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Reward is an effective mechanism that promotes cooperation. However, an individual
usually reward her opponents in certain cases. Inspired by this, a conditional neutral
reward mechanism has been introduced. In detail, an individual will reward his or her
neighbors with the same strategy when the payoff of the focal one is higher than that of his
or her neighbors. And simulations are conducted to investigate the impact of our
mechanism on the evolution of cooperation. Interestingly, cooperation can survive and
dominate the system. Nominal antisocial reward that defectors reward each other is rarely
because of the greed of defectors. By contrast, cooperators inside the cooperative
clusters share the payoff with cooperators on the boundary so that the latter can form
shields to protect cooperators.
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INTRODUCTION

How cooperation among selfish individuals can emerge and maintain of has been an attractive
question in biology, sociology, andmany different fields [1–5]. For example, worker ants give up their
reproductive capacity to build nests and collect food. And human beings play different roles in social
division of labor. In order to explain the widespread phenomenon of cooperation, evolutionary game
theory has been proposed and provides a powerful mathematical framework [6–11]. In many game
models, PDG (prisoner’s dilemma game) is regarded as a paradigm due to capturing the essence of
cooperation. In the PDG, two players choose cooperation (C) or defection (D) at the same time
without being known by the opponent. If they both choose cooperation or defection, they will both
receive the reward (R) or get the punishment (P). However, if one chooses cooperation but the other
chooses cooperation, the defector will get the temptation (T) while the cooperator will get the
sucker’s payoff (S). For PDG, the ranking rules are T > R > P > S and 2R > T + S. Obviously, the better
choice is always defection no matter which strategy the other chooses. But if two individuals both
defects, they will receive the less payoff than both cooperating. This is the dilemma.

In the landmark work of Nowak, the mechanism of spatial topology, widely known as spatial
reciprocity, has proved to be an effective mechanism to promote cooperative coevolution
[12–38]. Inspired by this, many kinds of spatial topologies are applicated to study the
cooperative dynamics in evolution, such as square lattice network, ER random network,
small-world network, BA scale-free network and so on [39–47]. Besides, to explain
cooperation on the spatial topologies, different mechanisms have been proposed, such as
reputation, asymmetric interaction, different update rule, co-evolution of dynamical rules,
reward or punishment and so on [48–53].
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Recent research has shown that rewarding is an effective way to
promote cooperation. Various rewards are often given to those who
perform well, which is very common in the real society. In this paper,
we consider a reward mechanism that the individual could pay a cost
to reward the neighbors who has the same strategy. Meanwhile, he
could be rewarded by his neighbors. We find that rewards have a
positive effect on themaintenance of cooperation, which ismanifested
in the fact that the weakened cooperators are supported against the
invasion of defectors by the population of their kinds, in the form of
rewards, while it is opposite for defectors. This creates a unique
boundary structure. The reminder of this paper is organized as
follows. First, we describe our model detailly. Then, we show the
simulation results with figures and try to give an explanation. Finally,
we summarize and give the discussion about the conclusions.

METHODS

We introduce social reward in the PDG (prisoner’s dilemma
game) on L*L square lattices, where each player occupies one and
is surrounded by four neighbors. Each player will be initialized as
either C (cooperator) or D (defector) with the same possibility.
We use the standard PDG by setting T � b (1 < b < 2), R � 1, P � 0,
and S � 0. The value of b specifies the strength of the dilemma
[54–56]. Hence, the payoff matrix of PDG is described as follows:

C D
C
D

( 1 0
b 0

) . (1)

A player x is chosen randomly at the beginning of each time
step, whose payoff px can be calculated:

px � ∑4
y�1

pxy , (2)

where pxy is the payoff of player x obtained from neighbor y, and
it is defined by the payoff matrix. Four neighbors of player x get
their payoffs in the same way. Thus, the average payoff of player
x’s neighbors pavN is calculated as follows:

pavN � ∑4
y�1py
4

. (3)

If payoff of player x is higher than his neighbors’ or equal, he
will pay a cost to reward each his neighbors who have the same
strategy. Otherwise, his payoff remains the same. Meanwhile, his
four neighbors follow the same procedure. The accumulated
payoff of player x at current time step is:

px � { px + Nr × r − Nc × c, px ≥ pavN ,
px, px < pavN ,

(4)

where Nr (0≤Nr ≤ 4) is the number of neighbors rewarding
player x, Nc (0≤Nc ≤ 4) is the number of neighbors whom
player x rewards, and r and c is the value of rewards and cost.

