7.4); however, most particle types were
measured at a fixed pH (Supplementary Data S2). A third
of the experiments had been conducted in artificial mucus-like
hydrogels. The rest of the experiments had been conducted in
mucus from four sources: human respiratory, human cervix,
pig gastric, and pig intestines. The dominant mucins were
MUC2 (n � 59; pig intestines and pig stomach sources),
MUC5B (n � 30; human cervix source), and MUC5AC
(n � 14; human lung source). See Supplementary Data S3
for the extended outputs of the dominant mucin analysis.

The Anomalous Exponent Displayed the
Strongest Correlation With the Effective
Diffusion
The random forest analysis selected five significant variables
affecting the effective diffusion (window sampling time 1 s),
Deff (Figure 1). The anomalous diffusion exponent, α, was the
most relevant variable predicting effective diffusion in the
random forest model, with an average percentage increase in
the mean-squared error (%MSE) of 22 (±3)% (std. dev.) (p-value
� 0.0099). The second most relevant variable was particle type
with 19 (±7)% in %MSE, followed by zeta potential with 15
(±5)%, mucus source with 13 (±7)%, and dominant mucin with
10 (±8)%.
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When analyzing the selected variables individually, the
anomalous diffusion exponent, α, displayed a significantly
stronger correlation with the effective diffusion, Deff, than the
other variables. The nonparametric Spearman correlation was ρ �
0.93 (p-value < 2.0 × 10–16, n � 39) (Supplementary Table S1).
The second strongest individual variable was the negative zeta
potential, ζ < 0 (ρ � 0.6, p-value � 0.0002, n � 36). See
Supplementary Table S1 for the outputs of all correlations.

The effective diffusion, Deff, increased exponentially with α
(Figure 2A). The linear regression for the semi-logged data (log-
linear axes) explained 89% of the variance (log 10Deff � a α + b, a �
5.3 ± 0.3, b � −5.0 ± 0.2, R2 � 0.89). The anomalous exponent was
extracted for 37% (n � 39) of the data, in particular, carboxylated,
PEG, and viral particles. The inverse statistical model was fitted to
this data set (α � a′ log 10Deff + b′, a′ � 0.17 ± 0.01, b′ � 0.92 ± 0.02,
R2 � 0.88, n � 39) to estimate the mean value of α for the
remaining 63% (n � 67) of the data, corresponding to amine,
chitosan, antibodies, and protein particles (Figure 2B). Particles
with effective diffusion above Deff > 3.5 μm2/s (n � 21) were
predicted to display regular diffusion (α � 1); none of the particles
analyzed self-propelled, and thus, superdiffusion (α > 1) was
discarded. The majority of particles displaying regular diffusion
(α ≈ 1) corresponded to human proteins (n � 18) and two viruses,
Norwalk virus and human papilloma virus (HPV).

The Anomalous Exponent’s Correlation Is
Significant at Timescales Two Orders of
Magnitude Larger Than the Microscopic
Displacement Time
To elucidate the physical origin of the dominance of the
anomalous exponent, α, its relationship with the effective
diffusion, Deff, was derived from Eqs 1, 2:

Deff � Dα

Δteff
Δtαeff. (3)

Deff displays an explicit exponential dependency with α in the
factor Δtαeff and an implicit dependency through the
generalized diffusion coefficient (Dα). The form of Dα

depends on the specific underlying subdiffusion mechanism
[28,38]. Our meta-analysis contained a broad range of data
(Table 1), including particles with different chemistry, mucus of
different types, different physicochemical conditions, and
independent groups carrying different experimental
implementations. Therefore, the functionality of Dα with α
was not obvious, and Eq. 3 was not sufficient to justify the
dependence and dominance of α in determining the effective
diffusion of particles in mucus. To understand this
phenomenon, Dα was further scrutinized.

TABLE 1 | Summary of empirical data. The effective diffusion, Deff, was obtained for a common time window of 1 s.

