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In this paper, a similar Fabry-Perot cavity structure utilizing a multilayer film structure
consisting of an ultrathin metal film is demonstrated for absorbing the infrared ray. This
structure has low emissivity in the atmospheric window (3–5 and 8–14 μm) and high
emissivity in the nonatmospheric window (5–8 μm). These properties improved the stealth
performance which causes the high emissivity in 5–8 μm to radiate more energy to reduce
its temperature. Based on this, the periodic microstructures were added to the surface of
the materials that enhanced the absorption of terahertz wave (0.1–2.7 THz). The absorber
based on multilayer film has a simple structure and lowmanufacturing cost. This work may
provide a new strategy for infrared and terahertz compatible stealth technology.
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INTRODUCTION

Materials with wavelength-selective absorption capacity have application potential in selective
thermal radiation [1–6], thermal photovoltaic systems [7–12], infrared stealth [13–18], etc.,
which attracted the attention of many scholars. Radiation cooling is to achieve cooling effect by
radiating its own heat to outer space in the form of electromagnetic waves. According to Kirchhoff’s
law, the emissivity of an object is equal to its absorptivity in thermal equilibrium. To improve
efficiency, the materials should have a high emissivity in 8–14 μm and have a low emissivity in
nonatmospheric window to reduce the absorption of radiation from other objects in the
environment. In the field of thermal photovoltaics, the spectral selective absorption coating is
the core component, which directly determines the light-to-heat conversion efficiency of the entire
system. The wavelength-selective absorber needs to have high emissivity in the visible-near infrared
band (0.3–2.5 μm) and the lowest possible emissivity in the mid-and-far infrared band (2.5–25 μm),
where the thermal radiation at its own working temperature is located. This property plays the role of
restraining energy loss caused by radiation heat dissipation while absorbing the energy of sunlight.

In the field of infrared stealth, the performance requirements for wavelength-selective absorption
materials are opposite to that of radiation cooling. The materials need to have low emissivity in the
two atmospheric windows (3–5 and 8–14 μm) to reduce the possibility of being detected by the
detection equipment. According to Stephen-Boltzmann’s law, the radiation energy of an object,
defined as the radiant exitance W, W � εσT4, where σ is Stephen-Boltzmann’s constant and ε and T
are the emissivity and absolute temperature of the object, respectively. Therefore, reducing object
radiation can be achieved by cooling or reducing emissivity. The main means to achieve stealth is to
reduce the emissivity which causes the cost of cooling to be high [19]. There is a serious problem that
the low emissivity of the whole band will affect the heat exchange process, making it difficult for heat
to diffuse out in time. This may cause heat accumulation and increase the temperature of the target,
thus increasing the radiation energy of the object and weakening the stealth performance. Materials
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with wavelength-selective absorption capabilities also have great
application potential in infrared stealth technology. Specifically,
the material needs to have a low emissivity in 3–5 and 8–14 μm to
reduce detectability, while having a high emissivity in 5–8 μm
outside the atmospheric window, which can diffuse the heat in
time and lower its temperature to realize better infrared stealth.
Most of the existing materials do not have such characteristics, so
it is difficult to achieve the selective absorption performance to
meet the stealth requirement by using traditional material
systems.

Metamaterials or photonic crystals can be used to modulate
the spectral absorption characteristics [20–22], so they have
application prospects in the field of wavelength-selective
absorption. The existence of the photonic bandgap in the
photonic crystal makes it attract attention, and its absorption
spectrum can be controlled through structural design. Similarly,
the plasmonic structure has attracted attention due to its excellent
electromagnetic response performance [23–25] and usually
consists of a top patterned metal layer, a middle dielectric
spacer, and a reflective metal substrate. Adjusting the
absorptivity of these structures is mainly through
electromagnetic resonance, which can tune the resonant
frequency according to the reasonable structure design and
even expand or move the resonance region. Due to the high
manufacturing cost and the difficulty in realizing the excitation of
ultrawideband resonance mode, the practical application of these
materials is still limited.

In recent years, the researches of metamaterial functional
devices in the terahertz band have made great progress, such as
terahertz perfect absorbers [26], filters [27], stealth devices
[28–30], and EIT devices [31]. As the improvement of related
research about terahertz radar, the development of stealth
devices has received a lot of attention. The metamaterials
currently used for stealth in the terahertz band are mainly
designed through microstructures, utilizing subwavelength
structure arrays to control conductivity and magnetic
permeability, thereby generating strong absorption at
specific frequencies. Because of the contradiction between
terahertz and infrared stealth requirements for material
(low reflection and high absorption in terahertz; high
reflection and low absorption in infrared), there are many
problems in stealth materials compatible with the two
wavebands.

In this work, the radiation characteristics of ultrathin Pt
layer and impedance matching were utilized to design a
wavelength-selective absorber based on planarized platinum/
silicon (Pt/Si) multilayer film for infrared stealth. This
absorber can effectively suppress thermal radiation in two
atmospheric windows and enhance thermal radiation in the
nonatmospheric window. Meanwhile, the absorber has the
advantages of simple structure and easy to mass
manufacturing. The overall resonance frequency of the
structure was tuned by changing the thickness of the film.
Also, microstructures were added to the surface to meet the
requirements to enhance the absorption of terahertz waves.
This research may provide a new strategy for stealth materials
compatible with infrared and terahertz.

