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Stress rupture (sometimes called creep-rupture) is a time-dependent failure mode

occurring in unidirectional fiber composites under high tensile loads sustained over long

times (e. g., many years), resulting in highly variable lifetimes and where failure has

catastrophic consequences. Stress-rupture is of particular concern in such structures as

composite overwrapped pressure vessels (COPVs), tension members in infrastructure

applications (suspended roofs, post-tensioned bridge cables) and high angular velocity

rotors (e.g., flywheels, centrifuges, and propellers). At the micromechanical level, stress

rupture begins with the failure of some individual fibers at random flaws, followed by

local load-transfer to neighboring intact fibers through shear stresses in the matrix.

Over time, the matrix between the fibers creeps in shear, which causes lengthening

of local fiber overload zones around previous fiber breaks, resulting in even more fiber

breaks, and eventually, formation clusters of fiber breaks of various sizes, one of which

eventually grows to a catastrophically unstable size. Most previous models are direct

extension of classic stochastic breakdown models for a single fiber, and do not reflect the

micromechanical detail, particularly in terms of the creep behavior of the matrix. These

models may be adequate for interpreting experimental, composite stress rupture data

under a constant load in service; however, they are of highly questionable accuracy under

more complex loading profiles, especially ones that initially include a brief “proof test” at a

“proof load” of up to 1.5 times the chosen service load. Such models typically predict an

improved reliability for proof-test survivors that is higher than the reliability without such a

proof test. In our previous work relevant to carbon fiber/epoxy composite structures we

showed that damage occurs in the form of a large number of fiber breaks that would not

otherwise occur, and in many important circumstances the net effect is reduced reliability

over time, if the proof stress is too high. The current paper continues our previous work

by revising the model for matrix creep to include non-linear creep whereby power-law

creep behavior occurs not only in time but also in shear stress level and with differing
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exponents. This model, thus, admits two additional parameters, one determining the

sensitivity of shear creep rate to shear stress level, and another that acts as a threshold

shear stress level reminiscent of a yield stress in the plastic limit, which the model also

admits. The new model predicts very similar behavior to that seen in the previous model

under linear viscoelastic behavior of the matrix, except that it allows for a threshold shear

stress. This threshold allows consideration of behavior under near plastic matrix yielding

or even matrix shear failure, the consequence of which is a large increase in the length-

scale of load transfer around fiber breaks, and thus, a significant reduction in composite

strength and increase in variability. Derivations of length-scales resulting from non-linear

matrix creep are provided as Appendices in the Supplementary Material.

Keywords: failure probabilities, stress rupture behavior, proof testing, composite overwrapped pressure vessels,

local load sharing model, Weibull distribution, non-linear viscoealsticity

INTRODUCTION

From a materials engineering perspective, stress rupture

(sometimes called creep-rupture) is a time-dependent failure

mode in unidirectional, continuous fiber composites that are
primarily loaded in tension over long time periods and

whose failure is typically catastrophic. Such composites, often
consisting of carbon fibers in an epoxy matrix, operate at

either ambient temperatures, or temperatures well below the
matrix glass transition temperature. Examples of such structures

include composite overwrapped pressure vessels (COPVs),
tension members in infrastructure applications such as cables

in suspended roofs, post-tensioned bridge platform cables,
and rotors spinning at high angular velocity such flywheels,

centrifuges and propellers, where hoop and radial stresses
become very large. In such cases, stress rupture failure is explosive

resulting in sudden release of potential and/or kinetic energy and
in the case of COPVs the stored contents can also be combustible.

Typically, stress-rupture occurs with little or no warning, and its
unpredictable nature necessitates large safety factors even when a
considerable experimental data base exists to support various life
prediction methodologies.

In engineering applications, which are often subject to life-
safety requirements, much of the concern stems from the fact
that reliabilities in such structures must be extremely high (e.g.,
probability of failure <10−8) over a specified lifetime (typically
many years) under a specified service load. No amount of brute-
force testing can directly demonstrate such reliabilities, especially
when test objects in the laboratory necessarily differ from actual
service components in key respects, such as being much smaller
in overall material volume under load. Thus, size effects are a key
issue, and predicting stress-rupture lifetime, and particularly the
lower tail of the lifetime distribution for a given load, inevitably
requires sophisticated modeling in light of any previous, or
simultaneously generated, test data.

The general experimental approach to characterizing the
stress-rupture behavior of such a carbon fiber/epoxy structures
in applications is to first determine the strength distribution
of subscale artifacts, such as epoxy-impregnated strands, or
small laboratory scale pressure vessels, which have been filament

wound using the same materials. Typically, a Weibull strength
distribution is observed, and the Weibull scale and shape
parameter values are estimated. Then several fixed stress levels
are selected, and for each level multiple test artifacts are placed
under test and failures recorded over time, which in many cases
requires many months and sometime years to gather sufficient
lifetime data for prediction purposes. Typically, the lifetime data
is also found to be of Weibull form, but with extremely high
variability (lowWeibull shape parameter value typically less than
unity). Furthermore, statistical estimation techniques, such as
maximum likelihood, must be used to deal with censored test
samples, since at lower stress levels, only a few of the test samples
may have failed.

While methods vary for analyzing and presenting such
strength and stress-rupture data, the general approach is often
to plot the mean lifetime (or Weibull lifetime scale parameter)
vs. fixed stress level on log-stress vs. log-lifetime coordinates, and
to fit a power law, i.e., lifetime varies as stress level to a negative
power, which is often of the order of 100 in magnitude. Some
effort may also be made to estimate the shape parameter for
Weibull lifetime at each stress level, hopefully the same for each,
and from the results, to determine a stress level that results in
the desired high reliability, i.e., low probability of failure over the
chosen structural component lifetime.

The previously mentioned approaches to modeling stress-
rupture lifetime are discussed in detail in [1–4] where it is
shown that such a lifetime estimation approach is fraught with
many serious difficulties some of which are as follows: First,
there are serious practical limitations in sample sizes that can
be tested at each stress level. Second, since the variability in
lifetime is very high, the uncertainty in any reliability estimate
is also very high to the point of resulting in unusable reliability
bounds (much less providing the ability to select between
competing models, which are typically phenomenological).
Third, the typically used “proof test” approach to screen
out weaker, and presumably, lower reliability specimens is
fraught with difficulties, such as what proof stress level to
use, and whether damage is caused to the structure in the
act of proof testing that cancels any potential benefit, perhaps
even making the structure even less reliable. Thus there is
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a need for the development of sophisticated models that
consider the micromechanics and statistics of fiber load-sharing
and failure, and which are reasonably tractable and whose
predictions can be defended. Since we are most interested
in the high reliability (low probability of failure) region of
various distributions, we are able to take advantage of various
power-law approximations to the lower tails of various Weibull
distributions to construct reliability estimates. This is seen
throughout the derivations.

Before developing the model, and in view of the broad
audience, we provide some context regarding the breadth of
fiber bundle models that have played a key role in the study
of failure processes in a heterogeneous materials, as conducted
in statistical physics, materials, and mechanics communities.
Some excellent reviews from various perspectives are provided
in [5–10]. The simplest versions focus on material strength
in response to an applied load, and where individual fibers
are assumed to have variability in their strengths following
some probability distribution, such as uniform or Weibull,
the latter being common to engineering applications [9, 10].
Under a tensile bundle load some fibers fail, and their
loads are transferred to their survivors, some of which may
also fail due to their increased loads, leading to more load
redistribution, and so on. Depending on applied bundle load,
the bundle may either reach a stable state where some smaller
group of surviving fibers are strong enough to support the
bundle load, or, all survivors are exhausted and the bundle
collapses. As discussed below, details on the evolution of this
failure process depend on the bundle load magnitude, the
fiber strength distribution, the bundle size (number of fibers),
and critically on the mechanism by which fibers share and
redistribute load.

