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Microrheology with optical tweezers (MOT) measurements are usually performed using

optical traps that are close to isotropic across the plane being imaged, but little is known

about what happens when this is not the case. In this work, we investigate the effect of

anisotropic optical traps on microrheology measurements. This is an interesting problem

from a fundamental physics perspective, but it also has practical ramifications because in

3D all optical traps are anisotropic due to the difference in the intensity distribution of the

trapping laser along axes parallel and perpendicular to the direction of beam propagation.

We find that attempting viscosity measurements with highly anisotropic optical traps

will return spurious results, unless the axis with maximum variance in bead position is

identified. However, for anisotropic traps with two axes of symmetry such as traps with

an elliptical cross section, the analytical approach introduced in this work allows us to

explore a wider range of time scales than those accessible with symmetric traps. We have

also identified a threshold level of anisotropy in optical trap strength of ∼30%, below

which conventional methods using a single arbitrary axis can still be used to extract

valuable microrheological results. We envisage that the outcomes of this study will have

important practical ramifications on how all MOT measurements should be conducted

and analyzed in future applications.
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INTRODUCTION

Optical tweezers (OT), first introduced by Ashkin et al. [1], exploit a tightly focussed laser beam
with high intensity gradient to trap and move micro and nano-sized dielectric objects in 3D, by
harnessing both the gradient and scattering forces. When calibrated, OT are exceptionally sensitive
transducers capable of measuring forces in the pico-Newton range. Therefore, scientists have
adopted them to study a wide range of physical and biophysical phenomena including molecular
binding forces [2], organelle transport [3], flagellar motion [4], the mechanical properties of DNA
[5], molecular motors [6, 7] and polymerases [8, 9], and the diffusion of proteins [10].

Another successful application of optical tweezers is in the field of “hybrid” microrheology,
whereby an optically trapped bead acts as a probe, revealing the thermal fluctuations of the
molecules in the suspending fluid. Microrheology with OT (MOT) has been used with growing
popularity to study the rheology of complex biological materials such as the vitreous humor [11],
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biopolymer networks [12], and extracellular secretions from
phytoplankton [13] at the microscale.

The physical principles underpinning MOT rely on the
assumption that the probe bead is trapped within a symmetric
quadratic potential of the form E(r) = 1

2κr
2, where r is the

displacement from the center of the trap and κ is the trap
stiffness. The restoring force experienced by a trapped bead is
thus given by F (r) = −κrr. Due to the thermal fluctuations of
the molecules of the suspending fluid, the weakly trapped particle
experiences Brownian motion and can randomly move away
from the equilibrium position, which is usually coincident with
the trap center. The statistical mechanics analysis of the particle
dynamics can be exploited to calculate both the trap stiffness
[14] and the linear micro-rheology properties of the medium
surrounding the bead [15, 16].

At this point, it is important to remember that the strength
of the trapping force is governed by the optical properties of
both the bead and the suspending medium, and also by the
intensity distribution of the laser beam in all 3 dimensions.
The trapping force is therefore sensitive to any optical
aberration in the instrument [17]. The dominant aberrations
seen in optical instruments that can be described by primary
Zernike polynomials are: (i) spherical aberration, (ii) coma,
(iii) astigmatism, (iv) curvature of field, (v) distortion, and (iv)
defocus. Of these, astigmatism and coma result from the optical
path not being centered and have been shown to alter the ratio
of trap stiffness along the two lateral axes, x and y perpendicular
to the direction of beam propagation [17]. Spherical aberrations,
field curvature and distortion have been shown to affect the axial
position of the trap; but, while the first has a significant effect
on trap stiffness along the two lateral axes, the latter two do
not change its strength [18]. It is thus a common experience
for researchers to spend a significant amount of time and effort
at the start of any MOT measurement performing a series of
alignment procedures to remove such aberrations and ensure an
isotropic intensity distribution of the trapping beam in the x-y
image plane. Adaptive optics (AO) methods exist for correcting
aberrations and include the use of deformable membranemirrors
(controlled using an array of piezoelectric actuators) [19] and
liquid crystal spatial light modulators (SLM) [20]. An SLM is a
convenient choice when applied to a holographic optical tweezers
(HOT) system where the aberrations can be corrected by using
the same SLM that is used to control the position of the trap.
Shack-Hartmann sensors can be used in combination with SLMs
for providing a feedback loop to correct for aberrations in OT
systems [20, 21], or can be simply controlled by adding the
appropriate Zernike polynomials to the phasemask applied to the
SLM [22]. Another means of deliberately introducing a degree of
anisotropy to the optical trap is by exploiting the orientation of
the linear polarization of the trapping beam [23, 24].