RESULT AND DISCUSSION

The Wavelength-Selective Absorber in
Infrared Band
The wavelength-selective absorber used for infrared stealth in
3–14 μm consists of four layers, including one ultrathin Pt layer,
one bottom reflective Pt layer, and two Si dielectric spacers,
shown in Figure 1A. For the unique radiation characteristics
of metals, the ultrathin Pt layer plays an important role as the
main radiation layer. The silicon used in this research is
crystalline silicon. The two Si layers tuned the characteristics
of wavelength-selective absorption through impedance matching.
The thickness of each layer was calculated by COMSOL; finally,
the whole structure met the requirements of infrared stealth,
shown in Figure 1B. The absorber has low absorptivity in the two
atmospheric windows (3–5 and 8–14 μm), and high absorptivity
in the nonatmospheric window (5–8 μm). Meanwhile, the
manufacturing method of the designed structure is relatively
simple; large-scale manufacturing could be realized through
electron beam evaporation and magnetron sputtering.

The enhancement of thermal radiation in 5–8 μm is quite
distinct from the traditional metal-based absorber (plasmonic
resonance in metamaterials); this work utilized the radiation
characteristics of the ultrathin Pt layer. The Pt has a large
extinction coefficient and a high density of free electrons in
the infrared band. Because the ultrathin Pt layer cannot shield
the fluctuating current from radiating to free space due to the
tunneling effect, this layer has a higher absorptivity in the infrared
band [32]. But the bulk metal can screen the fluctuating current,
so the bottom Pt layer played a role in reflecting the infrared wave.
Therefore, the ultrathin Pt layer is essential for increasing the
absorptivity.

However, a single ultrathin Pt layer cannot achieve the
requirements of wavelength-selective absorption in the
infrared band. The overall absorption characteristics are
adjusted through the dielectric Si to meet the design
requirements. In this work, the root-mean-square deviation
(RMSD) is used for quantification of the wavelength-selective
absorptivity between the calculated and ideal absorber as Eq. 1.

RMSD �

����������������∑14μm
3μm

(εcal,λ − εideal,λ)2
N

√√
, (1)

where εcal,λ and εideal,λ are the absorptivity of calculated and ideal
absorber within 3–14 μm and N is the number of wavelengths.

The thickness of the top and middle Si layers was obtained
when the value of RMSD between calculated and ideal absorber
reached the minimum as shown in Figure 2.

The wavelength-selective absorptivity requirements of
infrared stealth could be met when the top Si layer is 333 nm
and the middle Si layer is 623 nm. Because the bottom Pt layer is
used for reflecting the infrared wave, the thickness should not be
less than 50 nm. In this research, the thickness of the bottom Pt
layer is 100 nm. Meanwhile, the ultrathin Pt layer is 15 nm,
considering the film-forming property and the radiation
performance. The absorptivity of the material was shown in
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Figure 1B. Based on the impedance matching principle, the
addition of Si dielectric spacer adjusted the wavelength-
selective absorptivity. Within a certain spectral range, the
impedance of a structure matches the impedance of air (the
real part of impedance close to 1 and imaginary part close to 0);
the incident electromagnetic waves can enter the structure instead
of being reflected on the surface. The impedance can be calculated
by Eq. 2.

Z �
�������������
(1 + S11)2 − S221
(1 − S11)2 − S221

√
, (2)

where S11 and S21 are the S-parameters of the wavelength-
selective absorber. The results showed that the similarity of the

impedance of absorber to the impedance of air (quantified by
RMSD) in the high absorptivity region (5–8 μm) is 1.6 + 0.9i,
while the value of the similarity in atmospheric windows is 3.01 +
3.06i (3–5 μm) and 1.38 + 2.26i (8–14 μm). The calculation results
are shown in Figure 3.

According to the result of impedance calculation, in the high
absorptivity band, the impedance of the absorber is closer to the
impedance of air than in the low absorptivity band. Therefore, the
incident electromagnetic wave can reach the ultrathin Pt layer in
5–8 μm band, causing a higher absorptivity, while most of the
electromagnetic waves are reflected by the surface in atmospheric
windows, resulting in a low absorptivity. Consequently, based on
the impedance matching principle, the absorption characteristics
of the absorber can be tuned by changing the thickness of Si

FIGURE 1 | (A) Schematic of wavelength-selective absorber in infrared and added microstructure in terahertz; (B) calculated and ideal absorptivity of the absorber
in infrared; (C) absorptivity in terahertz (added microstructure).