Property Symbol Range Data points

Effective diffusion Deff 3.1 × 10–5 to 1.3 × 102 μm2/s 106
Anomalous exponent α 0.16 to 1.02 39
Diameter D 3.5–1,280.0 nm 106
Zeta potential ζ −73.0 to +33.3 mV 57
Temperature T 295–310 K 106
pH pH 3.0 to 7.4 63
Mucus source Hydrogel, human lung, human cervix, pig stomach, pig intestines 106
Mucin-type MUC2, MUC5AC, MUC5B 103

FIGURE 1 | Selected variables impacting effective diffusion. (A) Average percentage increase of mean-squared error (%MSE) for the selected variables. The error
bars correspond to the standard deviation. (B) Decision tree for the most important variables. Each node contains the predicted average Deff and the percentage of data
predicted. The gradient display diffusion values from ∼ 10–4 μm2/s (white) to ∼ 10–1 μm2/s (blue).
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The units of Dα depend on α, Eq. 2. In our study, these were
μm2/sα. Like any other physical quantity, α has an associated
uncertainty (error or standard deviation) [39]. Thus, the units of
Dα are uncertain. In other words, the generalized diffusion
coefficient is not a measurable physical quantity. The fact that
Dα is not a physical quantity has been previously overlooked and
mandates a revision of the classic subdiffusion equation, Eq. 2.

To reformulate the subdiffusion equation, the following ansatz
was introduced. It was assumed that the particle diffusion
emerges as the stochastic repetition of a particle’s local
physical motion with a characteristic displacement, LD. This
displacement is the consequence of a velocity, vD, propelling
the particle during a characteristic time, tD:

LD ∼ vD tD. (4)

This is a general formulation independent of the underlying
physical mechanism responsible for the particle’s mobility.
Other characteristic scales might play a role in the anomalous
exponent, α, as exemplified in the Discussion section. This led to
the following relationship:

Dα � L2
D

tαD
. (5)

This ansatz was combined with the classic subdiffusion
equation, Eq. 2, obtaining:

〈MSD(Δt)〉 � 2kL2
D

Δt
tD

( )α

. (6)

This reformulated subdiffusion equation is valid for time
windows, Δt, larger than the characteristic mobility timescale,
tD, that is, Δt ≫ tD. For smaller time windows, the underlying
mobility mechanism will dominate, requiring a different
formulation for the displacement [38].

The reformulated subdiffusion equation, Eq. 6, was combined
with the definition of the effective diffusion, Eq. 1, obtaining:

Deff(α) � L2
D

Δteff
Δteff
tD

( )α

. (7)

The effective diffusion, thus, depends exponentially on the
anomalous diffusion exponent, α, justifying the empirical
relationship observed for the effective diffusion of particles in
mucus (Figure 2A). The characteristic displacement, LD, and
timescale, tD, depend on the specific physical mechanism
responsible for the diffusion. Therefore, experiments using
different particles and mucus properties are expected to
introduce a variance in these two magnitudes, justifying the
data dispersion in Figure 2A.

To determine the conditions that select α over LD and tD as the
parameter with the strongest correlation with Deff across multiple
scales, the logarithm of Eq. 3 was investigated as follows:

logDeff(α) � log
L2
D

Δteff
+ α log

Δteff
tD

. (8)

For a fix time window, Δteff, the rate of change of Deff with respect
to α is

z logDeff

zα
� log

Δteff
tD

. (9)

The impact of LD and tD was evaluated using the logarithms of
LD and tD to obtain results valid across scales and independent of
measuring units, respectively,

z logDeff

z logLD
� 2 (10)

and

z logDeff

z logtD
� −α. (11)

The change with respect to the length scale, LD, was constant
and equal to 2, Eq. 10. The change with respect to the timescale,