However, AO approaches can be time consuming and
complex to implement, and many OT systems will not include
these specialized features. Therefore, it is useful to identify an
acceptable degree of anisotropy in an optical trap below which
accurate MOT results can still be ensured. Moreover, when
analyzing the 3D trajectory of an optically trapped probe bead, a
degree of trap anisotropy is unavoidable because the point spread

function is broader along the axial (z) direction than the lateral (x
or y) directions. This is a consequence of the defocus aberration.
With the development of new tools to perform microrheology
in 3D [25], it is important to consider how this anisotropy may
affect results.

Therefore, from a rheological perspective, it is useful to
consider how microrheology measurements are affected by
optical traps that are anisotropic, or even lacking an axis of
symmetry. In this work, by using data from three different labs
(and thus three different OT systems) alongside simulations, we
have explored how to correctly extract the rheological properties
of the suspendingmedia from the statistical mechanics analysis of
the trajectory of a probe particle confined within an anisotropic
optical trap.

MATERIALS AND METHODS

Experimental
The experimental data were collected independently from three
different labs, each equipped with a different OT system. The labs
are based at the University of Glasgow, University of Nottingham
and Heriot Watt University.

OT System 1
The University of Glasgow (UoG) lab used an OT system
based on a continuous wave, diode pumped solid state (DPSS)
laser (Ventus, Laser Quantum), which provided up to 3W at
1,064 nm. A nematic liquid crystal spatial light modulator (SLM)
(BNS, XY series 512 × 512) was used to create the desired
arrangement of optical traps and was also used to control the
individual trap shape. The laser entered a custom-made inverted
microscope which uses the same microscope objective lens
(Nikon, 100x, 1.3 NA) to both focus the trapping beam and to
image the thermal fluctuations of 5 µm diameter silica beads
(Bangs Laboratories). Samples were mounted on a motorized
microscope stage (ASI, MS-2000). A complementary metal-oxide
semiconductor (CMOS) camera (Dalsa, Genie HM 1024 GigE)
acquired high-speed images of a reduced field-of-view. These
images were processed in real-time at up to ∼3 kHz to calculate
the center of mass of the bead using particle tracking software
developed using LabVIEW (National Instruments), running on a
standard desktop PC [22, 26].

OT System 2
At theUniversity of Nottingham optical trapping was achieved by
means of a continuous wave 1,064 nm 3W DPSS laser (Ventus,
Laser Quantum). The beam path was directed into an inverted
microscope body (Eclipse Ti; Nikon) and focused using a high
NA objective lens (Nikon, 100x, 1.3 NA). The same objective
lens was used to collect images of the trapped polystyrene
microspheres (Cat. No. 19814; Polysciences Inc.), in wide-field
with illumination in transmission. Thermal fluctuations of the
trapped polystyrene microspheres measuring 1.93 ± 0.05µm in
diameter, were detected using a fast CCD camera (DALSA Genie;
Teledyne Technologies International Corp) at 600Hz. Similar to
Glasgow, particle tracking software written in LabVIEW (version
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FIGURE 1 | The trajectory obtained from the simulation of a bead confined