In the simplest bundle models, load-sharing mechanisms fall
between two extremes: (i) equal load-sharing (ELS) where the
loads of failed fibers are redistributed equally onto all survivors,
and (ii) local load sharing (LLS), where the loads of failed
fibers are transferred onto their closest surviving neighbors,
as expanded upon in [5–10]. Under ELS fiber failure patterns
tend to be diffuse and percolation-like, whereas under LLS,
clusters of breaks nucleate and grow reminiscent of catastrophic
cracks. The contrast in the two pattern types depends on
the variability in fiber strength. Larger variability results in
increasingly similar failure patterns across the load redistribution
range from ELS and LLS, however, that the bundle strength
statistics ultimately differ as bundle size grows indefinitely, as
shown in [9, 10].

In statistical physics, various aspects are of interest, such as
critical behavior, recursive failure dynamics, universality classes,
burst distributions and avalanches, precursors (warnings) of
global failure, cross-over behavior, and localization in terms
of forming of critical clusters vs. mean field analysis [5–
8]. In both the physics and engineering communities size
effects are a key issue [9–13] because the size scales of
multiple laboratory test samples are necessarily orders of
magnitude smaller than their monolithic structural counterparts
in applications. Approaches to the study of such models vary
from being purely analytical (requiring various simplifying

assumptions but yielding profound insight) to numerical Monte
Carlo methods where fiber strengths and load redistribution for
evolving failure configurations are directly calculated. Numerical
simulation has limitations, however, because bundle structures
of interest can have more than 108 fiber elements (e.g., carbon
fiber/epoxy composite overwrapped pressure vessels) whereas
eventual scaling behavior may be inconclusive in bundles of
104 to 105fiber elements, and require 103replications to obtain
accurate statistics. Additionally, while some researchers use
mean field approaches, attempting to calculate the limiting
strength of bundles approaching infinite size, others focus
on obtaining distributions for strength of finite-size bundles
especially deep into their lower tails particularly when high
reliability is of concern. For instance finding a particular
bundle load for which the failure probability is <10−ℵ may
be of interest, where ℵ ≥ 8 (sometimes referred to as the
“number of nines” of the reliability, 1 − 10−ℵ) would require
at least 10ℵ+1 = 109 replications, currently a computationally
prohibitive number. How to extend to such low probability levels
for large-scale structures such as carbon-fiber/epoxy pressure
vessels is a key challenge and is where theoretical modeling and
scaling arguments become powerful tools, as is addressed in
this paper.

Generalizations of simple fiber bundle models for material
strength, particularly for longer structures, typically assume
fiber flaw occurrence along an individual fiber following a
compound Poisson point process in distance and flaw strength
(local failure stress). When the flaw strength follows a power
law, the result is a Weibull distribution for fiber strength
vs. length that satisfies weakest link statistics. We call this a
Weibull-Poisson (WP) fiber strength model. For long bundles
with fibers bonded together in a flexible matrix, or in a stiff
matrix but where the matrix has a low yield strength or the
fiber-matrix interface is weak and slip occurs, ELS generalizes
to global load-sharing (GLS). Under GLS a fiber can fail at
multiple locations along its length, however, at any cross-
sectional composite plane, a locally failed fiber may still carry
some load depending on the distance from the plane to its closest
break. In cases where LLS still applies at a cross-section, behavior
also depends on whether the bundle is planar (i.e., each fiber
has only two flanking neighbors) or the fibers are packed in a
square, hexagonal or random array in which case failing fibers
have many neighbors onto which to redistribute their loads.
Thus, milder versions of LLS emerge at a plane where some
load is transferred to next-nearest and even further neighbors
following some power-law decay in lateral distance. In both
GLS and LLS failure tends to concentrate in transverse planes
whereby material failure is well-described using a chain-of-
bundles approach [9, 13], which means that size effects become
important [11–13].

The failure of heterogeneous materials typically involves time-
dependence of some form, and in accommodating such features,
fiber bundle models become more complex, but also richer
in features, as can be seen in [14–55]. Time dependence can
enter into the bundle failure process in various ways: First,
the fiber breakdown process may be thermally activated as for
instance in [14–29], or may involve time-dependent kinetics of
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flaw growth in the fiber as in [30, 31]. On the other hand, the
matrix may creep, or the fiber/matrix interface may slip over
time, thus causing relaxation in broken fibers and overloading
of others [32–55], thus altering the length scale of fiber-to-fiber
load transfer.

In the case of the former where fiber load-sharing, ranging
from ELS to LLS, is by itself time independent, many models
for time-dependent fiber failure involve a breakdown rule with
the fiber failure rate depending on fiber stress level raised to a
power, or as an exponential in fiber stress level. These rules are
often tied to activation energy ideas of molecular bond failure,
depending on the absolute temperature. In such cases, the fiber
lifetime distribution under fixed loadmay be taken as exponential
(constant hazard rate over time) and in others, a memory integral
of past stress history is involved. This integral then becomes
the argument of a second function controlling the shape of the
lifetime distribution, and when of power form and the fiber is
under a constant stress, Weibull fiber lifetime results. Several
works specifically focus on such time-dependent fiber bundles as
well as more elaborate network and lattice extensions, a sampling
of which are discussed in [14–29]. In papers involving varying
ranges of lateral load transfer somewhere between the ELS and
LLS extremes, crossovers frommean-field to short range behavior
are seen where break clusters form and instability is seen. To
span ELS to LLS, the degree of localization also depends on
the magnitude of the power-law breakdown exponent. Even in
LLS bundles, one may see ELS-like diffuse fiber failure when the
power-paw exponent approaches two and especially below 1 as
shown in [24–27].

The works [14–29], which span the last 25 years of research,
reveal surprising consistency in the overall behavior observed, in
terms of size effects, localization in cluster growth and the types
of lifetime distributions obtained, especially in the lower tails.
Numerical Monte Carlo methods have become more efficient
and computational power has increased, for a bundle with a
given geometric and load-sharing complexity, by two to three
orders of magnitude in size, which has been critical to providing
insight into ultimate convergent (or divergent) behavior as the
size scale increases. Fortunately, analytical models with various
idealizations based on LLS and GLS modeling approaches have
proven very effective in uncovering characteristics of bundle
lifetime distributions deep into their lower tails. In cases where
a clear choice between an LLS vs. a GLS modeling approach is
ambiguous, it often happens that the two approaches result in
surprisingly similar lifetime distribution shapes.

Other bundle models with time-dependent fibers (or analogs
at the molecular scale) involve unique approaches [32–34]
to specialized circumstances. For instance [32], which models
a metal-matrix composite, involves a creeping, elasto-plastic
matrix, and fibers that have some mix of strength behavior
and time dependent degradation, all treated in a finite-element
framework. Another approaches fiber behavior using a kinetic
Monte-Carlo algorithm based directly on thermal fluctuations
[33]. In another, fibers constitute a molecular network and a
molecular dynamics approach is used [34].