FIGURE 2 | Effective diffusion and anomalous exponent analysis. (A) Effective diffusion was plotted as a function of the anomalous exponent. The solid line represents the
regression model. The gray area represents the 95% confidence interval. Statistically significant slope and R2 of linear regression are displayed. (B) The anomalous exponent was
predicted based on the model found empirically in (A). The solid line designates the predicted linear model. The gray area represents the 95% confidence interval of the predicted
linear model. The dashed line represents a 95% prediction interval (A,B), distinguished particle types are represented in the legend of both panels.
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tD, was smaller than 1 in absolute value, Eq. 11, because the
anomalous exponent had an upper limit of 1, α ≤ 1 (in the
experiments analyzed, there were no self-propelled particles or
active transport mechanisms that could display superdiffusion).
Eqs. 9–11 predict that the anomalous diffusion is the physical
parameter with the strongest correlation in determining the rate
of change in the effective diffusion:

z logDeff

zα
> z logDeff

z logLD
> z logDeff

z logtD

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, (12)

for sampling time windows two orders of magnitude larger than
the characteristic mobility timescale:

Δteff
tD

> 102. (13)

This result applies to any physical system as far as the diffusion
is the consequence of a local characteristic physical motion.

The Theoretical Ansatz Is Consistent With
the Statistical Analysis
The predictions from the reformulated subdiffusion equation
were investigated for particle diffusion in mucus data. The slope
and intercept obtained from the linear regression in Figure 2A
were interpreted with respect to Eq. 8. The values of the best fit
represent an average response and were compared to the mid-
values from the physicochemical factors to test the consistency of
the ansatz, Eq. 5. The mean characteristic length and timescales
obtained statistically were LD ≈ 3 nm and tD ≈ 5 µs, respectively.
The sampling time window was Δteff � 1 s. Therefore, Δteff/tD ≈
106 ≫ 102, satisfying the inequality establishing the condition for
the strong correlation of the anomalous diffusion exponent, Eq.
13. This implies that the experimental conditions investigating
particle diffusion in mucus were on the regime where the
anomalous exponent, α, was predicted theoretically to be the
dominant factor determining the particle’s effective diffusion,
Deff, Eq. 13.

To further confirm the consistency of the theoretical
framework with the empirical data, it was necessary to justify
that the mean values obtained from the linear regression of Eq. 8,
that is, LD ≈ 3 nm and tD ≈ 5 µs, were physically sound. Regardless
of the physicochemical factors in mucus controlling α, one
expects a local displacement caused by a tangible physical
mechanism associated with a characteristic velocity vD and a
finite timescale tD, Eq. 4. In all experiments analyzed, the particles
were passive, and mucus was not forced externally to generate
and active transport. It is reasonable to assume that most particles
in the experiments acquired their transient velocity from
absorbing kinetic energy from the water molecules in mucus,
leading to the characteristic velocity v2D ∼ kBT/m, where kB is the
Boltzmann constant, T is the temperature, and m is the mass of
the particle. The particle’s velocity vD would dissipate due to the
mucus’ viscosity with a characteristic time tD ∼ tr ∼ m/c, where c
is the friction coefficient [40]. In the most general formulation,
this friction coefficient contains the viscous and elastic effects of
the fluid [1]. This leads to the characteristic local displacement
LD ∼

�����
kBTm

√
/c. It was then assumed room temperature, a typical

particle’s mid-size in the data set, d ∼ 100 nm, and a viscosity of
mucus close to water, which was a reasonable assumption because
most physiological conditions have a low weight per volume
[9,38]. This led to a characteristic local displacement of LD ∼ 1 nm
and a characteristic local displacement dissipation time of tD ∼
1 µs. Therefore, the estimated characteristic scales were consistent
with those obtained from the empirical and theoretical analysis,
LD ≈ 3 nm and tD ≈ 5 μ. For the case discussed above, it is
important to notice that in the limit of regular diffusion, α � 1, the
ansatz in Eqs. 4, 5 leads toD ∼ L2D/tD, recovering, as expected, the
diffusion expression D ∼ kT/m associated with the
fluctuation–dissipation theorem. However, the theoretical
framework defined by the fundamental ansatz is general and
does not require particles to be propelled by the adsorption of
kinetic energy.