within a highly asymmetric optical trap, with trap stiffnesses κx′ = 1 × 10−6

Nm−1 and κy′ = 1 × 10−8 Nm−1 along the x’ and y’ axes, respectively (green

dotted lines), which are rotated by an angle φ relative to the Cartesian x and y

axes. The black dashed line is an arbitrary direction r along which the analysis

is being carried out and it is orientated at an angle θ from the x axis. The red

line represents a rough estimate of wκ, the spread of particle coordinates due

to the strength of the trap projected along y, whereas the blue line represents

wG which is a rough estimate of the spread of particle coordinates projected

along y due to the geometry of the trap.

2013 32bit, National Instruments) was used to record the time-
dependent position of the trappedmicrospheres in real time [26].

OT System 3
At Heriot Watt University optical trapping was achieved by
means of a 1,064 nm laser (Opus, Laser Quantum). The
beam path was directed into an inverted microscope body
(IX73; Olympus) and focused using a high NA objective
lens (Olympus, 60x, 1.2 NA). As with the Glasgow and
Nottingham systems, this objective lens was also used to collect
images of the trapped polystyrene microspheres in wide-field
with transmission illumination. Thermal fluctuations of the
polystyrene microspheres (Cat. No. 35-2B; Thermo Scientific
Fluoromax), were detected using a CMOS camera (Orca Flash
4.0, Hamamatsu) at ∼66Hz. To obtain the z-coordinates of
trapped beads a multiplane imaging system was employed [25].
In summary, a relay system was built between the microscope
and camera, and a pair of curved diffraction gratings were
placed at the telecentric position. This segmented the image into
nine sub-images, each imaging a different depth in the sample.
A full description of the systems may be found in references
[27, 28]. Images were captured and saved using micromanager,

then processed using Matlab (Matlab 2019b, MathWorks, Natick
MA) [25].

Anisotropy
In system 1, an SLM was used to control both the position
and shape of the optical trap. Here, patterns displayed on the
SLM imparted an arbitrary phase function to the reflected light
beam. Simple gratings effectively control the lateral position
of the trap while anisotropy is introduced by the addition of
astigmatism (using Zernike polynomials). In systems 2 and 3
anisotropy in the x-y plane resulted from slight, unintentional
misalignments in the trapping optics within each system, which
are generally present in all OT experiments. The anisotropy in
the x-z plane, recorded by system 3, is an inevitable consequence
of the defocus aberration, which causes the intensity distribution
of a focal spot to extend further in the axial direction than in the
lateral direction.

Computational Simulations
Simulations were carried out in Matlab (Matlab 2019b,
MathWorks, Natick MA), and based on a modified version of
code developed to model in 2D the trajectory of a bead trapped
in a harmonic potential [29]. To summarize, the input parameters
were temperature (T), bead radius (a), number of time-steps (N),
frame rate (f), the optical trap strengths along the semi-major
and semi-minor axes of the trap κx′ and κy′ , and the angle φ

between the x’ axis and the Cartesian x axis, as shown in Figure 1.
A thermal velocity distribution is seeded such that it conforms to
Maxwell-Boltzmann statistics. The velocity along the x and y axes
due to the trap force is calculated iteratively and assumes that the
bead will accelerate until it reaches a velocity such that drag force
and trapping force will be balanced.

In order to generate trajectory data akin to that of a particle
trapped within a symmetric isotropic trap, we simply set κx′ =

κy′ . In order to generate trajectories that are not aligned along the
principal Cartesian axes, we set φ 6= 0 and define the principal
axes of the trap as x’ = xcos φ + ysin φ and y’ = ycos φ – xsin φ

and calculate forces accordingly. For symmetric but anisotropic
data with two axes of symmetry (e.g., with an ellipsoidal shaped
scatter plot), we set κx′ 6= κy′ . To generate traps that have <

2 axes of symmetry we split the simulation into four quadrants,
and set κx′ and κy′ independently in each quadrant, such that the
restorative force acting on the bead varies depending on which
quadrant of the bead enters.