FIGURE 2 | Root-mean-square deviation (RMSD) of the absorptivity relative to the ideal absorber with thickness changes. (A) in the top Si spacer; (B) in the middle
Si space.
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layers. The four-layer structure can be prepared on substrates like
stainless steel, polylactic acid (PLA), and other materials.
Platinum can be deposited by magnetron sputtering or
electron beam evaporation to control the thickness accurately,
and silicon will be fabricated through electron beam evaporation
for large-scale manufacturing.

The Wavelength-Selective Absorber in
Terahertz Band (Compatible With Infrared)
Because the wavelength of electromagnetic waves in 0.1–2.7 THz
is different from the infrared band, the designed wavelength-
selective absorber above is not applicable. It is necessary to make
some adjustments to the structure to maintain the selective
absorption characteristics in the infrared band while
improving the absorption performance of terahertz waves by
constructing a certain microstructure on the surface.

Since the material has a structure similar to the Fabry-Perot
cavity, the absorption performance requirements can be met by
adjusting the thickness of the two Si dielectric spacers, while
keeping the thickness of the ultrathin metal Pt layer and the
bottom reflective Pt layer unchanged. For the reason of the
wavelength of the terahertz band, the middle Si layer should
be about 2000 nm thick to meet the absorption requirements. The
RMSD between the calculated and ideal absorber is shown in
Figure 4, as the thickness of the top and middle Si layer changed.

According to Figure 4, the thickness of the middle Si layer is
2055 nm and the thickness of the top Si layer is 1,263 nm which
can relatively well achieve the wavelength-selective absorption
that meets the requirements of infrared stealth. The thickness of

the bottom Pt layer and the middle ultrathin Pt layer is 100 nm
and 15 nm, respectively. At the same time, this structure can
provide a foundation for the compatible absorption of
terahertz waves.

Considering the convenience of processing and good
absorption for both TE and TM waves, the surface
microstructure should be designed as simple as possible with
high symmetry. It was finally decided to select the surface
microstructure as a periodic array of cylinders. Based on the
Pt/Si four-multilayer structure, add a periodic array of Pt
cylinders to the surface of the top Si layer to improve the
absorption of the terahertz wave. Fix the height of cylinders to
0.2 μm, and calculate the absorptivity of the material at
0.1–2.7 THz while changing the radius of the cylinders; the
curve of absorptivity is shown in Figure 5A.

It can be seen that the position of the absorption peak in the
terahertz band changes with the change of the radius of cylinders.
In order to make the material absorb more electromagnetic waves
in the target band, the area of absorptivity curves enclosed with
the X-axis should be as large as possible. According to Figure 5B,
when the radius of cylinders is 9.3 μm, the material has the best
absorptive capacity. In 1–2.4 THz, the absorptivity of the material
is all over 0.4.

Then adjust the height of cylinders and calculate the
absorptivity curves of the material in 0.1–2.7 THz, shown in
Figure 5C. At the same time, it is necessary to consider that
the addition of microstructures should not have much influence
on the absorptivity in the infrared band. Finally, the height of
cylinders is determined to be 0.8 μm. It can be seen that the
absorptivity curve has an absorption peak in 1.9–2.2 THz and the

FIGURE 3 | Calculated parameters of the Pt/Si multilayer based wavelength-selective absorber in 3–14 μm. (A) S11; (B) S21; (C) impedance.

FIGURE 4 | (A) Absorptivity of wavelength-selective absorber. Root-mean-square deviation (RMSD) of the absorptivity relative to the ideal absorber with thickness
changes. (B) in the middle Si spacer; (C) in the top Si spacer.
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numerical value of the absorption peak is over 0.7. The
absorptivity of the material in terahertz is shown in Figure 1C.

For the processing of the microstructure on the surface, it can
use laser to process the array of cylinders, because platinum is not
very hard to process. In order to improve the absorptivity of
terahertz further, cylinders with different radius in a period could
be used. As the radius of cylinder determines the position of the
absorption peak, the superposition of several absorption peaks
can broaden the absorption bandwidth that improves the
absorption performance. This work proved that, by utilizing
multilayer films and metamaterials, we can achieve compatible
stealth in infrared and terahertz bands.

CONCLUSION

In conclusion, this research proposed a material with a simple
structure and could be mass manufacturing based on multilayer
film. The material has the ability of wavelength-selective
absorption that meets the requirements of infrared stealth. By
structural design, the calculated wavelength-selective absorber
has low absorptivity in the two atmospheric windows (3–5 and

8–14 μm) and high absorptivity in the nonatmospheric window
(5–8 μm), which has excellent stealth performance in the infrared
band. Moreover, with the addition of a periodic array of Pt
cylinders on the surface, the absorption capacity of the
material in terahertz is significantly enhanced. Meanwhile, the
material can still meet the performance requirements of stealth in
an infrared band. This work may provide a new strategy for the
compatible stealth in infrared and terahertz bands.
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FIGURE 5 | The absorptivity of material with parameters of cylinders changing in 0.1–2.7 THz. (A) radius; (C) height; (B) the area of absorptivity curves enclosed
with X axis when radius of cylinders changing; (D) the root-mean-square deviation of absorptivity between structure with and without cylinders in infrared band when
there are changes in the height of cylinders.
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