Finally, player x updates his strategy. A neighbor y is chosen
and player x learns the strategy of y randomly with the probability
as following:

Px←y � 1

1 + exp((px + py)/K), (5)

where K indicates the amplitude of noise that also called intensity
of selection [57–62]. Without loss of generality, we set K � 0.1.

The Monte Carlo simulation is carried out with setting L �
200, and the number of all step is set to 5 × 104. We choose the
data of last 5 × 103 steps to calculate the ultimate average fraction
of cooperation. To eliminate the random errors, the final results is
the average value of 10 independent repeated experiments for
each value of parameters.

RESULTS

In order to verify the impact of our reward mechanism on
cooperation, we give a contour plot as Figure 1, where the
simulation result of fraction of cooperation ρc with a fixed
parameter cost c (0.01) and two changing parameters reward r
and temptation of defect b is shown. From the figure we can see that
first, it is obviously that when the b is relatively large, due to the
introduction of reward mechanism (r > 0), the fraction of
cooperation ρc is still at a high level. In sharp contrast, in the
traditional case, when b > 1.04, the cooperation disappears. Second,
the contour plot has an obvious dividing line. The area at the upper
left of this line, which represents smaller b and larger r, is the area
where the cooperation survives. In other words, when the reward
mechanism is introduced, for the same b, a higher level of reward r
leads to a higher fraction of cooperation ρc. All in all, our reward
mechanism strongly promotes cooperation.

Figure 2 shows the impact of both cost c and reward r on the
evolution of cooperation. Interestingly, in Figure 2 we can see that
the both increasements of c and r lead tomore appropriate condition
for survival of cooperation. What’s more, the boundaries among
cooperation phase, mixed phase and defection phase are close to
straight lines. The phenomenon can be described as under what
conditions complete cooperation be formed, which is explained as
follows. The key point lies in whether the cooperator can resist the
invasion of the defector on the boundary between the cooperator
cluster and the defector cluster, which depends on the payoffs of the
two type players. Let’s consider a common situation on the
boundary, as shown in Figure 3.

In Figure 3, we show the payoffs of a cooperator and a defector on
the boundary, which are marked with dotted boxes. For the defector,
first, he gets payoff 2b from his two cooperative neighbors and 0 from
his two defective neighbors. It is obviously that his payoff (2b) is
higher than the average payoff of his four neighbors (1) because of the
interaction with cooperators on the boundary. According to the
reward mechanism we introduced, he must pay costs of 2c to
reward his two defective neighbors, but he doesn’t get any reward
from his neighbor with the same strategy due to their low payoff.
Therefore, his updated payoff is 2b − 2c. However, it is different for
the cooperator, who gets 2 from his two neighbors with cooperation
strategy firstly. Interacting with defectors makes his payoff (2) lower
than the average payoff of his four neighbors (2 + b). Thus, he is from
paying the cost, but gets the rewards from his neighbors, which
increases his payoff to 2 + 2r. Obviously, the critical condition is

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 9 | Article 6392522

Tang et al. Conditional neutral reward in PDG

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


2 + 2r � 2b − 2c, or r + c � b − 1. For this situation, if r + c< b − 1,
the cooperator will be at a disadvantage in the game, and vice versa. In
this way, we can give the reasonwhy the both increasements of c and r
lead tomore appropriate condition for survival of cooperation.What’s
more, the critical condition is also a linear function, which explains
that boundaries among different phases are close to straight lines as
shown in Figure 2.