Analysis
For both simulated and experimental data, we have performed
rotational coordinate transformations to resample the bead
trajectories multiple times as a function of the rotation angle
θ. We have then calculated the normalized mean squared
displacement (NMSD) for each of these data sets as a function of
the lag-time (τ ). From the analysis of the NMSD(τ ) it is possible
to determine the fluid’s microrheological properties. The correct
way to do this is the focus of this paper and is discussed hereafter.
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RESULTS AND DISCUSSION

Determining a Fluid’s Viscosity From an
Anisotropic Optical Trap
Ameans for measuring the suspending fluid viscosity (η) from an
MOTmeasurement is to use Equation 1, which has been obtained
by solving a generalized Langevin equation for a confined object
undergoing Brownian motion within a symmetric quadratic
potential [15]:

NPAF (τ , r) = 1− NMSD (τ , r) = exp (−λrτ) (1)

where NPAF(τ ,r) is the normalized position autocorrelation
function of the particle and NMSD(τ ,r) is its normalized mean-
squared-displacement, both evaluated along a direction r and as
a function of the lag-time τ . The decay constant in Equation 1 is
defined as follows:

λr =
κr

6πaη
(2)

Where a is the bead radius and κr is the trap strength in the
direction defined by the vector, r. The trap strength can be
calculated by applying the principle of equipartition of energy:

κr =
kBT

< r2>
(3)

where kB is Boltzmann’s constant, T is absolute temperature and
<r2> is the variance in the bead position along the vector r. This
approach has proved to be a very effective means for extracting
the fluid viscosity when analyzing the 2D trajectory of a bead
confined within a symmetric trap with a circular cross-section
where only r = x or r = y are analyzed [15]. Interestingly,
it is not clear in the literature whether this approach will be
as effective when dealing with an OT system where the trap
strength is anisotropic and the axes of maximum and minimum
trap strength are not aligned along the Cartesian system of
coordinates x and y; like the case shown in Figure 1. This latter
represents an extreme case of an anisotropic trap that would not
commonly be used in real MOT experiments, but it is simulated
here to highlight any possible shortcomings of the analytical
model introduced in this work to characterize asymmetric traps.

From data like those shown in Figure 1, one can calculate
the variance of the bead displacement along the coordinate
defined by the arbitrary axis r, i.e., <r2>, as plotted using
circle symbols in Figure 2A and determine the trap strength
via Equation 3 as function of the angle θ, as shown with circle
symbols in Figure 2B. In the same diagrams we report two
different fits whose derivation will be discussed later in the text.
In Figure 2C we plot the relative viscosity (defined as the ratio
between the calculated viscosity to that input into the simulation
ηrel = η/ηinput) as a function of the angle θ as obtained by
means of Equation 1 applied to the NPAF data. Interestingly,
it can be seen that the relative viscosity strongly deviates from
the value of one as θ is varied. This is inconsistent with the
assumptionsmade in themodel used for generating the simulated
trajectory, which is based on a Newtonian fluid with a constant,

FIGURE 2 | (A) White circles are values of <r2> obtained directly from

simulated data shown in Figure 1, resampled at increments of 1θ = 1
◦
.

Alongside are lines representing the values calculated using equation 10 which

is derived from the trap geometry (red) and equation 6 which is derived from a

vector analysis of the forces acting on the bead (green). (B) the same as (A)

but using the <r2> values reported in a) to calculate κ using equation 3. (C)

Relative viscosity values obtained by fitting NPAF plots to equation 1. Blue and

yellow diamonds are the values of relative viscosity, calculated at 45 and 135
◦

which are the axes along which <r2> is minimized and maximized,

respectively.