Particles Larger Than 100nm are More
Sensitive to Anomalous Diffusion
Particle size, d, was not selected as a significant predictor in the
random forest analysis (Figure 1A). However, the anomalous
exponent analysis predicted that a certain group of particles
would display regular diffusion (Figure 2B). This suggested
that particle size could have an important indirect role in the
effective diffusion. In fact, the analysis of Deff as a function of d
displayed a clear threshold around d+ ∼ 100 nm (Figure 3A).
Larger particles, d > 100 nm, displayed a lower effective diffusion,
Deff, although with no apparent statistical correlation with size
(Spearman correlation ρ � − 0.24, p-value � 0.19). Smaller
particles, d < 100 nm, displayed an effective diffusion with a
significant statistical correlation (Figure 3A). The slope for the
log–log data was m � −2.2 ± 0.3 (R2 − 0.67), that is, the effective
diffusion displayed apparently a power law of order 2 with
particle size, Deff ∼ 1/d2. Thus, diffusion overall decreased with
particle size much rapidly than in regular diffusion, which is
consistent with viscoelastic effects. However, a subset of particles
(n � 21) diffused normally (α � 1) in Figure 2B, displaying an
effective diffusion inversely proportional to particle size with a
power function exponentm � − 1.0 ± 0.1 (p-value � 1.4 × 10–7, R2

� 0.77) (Figure 3A). This empirical scaling, Deff ∼ 1/d, is expected
for particles displaying regular diffusion, in agreement with the
anomalous exponent prediction in Figure 2B. A similar analysis
was performed comparing the rescaled effective diffusion by
particle size, Deff d, as a function of particle size, d. As
expected, the particles predicted to display regular diffusion
had slope zero, and the conclusions of the analysis were
analogous (Supplementary Figure S1). Statistically, the
analysis of Deff was preferred over Deff d because the use of d
as input and output in Supplementary Figure S1 can introduce
biases and increase uncertainty.

Most Parameters Reported Display Weak
Correlations With the Effective Diffusion
The other four variables selected in the random forest analysis
(Figure 1), that is, particle type, particle charge, mucin source,
and mucin-type, displayed weak correlations or no apparent
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correlations with Deff as single predictors (Supplementary
Table S1).

Particle Type
Particle type was selected as the second most relevant variable to
predict the effective diffusion based on the random forest
analysis (Figure 1). Comparing the effective diffusion for the
different particles confirmed this prediction (Supplementary
Figure S2A). Antibodies and proteins displayed the fastest
effective diffusion with a median of 48.9 μm2/s. Viruses were
the second fastest group with a mean effective diffusion of an
order of magnitude smaller, 3.5 μm2/s. PEG and amine particles
formed the third group. They displayed statistically similar
effective diffusion with medians 0.99 μm2/s and 2 ×
10–2 μm2/s. This was followed by carboxylated particles,
median 3 × 10–2 μm2/s, and finally chitosan 4 × 10–3 μm2/s.
Differences in particle size could explain the reduction in
effective diffusion for antibodies/proteins, viruses, and PEG
particles (Supplementary Figure S2B). They had median
sizes of ∼ 10, ∼ 100, and ∼ 1,000 nm, respectively. It is
unclear what were the physicochemical factors behind the
slower diffusion of amine, COOH, and chitosan particles
(Supplementary Figure S2).

Particle Charge
The third predictor for effective diffusion was particle charge,
expressed as the zeta potential ζ (Figure 1). Particles with
negative zeta potential displayed a positive correlation with the
effective diffusion, with a Spearman correlation of ρ � 0.6 (p �
0.002, n � 36) (Figure 4A). The relationship was approximated by
an exponential function, Deff ∼ 10mζ. The potential rate was m �
(0.024 ± 0.006) mV−1 (p � 0.0002) obtained from a least-square

linear regression using the log-linear data. This exponential
model accounted for 30% of the variance (R2 � 0.30). The
largest effective diffusions were achieved at neutral zeta
potentials. Positive zeta potentials (n � 21) had lower values
but did not display a statistically significant correlation for the
effective diffusion. Particle size or other properties did not seem
to explain the trend observed for negatively charged zeta
potentials (Supplementary Figure S3). These particles,
however, displayed a linear positive correlation with the
anomalous diffusion (Figure 4B).