Yet another group of models [35–37], involve fibers that
are essentially elastic but upon failure undergo slow relaxation

behaving as Maxwell elements. In [35], the fiber strength follows
a uniform distribution and the modeling is purely GLS with
broken fibers slowly shedding load to their survivors. In [36] fiber
strengths are assumed Weibull a with shape parameter of two,
whereupon bundle lifetime was found to be lognormal. In [37]
the load-sharing ranged between GLS and LLS using a power-
law, variable range of interaction rule, and again Weibull fiber
strength. The two universality classes associated with GLS vs. LLS
extremes appeared robust.

The focus in the current paper is on time-dependent bundle
models where the fibers are brittle, initially continuous, time-
independent, and that are aligned in a polymer matrix that
itself supports negligible tensile load. The fibers have WP
strength properties and time dependence enters through matrix
shear creep around fiber breaks, which over time increases
the length-scale of fiber load transfer at breaks. Examples of
models in an ELS-GLS framework are described in [38–41],
where in [38–40] plots of stress level vs. the logarithm of
the mean lifetime is of interest, whereas in [41] the interest
is on the residual composite strength after considerable time
spent under constant load. These models do not focus on
the nature of the lifetime distribution over time given the
applied stress level. Of particular interest are such bundle models
under LLS, several of which are discussed in [42–55]. The
first two models [42, 43] are predecessors to the model we
develop later and involve both theory and experiments on the
strength and creep-rupture of seven-fiber, micro-composites
of carbon fibers in an epoxy. They demonstrate various
features of interest in the current paper, including Weibull
fiber strength, distributions for micro-composite strength with
Weibull “envelopes” having segments predicted by LLS theory,
Weibull lifetime distributions also having Weibull envelope
segments, and lastly, plots of log-load vs. log-lifetime behavior
whose slopes depend on the shape parameter for fiber strength
and the power-law creep exponent in time. Also, [44] contains
a supporting analytical/numerical model for composite creep-
rupture involving Weibull fibers with planar and hexagonal fiber
packing in a linearly viscoelastic matrix.

Two related works [45, 46], present both theory and
experimental results on the strength and lifetime of epoxy-
impregnated carbon fiber strands. The models, however,
are largely phenomenological and do not directly build on
micromechanical LLS behavior with matrix creep. Nonetheless,
such microstructural behavior arguably underlies the behavior
observed. Time-dependence is reflected in the epoxy creep
compliance, including time-temperature shift factors. This
framework provides coherence to both the strength and the
lifetime distributions obtained, respectively, at various strain
rates and fixed stress levels, and at temperatures from 298◦K
to 443◦K. Strand strength followed a Weibull distribution, and
lifetime distributions were shown where the scale parameter had
log-log dependence through a function of normalized time based
on the matrix creep response. Overall, the experimental behavior
seen is consistent with the model results we develop later.

In a sequence of papers by Bunsell et al. [47–55], a model
has been developed that considers the lifetime of unidirectional
carbon fiber-epoxy composites under sustained loads, and where
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the main application is filament wound pressure vessels. In
[47] the work begins with numerical modeling of the micro-
mechanisms of fiber-to-fiber load transfer resulting from WP
fiber failures. In [48], the load-transfer mechanism over time
is altered by relaxation due to the viscoelastic and plastic
behavior of the matrix, also causing locally increasing loads on
neighboring fibers. In larger scale structures, these processes are
used in [49] to model fiber break progression in a multi-scale
framework, involving representative volume elements (RVEs)
applicable to both strength and lifetime testing. In the latter,
delayed fiber failures occur as new flaws are exposed thus leading
to growing fiber break clusters and their coalescence into a critical
damage state causing composite failure. Their model is applied
in [50] to carbon fiber-epoxy matrix pressure vessels where the
issue of proof testing is raised, and where the authors comment
as follows:

“At present, there are no proof testing techniques or in-

service reliability assessments techniques, which are mentioned in

standards that are suitable or based on the failure processes known

to control lifetimes of composite structures.”

Later in the same paragraph, the authors say:

“A hydraulic [proof] test on a composite pressure vessel has only one

clear outcome, which is that fibers, which ordinarily would not have

broken, fail during the test and the vessel is closer to failure than it

was before the test, as is illustrated in Figure 2.”

Much of their work in [50] is directed at determining an
appropriate proof test level, for both new pressure vessels and
pressure vessels that have seen pressurized service over long time
periods. Investigating the issue of proof-testing is also a primary
focus in the model we develop later.

In later works [51–55], these authors extend their RVE
modeling in terms of the formation and evolution of small
clusters of breaks called of i-plets of various sizes (e.g., two-
plets, four-plets, eight-plets, 16-plets, 32-plets, . . . ). The focus
is on critical damage states in tension testing [51], sustained
loading over time [52], and laminated structures [53]. The work
in [54, 55] looks deeper into critical damage states in terms of i-
plets as precursors to imminent failure and on the possibility of
determining a lower threshold for applied composite stress below
which the lifetime becomes infinite [55]. Overall, the impressive
multi-scale model developed in [47–55] is computationally
intensive so that Monte Carlo replications beyond a few 100
samples are currently impractical. Except in [55] where 100
replications were performed, the focus was largely on mean
lifetime behavior, rather than the form of lifetime distributions,
particularly in their lower tails. Nonetheless the overall failure
process is qualitatively very similar to that which we develop later,
and thus, some of our results may be of use in extending their
models in [47–55].

As with many models described previously, a key assumption
in the model we develop later is that individual carbon fibers are
time independent, that is, essentially immune from creep rupture
at typical temperatures of interest. This has been established in

the work of Farquhar et al. [56]. A second assumption is that
the mechanics of fiber stress-relaxation and load transfer around
fiber breaks is accurately described by a non-linear matrix creep
law, including a matrix plastic-like yielding effect. Over the past
two decades there have beenmany papers [57–62], that have used
micro-Raman spectroscopy and other techniques to measure
time-dependent stress-relaxation and load transfer around fiber
breaks in arrays of carbon fibers in an epoxy matrix. These
experiments have been interpreted using sophisticated shear-
lag modeling in [59–62] assuming elastic fibers and a linearly
viscoelastic matrix, and which reveal the occurrence of varying
degrees of shear yielding and debonding at the fiber-matrix
interface, particularly at fiber strains approaching fiber failure.
Thus, the assumption of a linearly elastic-perfectly bondedmatrix
requires revision, as will be key in our modeling approach in later
sections. Indeed, there are several theoretical works [63–67] that
allow us to make such revisions.