isotropic viscosity. Therefore, these results demonstrate that the
widely-used analytical method introduced by Tassieri et al. [15]
is not applicable to study trajectories acquired from a highly
asymmetric OT.
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FIGURE 3 | (A) Normalized mean squared displacement (NMSD) simulated

data plotted at 1θ = 5
◦
intervals from θ-φ = 0 o (purple, r = x’ axis) to θ − φ =

90 o (red, r = y’ axis). Traces are colored such that purple traces are aligned

along x’ and red aligned along y’. (B) Normalized Position Autocorrelation

Function (NPAF) simulated data (dots) and fits to equation 1, the

mono-exponential expression for NPAF, plotted at 1θ = 1
◦
intervals (lines). (C)

the same as in (B) but with fits to the multi-exponential expression for NPAF,

Equation 15.

In order to elucidate such results, we have plotted the particle
NMSD as function of the lag-time along different directions for
the simulated data, as shown in Figure 3A. From the latter it
is apparent that when r is aligned along x’ and y’, the curves
return a single-exponential growth of the form of 1-exp (−λrτ),

FIGURE 4 | Iso-potential lines over which kBT = 1
2 κr2, for a trap of the same

form as that shown in Figure 1 (red) and a trap with the same average value of

κ but isotropic (black).

typical of symmetric traps. However, at intermediate angles,
the curves show a multimodal growth. Hence, the erroneous
estimation of the relative viscosity of the suspending fluid when
using Equations 1–3. This is further corroborated graphically in
Figure 3B, where the NPAFs evaluated from the simulated data
(symbols) are compared against those calculated via Equation 1
(lines), with κr determined via Equation 3.

In order to understand why Equations 1 and 2 do not yield
results that accurately describe the simulated data, we have
considered the total restorative force acting on the trapped bead
along a generic direction r:

|F (θ ,φ, r)| =

(

(

κ
x
′ cos (θ − φ)

)2
+

(

κ
y
′ sin (θ − φ)

)2
)

1
2
r (4)

Which implies,

κ (θ ,φ) =

(

κ2
x
′ +

(

κ2
y
′ − κ2

x
′

)

sin2 (θ − φ)

)
1
2

(5)

If Equation 5 is combined with the expression for potential
energy in an optical trap, E(r) = 1

2κr
2, one can plot iso-potential

lines (i.e., contour lines where the potential energy in the trap is
constant) to better understand the shape of the trap. In Figure 4,
we report the iso-potential line for E = kBT for the trap shown
in Figure 1, along with an isotropic trap having the same mean
trap strength.

From Figure 4, it is possible to see that, while the iso-potential
line for the isotropic trap (black) is isotropic, the iso-potential
contour for the anisotropic trap is highly anisotropic. From
looking at the scatter plot in Figure 1 it may be assumed that
the potential is elliptical based on the shape produced by the
simulated data points. However, while the scatter plot does not
reveal the real density of the distribution of points in proximity of
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the trap center; the iso-potential lines better illustrates the actual
shape of the trap, which is not elliptical, but is actually sharply
pointed along the axis where the trap is weakest.

Although κ is difficult to directly observe experimentally, we
can use the form of κ given in equation Equations 3 and 5 to
obtain an expression of the variance as function of angle and
trap stiffnesses:

< r2> = kBT
(

κ2
x
′ +

(

κ2
y
′ − κ2

x
′

)

sin2 (θ − φ)

)− 1
2

(6)

where κx′ = kBT/<r2>min and κy′ = kBT/<r2>max. Interestingly,
as shown by the green lines in Figures 2A,B, it is possible to
see that Equation 6 does not reproduce the κ nor <r2 > values
obtained from the simulation.