Mucus Source
The mucus source and dominant mucin were the last two
significant predictors of effective diffusion (Figure 1). The
effective diffusion was faster in human cervix samples with a
median ∼ 10 μm2/s, although the values spanned six orders of
magnitude, from ∼ 10–4 to ∼ 102 μm2/s (Supplementary Figure
S4). The effective diffusion was the slowest in mucus from the
human lung (median ∼ 10–2 μm2/s) and pig intestine (median ∼
10–2 μm2/s). The median particle size in empirical data from
human cervix mucus was more than an order of magnitude
smaller, ∼ 10 nm, than for the empirical data from the other
sources. The median pH for the empirical data from human
cervix mucus has significantly lower pHs (median 5.5)
compared to the other sources (median 7). Lower pH tends
to thicken mucus [41], thus expecting a slower effective
diffusion. But the particle size may have offset this trend.
The transcription analysis identified MUC5B, which is
dominant in the human cervix, displaying the largest
effective diffusion (median ∼ 10 μm2/s) compared to the
other dominant mucins: MUC2 common in intestinal mucus
(median diffusion ∼ 10–1 μm2/s) and MUC5AC common in

FIGURE 3 | Particle size analysis. (A) The effective diffusion was plotted against particle size, d. The different symbols correspond to different particle types as
indicated in the legend. The solid line indicates the linear regression for d < 100 nm particles using log–log data (n � 26), and it displays the slope and coefficient of
determination, R2. The gray area represents the 95% confidence interval. The group of particles with d > 100 nm (n � 80) did not display a statistically significant
relationship, and no solid line is included. The dashed line corresponds to the linear regression of the subset of particles (n � 21) displaying regular diffusion, α � 1, in
Figure 2B, using the log–log data. The slope was approximately 1 as expected (slope � − 1.0 ± 0.1, p-value � 1.4 · 10–7, R2 � 0.77). (B) The anomalous exponent was
plotted as a function of the particle size. The symbols and lines are analogous to panel (A). As in panel (A), the solid line is the regression for the particles with d < 100 (n �
26), while the dashed line represents the subset (n � 21) predicted to display regular diffusion, α � 1. Empty symbols anomalous exponents obtained empirically. The solid
symbols correspond to the predicted anomalous exponents for the subset of data that did not include empirical values. The predictions were obtained using the model
derived from Figure 2B.
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respiratory mucus (median diffusion ∼ 10–2 μm2/s)
(Supplementary Figure S4).

DISCUSSION

The meta-analysis of particle diffusion in mucus revealed that
diffusion of microscopic particles spanned seven orders of
magnitude in passive conditions (no self-propulsion or active
mucus transport) (Table 1). The anomalous diffusion
exponent, α, was the factor displaying the strongest
correlation with the effective diffusion, Deff (Figure 1).
Statistically, the effective diffusion displayed an exponential
dependence with respect to the anomalous diffusion, explaining
89% of the variance in the data (Figure 2A). This result was
based on 39 out of 106 experiments (about a third), which had
measured the anomalous exponent. Among the remaining 67
experiments, our statistical model predicts that the anomalous
exponent was dominant in determining the effective diffusion
in 46 of these experiments, that is, 69% of them (Figure 2B). In
the other 21 experiments, the model predicts that particles
followed regular diffusion, that is, the anomalous exponent
would have no power predicting the change in the effective
diffusion (Figure 2B). Therefore, the anomalous exponent was
a strong predictor of the effective diffusion in 80% of all
experiments analyzed. The anomalous exponent is an
emerging property, and this result offers the opportunity to
compare the diffusion of particles subjected to different
molecular mechanisms. It is puzzling, however, that only a
third of the experiments measured the anomalous exponent.
One possible explanation is the fact that the anomalous
exponent is a well-known emerging property, but the
relationship between this exponent and the underlying
molecular factors determining its value is not that
established in the field yet [26]. Below, we argue that
investigating the molecular basis of the anomalous exponent

is the key to characterizing and controlling particle diffusion in
mucus and other polymeric fluids at relevant biological
timescales.