Our model involves the growth of clusters of fiber breaks to
critical size. The concept of critical cluster formation under LLS
has been a feature of various models discussed earlier. In this
work we draw heavily on the mechanics of fiber load transfer
around breaks as pioneered in the work of Hedgepeth and NASA
associates [68–70]. The clusters in our model are idealized as
growing in a planar fashion, whereas one might expect fiber
breaks to be staggered out of plane. However, near planar cluster
growth is often seen [71], and in effect clusters act as though
they are increasingly planar as the length scale of load transfer
increases over time [44]. We especially note a body of work
[9, 10, 44, 72–76] specifically devoted to growth of clusters of fiber
breaks to critical size, and the associated probability calculations
through analysis and Monte Carlo simulation. Actual clusters
seen in Monte Carlo simulations over time often have a far more
random shape than the idealized clusters we consider. However,
despite their differing appearance, upon reaching catastrophic
instability the resulting failure distributions are remarkably
similar to the point where only a small scaling adjustment is
necessary to create congruence deep into the lower distribution
tails. This behavior holds up even for Weibull shape parameters
in the range of 2 or 3, which is below those for carbon fibers
of interest in this paper. A group of recent papers [74–76]
is very insightful regarding the nature of the critical cluster
concept in LLS, and the limited role played by local ELS behavior
within small groups of fiber failures but embedded within an
overall LLS framework, and resulting distributions shapes and
size scaling. These findings are remarkable and when experiment
does not match theory, one may better focus more broadly on
variability introduced in fabrication of a structure, rather than
just on shortcomings in modeling assumptions. For instance, in
[77] various fiber packings were considered including square,
hexagonal and random, and yet the results proved surprisingly
robust. Similar robust behavior was noted in [26, 27] working
with distorted triangular lattices. Such details are less important
that might first be suspected, which perhaps explains why fiber
bundle models, with all their idealizations, work so well in the
first place.

The focus of this paper, therefore, is to revisit and further
develop our previous model [78] that took into account not
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only the statistical failure of individual fiber elements in the
composite, but also linearly viscoelastic matrix behavior in shear
as the matrix locally transfers loads from broken fibers elements
to neighboring intact fiber elements over a length-scale that
increases over time.

As was described above in the context of a wide range of
fiber bundle models, stress rupture is caused by fiber breakage
occurring over time, where individual fiber breaks ultimately
form clusters that increase in size until one becomes unstable
and the composite fails catastrophically. A key aspect is that the
load once carried by a broken fiber is locally transferred to its
neighboring fibers through shear in the matrix, thus creating
stress concentrations in these neighbors, which then grow in
time especially as fiber breaks form in clusters that grow. A
key driver of the failure process is that the local length-scale
of these overloads increases over time as the matrix creeps in
shear so that, over time, more and more fiber flaws are exposed
to stresses that cause them to fail, despite having survived the
applied service load absent any stress-concentrations, or even
loads from a proof test. Thus, a critical aspect of this stress-
rupture process occurring in the composite over time, is that it
occurs even if the fibers themselves are immune to stress-rupture,
which is essentially the case for carbon fibers.

The stress rupture failure process described above is the
basis for the stochastic fiber breakage (SFB) model [78], which
accounts for the relevant micromechanics of fiber-to-fiber load
transfer in the presence of matrix creep, and the statistics of
fiber strength and flaw occurrence in determining the overall
lifetime distribution. Several other models have been applied
to describe stress-rupture composite lifetimes; however, these
models have largely been phenomenologically based on single
fibers, as described in [14–19, 79], some of which are compared
in [1]. In developing the micro-mechanically based SFB model in
[78], many simplifying assumptions were necessary.

One key assumption was that the matrix is linearly
viscoelastic, and creeps in shear following a power-law in time.
This assumption has been used in shear-lag modeling [63–65]
and mathematically builds on models assuming elastic fibers
and an elastic matrix. Associated with this assumption, however,
is that the matrix and the fiber/matrix interface are immune
to failure in shear, which may be an unrealistic assumption
when fiber breaks first occur, or clusters become large. Of
course, over time, matrix creep relaxes these initially high
shear stresses, however, it is known that in many circumstances
of high fiber volume fraction and fiber strength the initial
shear stresses around fiber breaks exceed the matrix yield
strength or interfacial shear strength for fiber-matrix debonding.
The SFB model in [78] does not accommodate such non-
linear matrix phenomena, although qualitatively and using
rough approximations, their consequences can be appreciated as
significant when they occur. Thus, to accommodate such non-
linear matrix behavior in shear, Mason et al. [66] investigated
the case where the matrix undergoes non-linear creep in shear,
both in stress and time. The current paper extends the SFB by
incorporating the non-linear results in [66] into our previous
model in [78].

Lastly, we discuss the effect of proof testing on composite
lifetime in this revised version of the SFB model with non-linear
matrix behavior, and how the additional parameters that arise
allow us to accommodate non-linear matrix behavior such as
plastic-like matrix yielding, yet preserve the overall character of
the results.

Section Overview of Context of the Stochastic Fiber
Breakage Model and Forms of Key Results provides a brief
overview of the context of the SFB model in applications as
well as various distribution forms that will expanded upon
in subsequent sections. Section Modeling the Instantaneous
Composite Strength and Determining its Distribution provides
a derivation of the distribution for “short-term” composite
strength, in circumstances where the timescale for matrix creep
is assumed too short to affect the strength behavior, as was
the case in [78]. However, certain parameters will be defined
in anticipation of non-linear matrix effects that will require
revisions to the model of [78].

Section Modeling Composite Lifetime in Stress Rupture
and Determining its Distribution derives the distribution
for composite lifetime, building on the methods used in
Section Modeling the Instantaneous Composite Strength and
Determining its Distribution and previously in [78], but also
incorporating non-linear viscoelastic behavior to the matrix,
using a variation of the load transfer length explored in [66]
and expanded upon in Appendices A–D (All Appendices are
provided in the Supplementary Material linked to the paper).
In Appendix A, context is provided for how various parameters
arise and the roles they play, particularly with respect to
the growth in time of the characteristic load-transfer length.
Appendices B,C derive results accommodating shear-driven
increases in the length scale of load-transfer on surviving fibers
around a growing cluster of fiber breaks. In Appendix D we
discuss a simpler version of the non-linear creep model in
[66], which is analytically solvable for all the 3-fiber cases in
Appendix A, including those where the exponent on time is not
unity. The behavior of crucial quantities, such as the length scale
of fiber load transfer over time, turn out to be virtually identical.

Section Lifetime Distribution of a Composite Component that
has Survived a Proof Test derives the distribution for lifetime of
a composite component that has survived an initial proof-test up
to some fraction of its initial strength (or has been overloaded by
somemultiplier of its ultimate service stress). Section Results and
Discussion summarizes the influence of non-linear matrix creep
on various parameters governing the distributions for composite
strength and lifetime, and illustrates various results and non-
linear effects in graphical formwhere the effects of varying certain
key parameters are discussed, paying special attention to more
subtle volume effects.

Section Conclusions concludes with some comments on key
distinguishing features of the model that result from extending
into the non-linear range the viscoelastic matrix creep behavior
in our previous work [78]. We also provide some additional
context on the overall stress-rupture problem in unidirectional
composite structures that goes beyond the task of developing a
model, as was done in this paper.
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OVERVIEW OF CONTEXT OF THE
STOCHASTIC FIBER BREAKAGE MODEL
AND FORMS OF KEY RESULTS

Load Profiles Applied to the Composite
and Desired Strength and Lifetime
Distributions
Ramp Loading to Determine Composite Strength
The first load history of interest is the ramp loading for
determining the composite strength. This is given by:

σ (t) = Rt, t ≥ 0 (1)

where t is time and the parameter, R > 0, is the loading rate
or stress rate. Typically, R is sufficiently fast to cause failure
in 20–200 s, and where such failure times are shorter than
a particular characteristic time, tc, for matrix creep in shear,
especially the fraction of time spent closer the failure load where
most fiber breakage occurs. As such, the time-dependence of the
matrix is typically ignored when modeling composite strength
behavior, and we can treat the matrix as though it is purely
elastic (though there will be exceptions and subtleties worthy
of discussion).