To see why this is the case, let us now consider the variance
of a particle trajectory by taking the coordinate aligned along an
arbitrary direction r, such that:

r = xcosθ + ysinθ = x′(cos (θ − φ)) + y′(sin (θ − φ)) (7)

and thus,

< r2> =

〈

(

x′cos(θ − φ)+ y′ sin(θ − φ)
)2

〉

(8)

If expanded, the latter becomes:

< r2> = < x′
2
> cos2(θ − φ)+ <y′

2
> sin2(θ − φ)

+2 sin(θ − φ) cos(θ − φ) <x′ y′> (9)

It can be demonstrated both theoretically and experimentally that
the third term on the right side of Equation 9 is negligible for
most real experimental cases, and certainly null in the case of
optically trapped beads suspended in a Newtonian fluid, whose
dynamics are explored at time and length scales longer than
nanoseconds and nanometers, respectively. Therefore, Equation
9 can be simplified as follows:

< r2>∼=<x′
2
> +(<y′

2
> − <x′

2
>) sin2(θ − φ) (10)

When Equation 10 is compared to the simulated data as shown
in Figure 2A (red curve), the agreement is apparent. Notably, the
κ values calculated using <r2> obtained by means of Equation
10 (red curve) instead of Equation 6 (green curve) are also in
agreement with the data as shown in Figure 2B.

This demonstrates the crux of the problem; in MOT
experiments it is difficult to directly evaluate the forces
experienced by the bead and often researchers rely on the
variance<r2> to act as a proxy measurement that can be fed into
Equation 3 to determine κ. However, when a highly anisotropic
trap is aligned such that sampling isn’t along its semi-major
or semi-minor axes (x’ and y’), the <r2> values of the bead

trajectory are greatly enlarged due to the geometry of the trap.
Visually, this is probably best understood by looking at Figure 1,
where the spread of data points due to the restorative force of the
trap along y (wκ) is shown with a red arrow alongside the spread
of data points due to the geometry of the trap along y shown
by the blue arrow (wG). It follows that the variance measured
along y [< r(θ = 90)2 >] will be approximately proportional
to wG, whereas wκ will be approximately proportional to the
value predicted by Equation 6. It is apparent that these will give
significantly different values of <r2>.

By carefully considering the geometry of the optical trap, it
is possible to still accurately describe the normalized position
autocorrelation function. Let us consider the expression of the
particle NPAF for an arbitrary direction r:

NPAFr(τ ) =

〈

r (t0) r(t0 + τ )
〉

t0
〈

r2
〉

t0

(11)

The numerator can be expanded as follows:

〈r (t0) r (t0 + τ) 〉t0

= 〈
[

x′ (t0) cos (θ − φ) + y′ (t0) sin (θ − φ)
]

[

x′ (t0 + τ) cos (θ − φ) + y′ (t0 + τ) sin (θ − φ)
]

〉t0 =
〈

x′ (t0) x
′ (t0 + τ)

〉

t0
cos2(θ − φ)+

〈

y′ (t0) x
′ (t0 + τ)

〉

t0

sin (θ − φ) cos (θ − φ)

+
〈

x′ (t0) y
′ (t0 + τ)

〉

t0
sin (θ − φ) cos (θ − φ)

+
〈

y′ (t0) y
′ (t0 + τ)

〉

t0
sin2(θ − φ)

Thus,

〈r (t0) r (t0 + τ)〉t0 = ax′ (τ ) cos2 (θ − φ)

+cx′y′ (τ ) sin
(

2(θ − φ)
)

+ ay′ (τ ) sin2(θ − φ) (12)

where ax′ is the particle position autocorrelation function not
normalized by the variance, such that

ax′ (τ ) = <x′
2
> NPAFx′ (τ ) (13)

and cx′y′ is the cross-correlation function between the particle
coordinates x’ and y’. The denominator in Equation 11 can then
be expressed by means of Equation 10; which gives,

NPAFr (τ ) =

ax′ (τ ) + cx′y′ (τ ) sin
(

2(θ − φ)
)

+

(

ay′ (τ ) − ax′ (τ )

)

sin2(θ − φ)

< r2>
(14)