The theoretical scaling analysis of subdiffusion identified that
the anomalous diffusion exponent, α, displays a stronger
correlation over other physical factors when the diffusion is
characterized at sampling times two orders of magnitude
larger than the microscopic timescale fueling the diffusive
motion, Eqs 13, 12. In our analysis, the experiments focused
on passive diffusion conditions, but the principles behind the
theoretical scaling can be expanded to situations with motile
particles as well as energetically active mucus transport. The
theoretical derivation just assumes that there is a characteristic
timescale and length scale governing the particle’s local motion.
For the experiments analyzed here, the kinetic energy and
viscosity of the fluid were assumed to be associated with the
particle’s local motion and were used to investigate the
consistency with the theory. But in other contexts, the same
analysis can be applied to replace the dependency of the
characteristic scales with other mechanisms. For example, if
particles run and tumble, like the bacterium Escherichia coli,
the transient velocity of the particle depends on the viscosity and
concentration of the polymeric network and food sources instead
of the kinetic energy [42,43]. The scaling analysis is also
consistent with the generalized diffusion equation in complex
fluids, which extends the Stokes-Einstein relation to viscoelastic
fluids [1]. In this case, the characteristic length and timescales
would incorporate the elastic effects of the network. The role of
the general characteristic scales in the revised diffusion equation,
Eq. 6, aimed to accommodate a diverse set of scenarios.
Additionally, it solved the issue of relying on the generalized
diffusion constant, which has undefined physical units and is not
strictly a well-defined physical magnitude, Eq. 5. The theoretical
and empirical analyses presented here highlights the dominance
of the anomalous diffusion exponent in determining the range of
effective diffusions.

FIGURE 4 | Electrostatic analysis. (A) The effective diffusion was plotted against zeta potential. (B) The anomalous exponent was plotted as a function of zeta
potential. (A,B) The distinction between empirical and predicted data as well as particle types is represented in the legend. The dotted line indicates ζ � 0. The solid lines
correspond to statistically significant linear regressions. The gray areas represent 95% confidence intervals of the linear regression. The slopes and R2 of each linear
regression are also displayed in the panels.
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Thus, the problem now translates into identifying the factors
that determine the anomalous diffusion exponent. These physical
factors depend on the underlying mechanism responsible for the
subdiffusion [28]. This is particularly relevant to understand the
emergence of the critical particle size d+ ∼ 100 nm in Figure 3.
This critical value may represent the particle size’s onset when the
effects of the mucus mesh become relevant. Most experiments
analyzed did not report the mucus mesh size, but the critical size
observed was consistent with mesh sizes measured in mucus
samples, which ranged from 100 to 400 nm [1,44–47]. For
particles with sizes similar to or larger than this mesh size, the
theoretical description of the molecular displacement, LD, should
include the effects of the mesh size. If the mesh hinders mobility,
this will lead to a reduction of the average molecular
displacement. If the mesh streamlines the mobility, then the
molecular displacement could increase; for example, changes
in the chemical coating of relatively large particles
(200–500 nm) compared to the critical size, d+ ∼ 100 nm, can
display larger diffusivities in mucus than in water [18]. The key
point is that for particles larger than 100 nm, the impact of the
mesh size in particle diffusivity will be very diverse. In each case, it
is necessary to assess the underlying molecular mechanism
responsible for the anomalous diffusion to identify the key
physical factors governing the diffusivity. We have clarified
this below for two mechanisms that may play an important
role in mucus. First, microscopic particles can bind to mucin
fibers leading to subdiffusion [9]. Second, mucin fibers form a
polymeric mesh that can trap particles as observed in other
hydrogels [48]. These two scenarios are particularly relevant in
passive conditions. Scenarios involving the activation of the
mucus network via cilia or peristalsis are also of interest but
fall beyond the scope of this work.