In this case, the goal is to calculate the distribution function,
HV (σ ), for the strength of the composite, in terms of applied
stress level, σ > 0, which will turn out to be approximately
of Weibull form with scale and shape parameters, σ̂V and α̂,
respectively, that are to be determined from the model and where
V is the composite volume expressed as the total number of fiber
elements it contains, each with characteristic length, δc. Note that
applied stress is to be interpreted as applied force divided by
some overall fiber material cross-sectional area of the structure,
and will not the same as the elevated local stress on a particular
fiber element that happens to be next to a newly broken fiber
element, and thus, is also supporting part of that fiber element’s
original load.

Constant Load in the Study of Composite

Stress-Rupture Lifetime
The second load history of interest is that used in modeling
composite lifetime in stress rupture. In this case, applied stress
is assumed to be constant over all time, i.e.,

σ (t) = σ̄ , t ≥ 0 (2)

where σ̄ > 0 is the applied stress level (fiber force over overall
fiber material cross-sectional area of the loaded structure), and in
practice, is typically only a fraction of theWeibull scale parameter
for composite strength measured using the ramp loading (1), that
is, σ̄ < σ̂V . In reality, the initial loading of the composite up to
stress level, σ̄ , cannot be performed instantaneously and typically
requires an initial ramp loading following load-history (1), where
R is sufficiently rapid. However, time-dependence of the matrix
under such initial loading rates, typically has a negligible effect
on the resulting lifetime distribution at times of interest well-
beyond the characteristic time, tc, mentioned above. Note that

this applied stress can only be supported as long as the elevated
local fiber stresses near some growing cluster of fiber breaks in
the material, have not reached the point where cluster growth
becomes unstable and catastrophic.

In this case, the goal is to calculate the distribution function,
HV (t; σ̄ ), for the lifetime of the composite, for times, t ≫ tc,
which will also be of the Weibull form with scale and shape
parameters, t̂V and β̂ , respectively, and where V is the previously

defined composite volume. We will find that t̂V = tc
(

σ̄ /σ̂V
)−ρ̂

where ρ̂ is a power-law exponent that will characterize the
dependence of the lifetime on the inverse of the applied stress
level, σ̄ .

Stress-Rupture Lifetime of a Composite Following a

Brief Proof Test at Higher Load
Typically manufactured composite structural components, prior
to being put into service, are subjected to a “proof test” where
a ramp loading (1), is applied up to proof stress level, σp, which
may be significantly higher than the ultimate service stress, σ̄ , and
which ismaintained for some proof hold time, tp, typically several
minutes, after which the applied stress is lowered to the service
stress level, σ̄ ≤ σp, which is kept constant thereafter (Here we
admit the possibility that the proof test is minimal, i.e., the stress
level is simply the ultimate service stress). There can be variations
to this loading profile whereby after time, tp, the applied stress is
lowered from σp to near zero and the component is stored for
some time before later being put into service at constant stress
σ̄ . For the purposes of this paper, however, it suffices to use the
simplified load profile:

σ (t) =
{

σp, 0 ≤ t < tp
σ̄ , t ≥ tp

(3)

The rationale for this practice is that applying a proof test
to stress level, σp ≥ σ̄ , will “weed out” inferior composite
structural components, thus improving the overall reliability of
components that pass the proof test and are put in service. As
is discussed later, classic models used for composite lifetime
in stress rupture typically support this strategy, and the higher
the proof stress, the better. We shall show, however, that the
more detailed model developed in this paper does not universally
support such a strategy, since proof-testing inflicts damage in the
form of broken fibers that otherwise would have remained intact.
This can negatively influence composite reliability atmuch longer
times. This is a critical issue raised by Bunsell and Thionnet [50],
as previously mentioned.

In this case we are interested in the conditional distribution
for lifetime, HV

(

t| t ≥ tp, σp, σ̄
)

, given t ≥ tp, that is, given the
component survived the proof test loading under stress σp up to
time t = tp, which means HV

(

t| t ≥ tp, σp, σ̄
)

= 0 when t = tp.
The resulting lifetime distribution has a complex but insightful
structure, though it does not neatly collapse to a Weibull form,
even when σp = σ̄ .

Frontiers in Physics | www.frontiersin.org 7 March 2021 | Volume 9 | Article 644815

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Engelbrecht-Wiggans and Phoenix Stochastic Fiber Breakage Part 2

MODELING THE INSTANTANEOUS
COMPOSITE STRENGTH AND
DETERMINING ITS DISTRIBUTION

Distribution for Fiber Strength in Tension
and Size (Length) Effect
Fibers in the composite are initially continuous having diameter,
d, and Young’s modulus, E. We assume the WP fiber strength
model applies, such that a fiber element of length, δ, follows a
Weibull distribution for tensile strength, σ , of the form:

Fδ (σ ) = 1− exp

(

− δ

δc

(

σ

σδc

)ζ
)

, σ ≥ 0 (4)

where δc is a characteristic length mentioned earlier and
described in more detail below, and σδc and ζ are the fiber
Weibull scale and shape parameters, respectively, corresponding
to length δc. A critical feature of (4) is that increasing the element
length, δ, increases the probability of element failure at stress
level, σ , since more strength limiting and randomly occurring
flaws are exposed. Note also that the Weibull scale parameter for
fiber strength at length, δ, is simply:

σδ = σδc(δc/δ )1/ζ (5)

which reveals the inverse dependence of fiber strength on length,
δ, and its sensitivity to ζ . This becomes a key component of
the stress-rupture model for lifetime since matrix creep in shear
has the effect of increasing over time, t, the effective overload
lengths on fiber segments adjacent growing clusters of fiber
breaks. However, the fibers and their randomly occurring flaws
are themselves time independent, and segments of fixed length
and under a fixed load do not undergo stress rupture.

A Taylor series expansion of (4) results in a convenient lower
tail approximation, namely:

Fδ (σ ) ≈ δ

δc

(

σ

σδc

)ζ

, 0 ≤ σ < σδ , (6)

which is of power-law form. This approximation happens to
be extremely accurate for typical values of ζ , since fiber stress
levels, σ , in the composite failure model typically satisfy 0 ≤
σ≪σδc . Later the composite stress-rupturemodel will involve the
formation and growth of clusters of fiber breaks that have formed
under an applied composite stress level, σ . Intact neighbors
next to a cluster of i fiber breaks will thus be subject to stress
Kiσ > 1, whereKi is the fiber stress concentration induced by the
cluster (as will be described in more detail in sub-section Stress
Concentrations and Break Cluster Growth Parameters for Failing
Fiber Elements below). If the cluster grows in size such that
[[Mathtype-mtef1-eqn-77.mtf]], then under (6), Fδ (Kiσ) → 1,
whereas under (4), Fδ (Kiσ) → 0.632 > 1/2 . Either way, the
fiber break cluster has reached instability and catastrophic failure
results. However, (6) greatly simplifies the calculations.

Characteristic Elastic and Statistical
Length Scales for Fiber Load
Redistribution Near Breaks
Using the classic shear-lag model [68, 69], Hedgepeth et al.
described the load transfer process from broken to intact fibers in
a composite where fibers are arranged in either a planar, square
or hexagonal array within a flexible matrix. Fundamentally, a
characteristic elastic length, δe, emerges that depends on various
mechanical and geometric parameters of the fiber and matrix
and their spacing, these being the fiber Young’s modulus, E, fiber
cross-sectional area, A, fiber diameter, d, matrix instantaneous
elastic shear modulus, Ge, effective width, w, of matrix between
two fiber surfaces, and the effectivematrix thickness, which is also
taken as d.