We can obtain decay constant λx′ and λy′ by fitting
Equation 1 along the axes where <r2> are minimized
or maximized, then re-express Equation 14 as follows,

NPAFr (τ ) =
<x′2> e−λ′xτ + cx′y′ (τ ) sin

(

2(θ − φ)
)

+

(

<y′2> e−λy′ τ− <x′2> e−λx′ τ
)

sin2(θ − φ)

< r2>
(15)
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FIGURE 5 | Anisotropy in η as a function of anisotropy in κ from experiments

(filled symbols) and simulations (lines). Simulations were carried out to match

the frame rate, temperature, bead size, and run length of the data from

System 1 (experimental results red circles, simulations red dashed line),

System 2 (experimental results blue triangles, simulations blue dotted line), and

System 3 (experimental results black squares, simulations black solid line).

Black dashed line is a rough judge of the level below which anisotropy in κ will

have a discernible effect on the anisotropy in η.

In Figure 3C are the NPAF values obtained using Equation 15
alongside the data obtained from simulations. It is apparent that
Equation 15 describes the data very well-compared to the fit
performed via Equation 3, as shown in Figure 3B.

At this point it is important to remember that numerous
microrheology studies in literature have yielded excellent and
accurate microrheological information without doing a full
analysis of trap geometry even though, as discussed in the
introduction, in real experiments it would be unusual for an
optical potential to be perfectly isotropic due to slight optical
aberrations. This suggests the existence of a degree of trap
anisotropy below whichmeasurements are unaffected. Therefore,
it would be of interest to a broad audience of biophysicists
and microrheologists to understand what level of anisotropy
in an optical trap will result in an erroneous measurement of
the fluid viscosity and thus require improvements in the beam
shape or alignment, or the implementation of AO approaches
we discussed earlier. In order to address this query, in Figure 5

we report the percentage anisotropy in the measured viscosity,
ηanisotropy, as a function of percentage anisotropy in κ, κanisotropy,
obtained using three different experimental OT systems. These
measurements were carried out using a range of different values
of κx′ , bead radius, a, number of time steps, N, and acquisition
rate, f. As these data are somewhat sparse in themselves,
simulations were also carried out with the input values derived
from each of the experimental studies. The simulation outputs
are also shown in the same figure using lines of the same color
as the corresponding experimental data. For each simulated data
set, these parameters remain constant while the input value

of κy′ is varied. From Figure 5 it is possible to observe that
for κanisotropy values lower than ∼30%, the precise value of
ηanisotropy differs for each of the different sets of simulations,
but for all three sets ηanisotropy appears to be independent of
κanisotropy in this <30% region. Therefore, Equation 1 is still
a valid approach for microrheology purposes. This is not the
case for anisotropy values higher than ∼30%, where ηanisotropy

increases proportionally to κanisotropy, and at which point the
experimentalist may wish to improve the alignment of their
system. Notably, the experimental data (solid symbols) in
Figure 5 are in good agreement with those from simulations,
especially for the data obtained from systems two and three.
Interestingly, the experimental data obtained from system 1
appear to be offset compared to the simulations. We must admit
that it is unclear to us what is the precise cause of this off-set;
however, the behavior of the data is still consistent with a model
where κanisotropy only has a strong effect on ηanisotropy at values
above∼30%, as suggested by the simulations.