Binding to mucins does not necessarily lead to subdiffusion.
If a particle has a single binding site, the characteristic binding
time tb would dilate the characteristic time to estimate the
diffusivity of the particle, tD ∼ tr + tb, where tr is the
relaxation time. The microscopic diffusion would be
D ∼ v2Dt

2
r/tD ∼ frkBT/m. The diffusion would be reduced by

the factor fr < 1, which is the fraction of time spent dissipating
the particle’s speed, fr � tr/(tr + tb). This would not impact α
unless more than one region of the particle can bind
stochastically to mucins, increasing the binding time beyond
the sampling time, tb ≫Δteff. This would lead to an effective
power-law distribution of binding times with no apparent
characteristic binding time [49, 50]. The emergence of long-
tailed attachment time distributions leads to subdiffusion. The
anomalous exponent, α, would be equal to the exponent, ], of
the asymptotic approximated power-law distribution of
attachment times [27,28,38]. In this case, the continuous-
time random walk approximation leads to the generalized
subdiffusion expression Dα � D τD/ταD [38]. Here, D is the
diffusion of the particle in the absence of interactions with
mucins, and τD is the average diffusion time of a particle before
attaching again to a mucin fiber. This result is consistent with
the ansatz introduced in Eq. 5. In this particle–mucin affinity
mechanism, the distribution of binding times would control α,
becoming the most relevant factor impacting the effective

diffusion, Deff. Unfortunately, the experiments analyzed did
not explore the particle affinities to mucus explicitly.

The microenvironment trapping mechanism was observed in
F-actin networks, where microscopic tracers were shown to
follow anomalous diffusion [48]. The anomalous exponent was
a linear function of the ratio between the particle size (d) and the
network’s mesh size (ξ). The empirical dependency obtained was
α ≈ 1 for d/ξ < 0.1, α ≈ − 1.25 d/ξ + 1.38 for 0.1 < d/ξ < 1.1, and α ≈
0.1 for d/ξ > 1.1. Thus, particles with sizes about 10% of the mesh
size or smaller diffused normally, while particles with a size
similar or larger to the mesh displayed a reduced diffusivity
with a low anomalous exponent. The specific parameters of the
relationship were not derived, but one would expect similar
behavior in mucus. The average mucus in humans has a
typical mesh size between 100 and 1,000 nm [7]. In this
mechanism, d/ξ controls α, becoming the most important
factor determining Deff. This could explain the threshold
observed on the effective diffusion as a function of the particle
size (Figure 3A). Larger particles, d > 100 nm, displayed lower
effective diffusions, Deff, although with no apparent statistical
correlation. The variation of α, from 0.15 to 1, could be due to a
change in the mesh size (ξ). Unfortunately, the mesh size (or a
proxy, like the concentration of mucins) was not measured or
reported in most experiments analyzed here.