As mentioned before, the supports of cooperation clusters
to cooperators on the boundaries, and on the contrary for
defectors on the boundaries of defection clusters, may be the
potential reasons for promoting cooperation. To confirm
that, we show the characteristic snapshots in Figure 4,
where different types of nodes called cooperator (C),
cooperative rewarder (CR), defector (D) and defective

rewarder (DR), are marked in four different colors. Here
we fixed cost � 0.1 and from top to bottom, the reward is set as
0.1, 0.3, 0.6 respectively. Obviously, the evolution of game is
very different under different values of reward when the value
of cost is fixed. It is worth mentioning that distributions CR-
C-DR-D as shown in Figure 3 indeed appear on the
boundaries among cluster of cooperators and cluster of
defectors at any value of reward. However, different r led
to different evolution Tendency, which further led to
different results. When r is relatively small (0.1),
cooperation clusters cannot provide adequate support to
cooperators on the boundaries. Hence the cooperators

FIGURE 1 | Fraction of cooperation on the b-r parameter space when c � 0.01. (A) and (B) give the results simulated on square lattice andWS small world network.

FIGURE 2 | Fraction of cooperation on the r-c parameter space when
b � 1.3.

FIGURE 3 | Schematic of the boundary structure. Cooperator
(defectors) are presented in red (blue). We show the payoffs of the nodes in the
dotted boxes.
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can’t resist the invasion of the defectors. As r increases,
cooperators begin to take advantage on the boundaries.
When r � 0.5, it can be observed that while the
cooperation cluster invaded the defection cluster, it is also
invaded by the defectors. For this phenomenon, our
explanation is that when the cluster expands, its boundary
structure changes. In particular, the expansion of clusters will

produce ragged boundaries, which weakens the role of the
cluster to the boundary player. When r � 1, cooperation has
an absolute advantage over defection, so it has expanded
rapidly and soon occupied the entire region.

Figure 5 shows how the size of the largest cluster of all kinds of
cooperators (including cooperators and cooperative rewarders) Scr
and the cooperators who isn’t a rewarder Sc at the last MC step
evolves respectively when cost � 0.1 and reward � 0.3.When b≤ 1.1,
there is only one cluster of cooperators and its size is equal to the
scale of the network, due to the fact that cooperation dominates the
system.Now there is no rewarder in populations of cooperators. As b
increases, the clusters of cooperators are invaded, and its size
decreases. It should be noted that Sc is smaller Scr , which
suggests that cooperative clusters are surrounded by cooperative
rewarders to free from invasion. When b further increases, the huge
cooperation cluster disintegrates rapidly and decomposes into many
small cooperation clusters until it disappears completely.

CONCLUSION

In the real world, individuals are more willing to reward other
participants according to certain conditions rather than directly
reward them. Hence, we explore the effects of neutral and
conditional rewards in structural groups. By numerical simulation,
we find that cooperation can be greatly promoted, while conditional
antisocial reward does not prevent the evolution of cooperation. From
the micro perspective, we provide some evidence to prove that our
mechanism enhances the spatial reciprocity and is conducive to the
formation of cooperation clusters. In ourmodel, the individuals in the
cooperative cluster reward the same kind of individuals on the
boundary, so that the latter can form a shield to protect the

FIGURE 4 | Initial evolution of the prepared scenario. The top, medium and bottom correspond to r values of 0.1, 0.3, 0.6 respectively. From left to right, the
snapshots correspond toMCS � 0, 1, 10, 100, and 50,000. Cooperator (C), cooperative rewarder (CR), defector (D) and defective rewarder (DR) are shown in color cyan,
blue, magenta, and red respectively.

FIGURE 5 | The size of the largest cluster of all kinds of cooperators
(including cooperators and cooperative rewarders) Scr and the cooperators
who isn’t a rewarder Sc at the last MC step evolves respectively when
cost � 0.1 and reward � 0.3.
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former. On the contrary, defectors on the border will gradually reduce
themselves after rewarding similar individuals inside. By and large,
Social reward rather than antisocial reward shapes the direction of
collective behavior when an individual rewards others under the
condition that her payoff is higher. We hope our work is helpful to
resolve the social dilemmas in real society.
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