For fully elastic behavior, δe is typically expressed in terms of
these parameters as [9, 63–65]:

δe = d

√

E

Ge

A

d2
w

d
≈ d

√

E

Ge

w

d
(7)

the latter assuming the approximation A ≈ d2, The dominating
influences on δe are the fiber diameter, d, the square root of
the fiber to matrix stiffness ratio,

√
E/Ge , and the square root

of the matrix width between the fibers divided by its thickness
√

w/d . In simple terms, the ratio w/d is related to the fiber
volume fraction, Vf, and whether the fibers are arranged as a
planar tape (planar fiber array) or as a hexagonal array, whereby
Vf ≈ 1/

(

1+ κw/d
)

where κ ≈ 2 for a planar fiber array
and κ ≈ 3 for a hexagonal array. Thus, for a given fiber volume
fraction, the ratiow/d will be smaller for a hexagonal vs. a planar
array, however, the effect is mitigated by the square-root since√
2/3 = 0.816, and thus, for a given Vf the effect on δe is no

more than 20%.
Along a neighboring fiber close to a fiber break, its overload

profile in terms of fiber stress is roughly triangular with the
peak stress occurring adjacent to the break. However, the
effect of the triangular stress profile, in terms of determining
its probability of failure can be modeled using an “effective,
rectangular overload profile” at peak stress, but over some shorter
length depending on the Weibull shape parameter, ζ , for fiber
strength. This calculation requires accounting for the statistical
rate of occurrence along the fiber of flaws of varying strength,
as characterized by the WP fiber strength model [9, 10]. In
our earlier work [78], this characteristic length, called δc in (4)
through (6), was chosen as δ̂c, which in our current notation and
under linear viscoelastic behavior in [78] is:

δ̂c ≡
4

ζ + 1
δe. (8)

One factor of “2” arises because the overload profile extends over
length 2δe spanning the break. The other factor, 2/(ζ + 1) ,
arises from triangular nature of the over-stress profile and its
integration within the WP fiber model over length 2δe [For more
details see Equations (85–88) in [9] and associated discussion
there]. The scaling factor, which is inversely proportional to ζ+1,
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results from the fact that the higher the value of ζ , the lower
the variability in fiber strength, which means there is a sparser
distribution of weaker flaws along the fiber. Thus, only the higher
stresses near the peak of the triangular overload region are likely
to cause fiber failure. Overall, the overloaded region is shortened
for larger values of ζ [We caution that the notation used here
is different from that in [78], since 2δe here is δ̂e in the previous
paper where both sides of the break were included. The definition
of δe in (7) is more in line with that in the literature, [9, 10, 68, 69],
and will simplify later comparisons].

In the current work the introduction of non-linear creep, and
in particular, effects associated with the applied composite stress
level, will require modification of δc, and we will find that taking
δc = δ̂c ≡ 4δe/(ζ + 1) , as in [78], does not account for the
matrix yielding effect that will need to be incorporated. A new
form of δc will be developed in Section Modeling Composite
Lifetime in Stress Rupture and Determining its Distribution
Fiber-to-Fiber Load Transfer at Fiber Breaks Under Linear
and Non-linear Matrix Creep in Shear and in Appendix A in
the Supplementary Material once the non-linear matrix creep
model has been introduced, and a scale parameter for composite
strength has been formulated; however, in this section δc needs
no further characterization.

Stress Concentrations and Break Cluster
Growth Parameters for Failing Fiber
Elements
In the absence of time dependence of the matrix, the failure
process in the composite involves the growth of clusters of fiber
breaks resulting from local stress local concentrations on intact
neighbors that are candidates for the next fibers to fail. Thus, in
accordance with the definitions in both [10] and [78], we let:

Ki =
{ √

1+ iπ/4 , planar fiber array,
√

1+√
4i/π /π , hexagonal fiber array,

i = 0, 1, 2, . . .

(9)

be the stress concentration on a fiber next to a cluster
of i broken fibers, where we note that

√
4i/π = D, is

the diameter (dimensionless) of an approximately disc-shaped
cluster containing i tightly-packed fiber breaks (That is, the actual
cluster diameter is of order Dd). Also,

ck =
k−1
∏

j=0

Nj, k = 1, 2, 3, · · · (10)

is approximately the number of ways a cluster of k breaks can
grow one break at a time from a single triggering break, where
N0 ≡ 1 and Nj is the effective number of overloaded neighbors
next to a cluster of size j, one of which becomes the next fiber
failure. The number, Nj, is given in [10, 44, 78] as approximately,

Nj =
{

2, planar fiber array
φjγ , hexagonal fiber array

, j = 1, 2, 3, . . . (11)

where in a hexagonal array, φ and γ are parameters having the
respective ranges, 2.5 ≤ φ ≤ 6 and 0 ≤ γ ≤ 0.5 depending on

subtleties of the fiber packing geometry and other factors. These
all apply to the case of a linearly viscoelastic matrix.

InAppendix C in the SupplementaryMaterial we consider the
effects of non-linear matrix creep behavior of the matrix in shear
on the overload lengths of fibers next to a cluster of breaks of
size j, and find that the definitions of Nj change in both cases,
and in a hexagonal array γ can increase by as much as 1/2
depending on the degree of non-linearity in shear stress level.
These aspects will be explored in terms of determining Nj in (11)
and calculating ck in (10) when applying the model in Section
Results and Discussion.

Distribution Function for Composite
Strength
In determining the probability of composite failure as a function
of stress level, σ , under a ramp loading as described in (1), we
first focus on a quantity Wk (σ ), which is the probability of a
cluster of k fiber breaks forming at a particular location in the
composite under arbitrary stress, σ , starting with a single fiber
break, and where k ≥ 1is an arbitrary integer. These results are

used later in connection with a specific value of k = k̂, called the
critical cluster size for instability. Any group of k adjacent fiber
elements has the potential to become a cluster of k breaks, despite
being a rare event for a given group of k fibers. However, the
probability of obtaining at least one cluster of size k somewhere
in the composite is much larger, and the overall probability of
occurrence takes the weakest link form:

HV ,k (σ ) = 1− [1−Wk (σ )]V , σ ≥ 0, k = 1, 2, 3, . . . (12)

where V is the dimensionless volume of the composite in terms
of number of fiber elements of length δc, That is, V , is the total
length of fiber in the composite, 3, divided by δc. Note that (12)
holds even though two nearby groups of k fiber elements can
overlap each other and might ostensibly be viewed as statistically
dependent. In reality, they satisfy the concept of k-dependence
and essentially act independently (see Smith et al. for theorems
on the concept of k-dependence associated with rare events [72]].

Since V is large (12), is well-approximated by the
exponential form:

HV ,k (σ ) ≈ 1− exp [−VWk (σ )] , σ ≥ 0, (13)

reminiscent of theWeibull form, as described by Smith et al. [72].
The general expression for the strength of a cluster of k fibers,
Wk (σ ), as described in [9, 10, 78], is well-approximated by:

Wk (σ ) ≈ ck





k−1
∏

i=0

Fδc (Kiσ)



 , k = 1, 2, 3, . . . , σ ≥ 0. (14)

where Fδc (σ ), Ki and ckwere given previously by (6) and (9–
11), respectively.