Although we have identified a threshold level of anisotropy
in κ below which microrheology measurements could be safely
performed without performing a full rotational analysis of
the trap, it is worth bearing in mind that sometimes levels
of anisotropy above 30% are unavoidable. This is indeed the
case when measurements are performed with OT in 3D where
optical traps are highly anisotropic, due to the stretching of
the intensity distribution of the laser along the axial or “z”
dimension. Therefore, for 3D microrheology measurements, one
would inevitably need to perform a full rotational analysis if the
direction of trap beam propagation slightly deviates from the
axis of z-tracking. Furthermore, the use of a highly anisotropic
trap has the added advantage of exploring a wider range of
low frequencies, as can be deduced from Figure 3A where the
plateau region of the NMSD is achieved at longer times for the
axis showing the weaker trap stiffness (y’). We could therefore
speculate that this opens the door to the possibility of deliberately
introducing anisotropy into the x-y plane to gain additional
information on the viscoelastic properties of the surrounding
medium. For scatter plots that have 2 axes of symmetry (such
as the one shown Figure 1) the solution is straightforward.
One could rotate the data by 180 degrees, sampling at regular
increments of the angle θ, and find the axes for which <r2> is
maximized and minimized. As shown in Figures 2B,C, at the
angles where <r2> is maximized and minimized (i.e., 45 and
135◦ in this case), Equation 6 and Equation 10 return the same
result because the NMSD curve is a single-exponential growth to
a limit of the form 1- e−λτ , as shown in Figure 3C). The resulting
ηrel values are marked as blue and yellow dots on Figure 2C),
giving 95.3 and 94.5% of the expected value, respectively.

Optical Traps With One or Zero Axes of
Symmetry
In this section, we focus our attention to optical traps which
feature only 1 or 0 axes of symmetry. In practice, experimentalists
should be able to avoid performing measurements where the
trap shows such a degree of anisotropy. However, it is still
of interest to understand these as they are the most general
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FIGURE 6 | (A–C) Scatter plots for optical traps with 1 (A,B) or 0 (C) axes of symmetry. (D–F) plots of <r2> and ηrel as a function of θ for the plots shown in (A–C).

case from a phenomenological perspective. In this instance,
we have used simulated data to explore the anisotropy, as
this allowed us to control the degree of asymmetry of the
trap in a systematic manner. However, in real experiments,
scatter plots with a similar shape could be generated by
(i) deliberately or otherwise introducing optical aberrations
to the trap beam, (ii) passing the beam through a highly
inhomogeneous media, or (iii) spatially filtering the trap beam.
Simulated scatter plots from optical traps with a single axis
of symmetry along the x-axis are shown in Figures 6A,B. In
Figures 6D,E we plot <r2> and ηrel as a function of θ for
these traps.

From Figure 6, we can see that both the scatter plots in (A)
and (B) have an axis of symmetry running along the x axis,
but are asymmetric in the y-axis. In both the cases, the ηrel
curves are smooth and continuous, with a slight discontinuity
in Figure 6E) around ∼135

◦
, most likely due to a slight quirk

of the scatter plot distribution. Interestingly, we observe that
ηrel is ∼1 when <r2> is at its maximum, but not when
<r2> is at its minimum, where ηrel is over-estimated by up
to ∼25%. We explore this approach further in Figures 6C,F,
where we report the outcomes obtained from a trap with
no axis of symmetry. We see that when measurements are
performed along the direction where <r2> is maximized, ηrel
is close to 1, and interestingly the same result is achieved
also at the angle where <r2> is minimized. These results
suggest that even by using an optical trap with significant
aberrations, accurate microrheology would be achievable when

a full rotational analysis is carried out and the axis of maximum
<r2> is identified.

CONCLUSION

In this work, we have demonstrated that highly anisotropic
optical traps may return spurious microrheology results if the
shape of the trap is not considered carefully. Nonetheless,
when performing a detailed analysis of the bead variance
in all the possible directions of motion of the trapped
particle, it is possible to successfully extract fluids’ viscosity.
In particular, we have demonstrated that, as long as the
difference in optical trap strength between strongest and weakest
axis remains lower than ∼30% of the weakest trap strength,
the conventional analytical approaches would still return an
accurate measurement of the fluid viscosity with the stochastic
nature of the measurement dictating the accuracy. This is
not true anymore when the threshold is exceeded. For this
case, we have provided a novel analytical model that allows
an accurate measurement of the fluids’ rheological properties
over a wider range of accessible frequencies than symmetric
optical traps.
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