The twomechanisms discussed above could also help interpret the
statistically significant correlations obtained between the effective
diffusion and the surface charge of particles (Figure 4). Given the
negative charge of mucin fibers, a particle with a larger negative
charge would display a larger effective radius within the mucin
network. This would increase the particle size to network mesh
ratio, thus, reducing the anomalous exponent and, consequently, the
particle’s diffusivity. This scenario would explain the statistical trends
observed for the effective diffusion and anomalous exponent for
negative zeta potentials (Figure 4). However, one cannot discard
other scenarios. For example, negatively charged carboxylated
particles competing for cations at high densities can expose
hydrophobic regions in mucus, leading mucus fibers to form
bundles [6,18]. This might be a less likely but still plausible
scenario. For positively charged particles, the particle-mucin
binding mechanism could be responsible for the relatively low
anomalous exponents observed. The framework explored here
suggests that measuring the particle–mucin binding times and
mucin mesh size would help disentangle the variance in the data.
This framework should also apply to other polymeric fluids. It has
been observed, for example, that particles of 1 μm (1,000 nm) display
subdiffusion and trapping in biofilms in the timescale of days, and
0.5 μm (500 nm) particles display lower mean-squared displacement
in regions of higher effective cross-linking [32]. These observations
were done on the timescale of days. These results resonate with our
finding that particles larger than 100 nm in mucus are very sensitive
to subdiffusion behavior and trapping. It would be necessary to
characterize systematically particle-binding to polymer fibers,
polymer mesh sizes, and timescales to compare, extrapolate, and
unify results across different polymeric fluid systems.

Some of the weak and highly dispersed correlations analyzed
above might be obscured due to the combined effect of multiple
variables, for example, particle charge and pH [51]. Unfortunately, at
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a given particle chemistry and zeta potential (charge), most particle
diffusionmeasurements were reported at a fixed pH (Supplementary
Data S2). Thus, the data analyzed posed an intrinsic limitation to
disentangle the convoluted effects of charge and pH on particle
diffusion. The impact of mucin-type, mucin–mucin interactions, and
mucin concentration can also depend on pH. Low pH alters the
molecular structure of mucins from a random coil to extended
conformations, facilitating cross-linking and transitioning to a
mucus solid-gel phase [52]. However, these key physicochemical
mucus properties were difficult to extract from most experiments
analyzed.

In any case, our results indicate a common approach to investigate
these co-dependent properties on particle diffusion: measuring the
anomalous exponent and establishing the underlying mechanism
responsible for it. The physical factors controlling the anomalous
exponent will be the dominant factors in particle diffusion. The
theory introduced here is based on a generic ansatz that represents a
first approximation. More refined theoretical approaches will be
necessary to identify correction factors associated with specific
underlying molecular mechanisms. One possible direction would
be adapting the continuummodels that characterize polymerfluids as
viscoelastic Maxwell fluids [1,30,31,53]. In the presence of viscous
delays incorporated with the Basset force term, these models predict
an emerging subdiffusive transient region at timescales of
milliseconds [31]. That timescale is much shorter than the one
investigated here (above seconds) and that subdiffusion does not
emerge from the molecular mechanisms (particle–mucus interaction
mechanism and the caging effect) identified here as relevant in
mucus. Incorporating the molecular characteristics of these two
mechanisms in Maxwell fluids would offer a more sophisticated
framework to predict particle diffusion in mucus.

In conclusion, our meta-analysis revealed that the anomalous
exponent displays the strongest correlationwith the effective diffusion
of particles inmucus compared to other commonlymeasured factors.
It explained almost 90% of the variance of diffusions across seven
orders of magnitude. Our theoretical scaling analysis justified this
observation assuming the characteristic displacement length and time
of the local physical motion. This led to a reformulated subdiffusion
equation in terms of these characteristic scales of the underlying
mobility mechanism, and it demonstrated that the widely accepted
generalized diffusion constant is not a measurable physical quantity.
The theoretical analysis predicted that the anomalous exponent
determines the order of magnitude of the effective diffusion for
sampling time windows two orders of magnitude larger than the
microscopic mobility timescale. This prediction applied to any
physical system and was consistent with the data from particles
diffusing in mucus. Our theoretical analysis indicates that the factors
regulating the anomalous exponent are essential to characterize the
diffusion of particles. At least two of these factors can control the

anomalous exponent in mucus: the distribution of particle–mucin
binding times and the particle size-to-mucin mesh ratio. These
factors regulate the anomalous exponent and, subsequently, the
effective diffusion of microscopic particles. However, these key
properties were not reported in most experiments analyzed.
Therefore, our study provides a guide on how to characterize,
study, and modify the diffusion of particles in mucus and other
hydrogels.
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