Using the lower tail approximation in (6), we can rewrite
(14) as:

Wk (σ ) ≈ ck
(

K0K1K2 · · ·Kk−1

)ζ

(

σ

σδc

)kζ

, k = 1, 2, 3, 4, . . . .

(15)
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Combining Equations (13) and (15), and taking k = k̂, which
is the critical cluster size whose value is determined below,
we obtain an approximation for the failure probability of the
composite, HV (σ ), at a stress level σ , where:

HV (σ ) ≡ HV ,k (σ )
∣

∣

k=k̂
(16)

This can be rearranged into the Weibull form:

HV (σ ) ≈ 1− exp

(

−
(

σ

σ̂V

)α̂
)

, σ ≥ 0, (17)

Where,

σ̂V = σδc

(

Vc
k̂

)−1/
(

k̂ζ
)





k̂−1
∏

i=0

Ki





−1/k̂

, k̂ ≥ 1, (18)

is the effective Weibull scale parameter for strength and

α̂ = k̂ζ , k̂ ≥ 1, (19)

is the corresponding effective Weibull shape parameter.

In [78], we defined the critical cluster size, k̂, as the value k̄
satisfying Kk̄−1σ̂V < σδc ≤ Kk̄σ̂V . The idea there is that at such
composite stress level σ = σ̂V , the probability of failure of an
adjacent element to a cluster of size, of size k̄ − 1 is approaching
1−e−1 = 0.632 and adding onemore break to increase the cluster
to size k̄ pushes the failure probability to the point of instability,
and thus, catastrophic cluster growth with any further breaks.

For typical values of ζ , this choice works well in the case of a
planar array, since there only two neighboring fibers to a growing
cluster. However, in the case of a hexagonal array, the number
of overloaded neighbors, Nj, to a cluster of size, j, grows large,
especially for smaller ζ values. Thus, a point of instability for a

given stress value σ , will likely occur at a smaller cluster size, k̂,

than the k̄ value above, that is, the true k̂ would be overestimated
by the definition given in [78].

To address this issue, a more refined approach to determining

the k̂ associated with the onset of cluster instability is to first seek
stress values, σ = σk, for integer values, k ≥ 1, where Wk−1 (σ )

happens to intersect with Wk (σ ) when σ is locally varied; that
is, where Wk (σk) = Wk+1 (σk). These intersections result in a
set of stress values satisfying · · · < σk < σk−1 < · · · < σ2 <

σ1 < σδc , thus placing the focus on the probabilities of instability
and failure associated with a given stress level, σ , that happens to
fall between two successive values, say, σk ≤ σ < σk−1. Thus,
using (15) in the equality Wk (σk) = Wk+1 (σk) and canceling

common factors leads simply to Kkσk = σδc/N
1/ζ
k

. Then for σ̂V
satisfying σk < σ̂V ≤ σk−1 for a particular k value that we call

critical cluster size, k̂, we find that:

K
k̂−1

σ̂V <
σδc

N
1/ζ

k̂

≤ K
k̂
σ̂V . (20)

Thus, this result adjusts for the increased probability of instability
and failure resulting from a growing number, N

k̂
, of overloaded

neighbors to a cluster, any one of which could break and trigger
unstable cluster growth before the stress on such neighbors has
reached σδc (The exponent, 1/ζ arises from an equiprobability
tradeoff of increasing N

k
vs. decreasing stress level, σ , so that

N
k
σ ζ remains fixed).
From (9), (18), and (20) we find that solving for the correct

value of k̂ requires satisfying:

k̂ =















⌈

4
π

{

(

2−1/ζ σδc/σ̂V
)2 − 1

}⌉

, planar fiber array
⌈

π3

4

{

(

N
−1/ζ

k̂
σδc/σ̂V

)2
− 1

}2
⌉

, hexagonal fiber array

(21)

where “⌈�⌉” corresponds to the ceiling function, i.e., rounding up
the value of the argument to the next integer, since instability
requires growing to the next highest cluster size. While this

change in definition decreases k̂ as compared to that calculated
in [78], it has a negligible effect in the planar case for typical
values of ζ . However, it results in a major improvement in the
hexagonal case for smaller values of ζ , particularly since N

k̂
also

rapidly decreases with decreasing k̂.
Note that the approach in the current paper results in a

single Weibull distribution for strength for all stress levels
and associated probabilities of failure, whereas a more refined
analysis, as in [9, 10], leads to a strength distribution with a
more concave shape in stress level noticeable over probability
levels decreasing by many orders of magnitude (Later on, the
same will be true of the distribution for lifetime given the
applied load level). However, apart from greatly complicating the
analysis, such refinements make little if any practical difference
to the predictions for the material volumes and range of failure
probabilities of interest.

MODELING COMPOSITE LIFETIME IN
STRESS RUPTURE AND DETERMINING
ITS DISTRIBUTION

The fiber breakage model for stress-rupture of a unidirectional
composite relies not only on the elastic stiffness properties of
the fibers in tension, but also on the elastic stiffness and creep
properties of thematrix in shear. The fiber andmatrix viscoelastic
or viscoplastic properties and their dimensions with respect to
their local packing geometry (e.g., 2D hexagonal, or 1D planar)
determine the length scale, generally called δ (t), t ≥ 0 (of
with subscripts as appropriate), over which load is transferred
from a broken fiber to its adjacent intact neighbors. It is the
matrix creep behavior in shear, scaled by its elastic behavior,
that determines how this length-scale of fiber load transfer
grows over time, the consequence of which is the occurrence of
additional fiber failures over time at newly exposed flaws. Thus,
over time clusters of fiber breaks emerge and grow in both size
and length of overloading until a point of instability is reached,
and catastrophic failure is triggered. Below we explain how is
determined in both the linear and non-linear matrix creep.
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Length-Scales for Fiber Load Transfer
Under Linear Viscoelastic Matrix Creep
Previously in [78] we considered the case where the matrix is
linearly viscoelastic and that the matrix creeps in shear according
to a creep compliance with the power-law form:

J (t) = Je

(

1+
(

t

tc

)θ
)

, t ≥ 0, (22)

where Je ≡ 1/Ge is the instantaneous elastic creep compliance
(being the inverse of, Ge, the instantaneous elastic shear
modulus), tc, is a characteristic time for creep, and θ is a power-
law exponent, all being positive in value. Generally, under a time
varying shear stress, τ (s) , t ≥ 0, the shear strain follows the
convolution integral.

γ (t; τ (�)) =
t
∫

0

J (t − s)
dτ (s)

ds
ds

= 1

Ge

t
∫

0

(

1+
(

t − s

tc

)θ
)

dτ (s)

ds
ds (23)

Under a given fixed shear stress, τ̄ , the matrix shear strain is
γ (t, τ̄ ) = τ̄ J (t), and from (23) is,

γ (t, τ̄ ) = τ̄

Ge

(

1+
(

t

tc

)θ
)

≈ τ̄

Ge

(

t

tc

)θ

, t ≫ tc. (24)

Typically tc is of the order seconds to minutes, whereas
the ultimate failure time of the composite in stress-rupture
applications is of the order of months to years, and even many
decades. Also, a typical value for a polymer matrix is θ ∼
0.25. In the case of a unidirectional composite with a large
number of fibers, the stress redistribution from a broken fiber to
its closest intact neighbors can be calculated using well-known
shear-lag models, which assume the fibers primarily support
tension and the much more flexible matrix primarily supports
shear. In the case of the linear viscoelastic creep function for the
matrix, and using the convolution (23), in an extensive analysis
using Laplace transforms, Lagoudas et al. [63] showed that the
length scale grows beyond the elastic length scale according to

δe

√

1+ (t/tc )θ , t > 0, and thus the characteristic length scale is

accurately described by:

δ (t) = δc

√

1+
(

t

tc

)θ

, t > 0 (25)

where δc is the characteristic statistical-elastic length scale for
instantaneous fiber load transfer given previously by (8), that
is, in this special case of linear viscoelasticity, δc = δ̂c.
Furthermore, the fiber stress concentrations, Ki, near clusters of

i fiber breaks still follow (9), and as time passes, transversely
somewhat misaligned breaks in a cluster act as though they are
increasingly aligned [58].

At much longer times, t, relative to the characteristic time for
creep, t = tc, and in keeping with the approximation in (23) we
simplify (24) to,

δ (t) ≈ δc

(

t

tc

)θ/2

, tc ≪ t, 0 < θ ≤ 1 (26)

where we note that the exponent on normalized time has now
become θ/2 . This reduction by one-half of the effect of the
matrix creep exponent on time, i.e., from θ to θ/2 , occurs
because matrix creep causes growth over time of the length-scale
along a fiber over which stress-redistribution occurs as the fiber
stress drops from the nominal far-field value, say σ , to zero at
the break. Consequently, to maintain force balance in the fiber,
the magnitude of the matrix shear stress necessarily diminishes
with time, effectively slowing down the growth of matrix creep in
shear compared to what one might deduce from (5).

Despite the reduction of the exponent, θ , in (24), to θ/2 in
(26), this approximation accurately describes the behavior of (25)
for longer times, t ≫ tc, and at t = tc gives the same value,
δc, as (25) does at t = 0. Thus, when considering probabilities
of failure associated very short times, or even when measuring
strength at times, 0 < t ≪ tc, accurate predictions are obtained
from lifetime probability calculations based on using the simpler
(26), and taking t = tc, as we discuss again later.

A key feature of matrix creep is ignored in simply using (25)
and (26), but is potentially important when a composite has an
isolated break or a small break cluster, and the applied composite
tensile stress suddenly increases or decreases at certain times, or,
when the composite stress is constant but a small break cluster
induces additional neighboring breaks at times t≫ tc, and grows
in size, or some combination of the two. In such cases, the shear
stress near fiber breaks can change substantially over time, and
the amount of stress redistributed from broken to intact fibers,
and the length scale over which it is applied, also changes over
time in ways wemodel using (26) but not accounting for behavior
implied by the stress history convolution (23). That said, the
key elastic length-scale of load transfer, δe, for a single break or
its counterpart for a small break cluster does not change (other
than increasing slightly in a stepwise fashion as more breaks
are added).

It turns out, however, that these result are surprisingly
accurate even for the case of a viscous matrix where (26) applies
exactly with θ = 1, and where the matrix viscosity is interpreted
as tcGe [44, 64, 65]. Thus, despite these potential complications
we are still able to use the forms (25) and (26) as well as the
instantaneous load-redistribution factors, Ki, around fiber breaks
obtained from elastic shear-lag analysis, as given in (9). That is,
in the case of elastic fibers and a linearly viscoelastic matrix, these
Ki happen to be determined from the elastic problem, via the
so-called “correspondence principle.”

Thus, for all breaks, we assume (25) and (26) apply irrespective
of when new breaks occurred; that is, the time of occurrence for
any new break is retroactively set to zero. Since θ is typically
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small (and θ/2 smaller still), the effect of retroactively assigning
all break times to zero, once they occur, makes little practical
difference to the model predictions, which if anything are slightly
conservative. Such a simplification yields surprisingly accurate
predictions in a stress-rupture setting, as was shown in [54] for
the more demanding case of a viscous matrix, θ = 1, especially
when a composite is loaded under constant stress that is well
below its breaking strength. Much of the reason for this is that
the fiber breaking process, while rapid initially, becomes slower
and slower as time progresses, and the spacing of breaks over
time tends to become logarithmic, until catastrophic instability
is reached. Consequently, log-scales in both time and stress level
are typically used to describe the composite stress rupture process
up to final failure.

Length Scales for Fiber Load Transfer
Under Non-linear Matrix Creep of Mason
et al. (1992)
In the case of non-linear matrix creep in shear, Mason et al.
[66], formulated and solved certain shear lag problems involving
a single broken fiber in the center of a planar composite under
tension, and having three fibers and five fibers, respectively. The
matrix creep law for shear strain, γ , was assumed to take the
following power-law form in both time and shear stress, which
we parameterize as:

γ (t; τ (�)) =
τy

Ge





1

tc

t
∫

0

(

τ (s)

τy

)ϕ/θ

ds





θ

, τ ≥ 0 (27)

whereτ (t) , t ≥ 0 is the applied shear stress that may vary with
time, 0 < θ ≤ 1 is again a fixed exponent reflecting the sensitivity
of creep strain growth with time, the new parameter, 1 ≤ ϕ < ∞
is a fixed exponent reflecting the sensitivity of creep strain growth
to shear stress level, andGe is a reference stress reminiscent of the
matrix elastic shear modulus. Also the other new parameter, τy, is
a reference shear stress that in the limit of large ϕ → ∞ will play
the role of a perfectly plastic matrix yield stress in shear, but in
the “linear” limit, ϕ → 1+, has no effect in (27) (Typically such
creep laws are described in terms of creep rate, ∂γ (t; τ (�))/∂t ,
which is how they are used in the shear-lag model, however, this
is easily calculated from 27).

Under constant shear stress, τ (s) = τ̄ , (27) reduces to,

γ (t, τ̄ ) = τ̄

Ge

(

τ̄

τy

)ϕ−1( t

tc

)θ

, τ̄ > 0, t ≥ 0 (28)

and when ϕ → 1+ we recover the approximation given in (24)
for the case of a linearly viscoelastic matrix [As discussed in
Appendix D in the Supplementary Material, there is a simpler
version of (27) that leads to a creep-rate ∂γ (t; τ (�))/∂t , which
avoids a memory integral inherited form (27) but otherwise
results in (28). Fortunately, this simpler version yields results that
are virtually identical to those developed in Appendix C in the
Supplementary Material and used below].

While we have used an effective shear modulus, Ge, to
normalize the shear stress, τ̄ , the model in [66] does not

explicitly reflect the initial instantaneous elastic shear behavior
one might expect for a polymer matrix at time, t = 0, focusing
instead on matrix creep over longer times, t > 0. However,
initial elastic behavior may be important for determining the
characteristic elastic length scale, δe, of (7) for elastic load transfer
around a fiber break when determining the composite strength
distribution, (17), using (4).

In Appendix A in the Supplementary Material we discuss
solutions, based on (27), where we derive a characteristic length
scale for load transfer, δ̂ϕ (t), given by (A41) through (A43)
which covers both viscoelastic and viscoplastic cases. Recalling
(8), whereby δ̂c ≡ 4δe/(ζ + 1) , reflecting both the elastic
length scale δe and statistical effects through the Weibull shape
parameter, we use δ̂ϕ (t) to obtain the key length scale, δ (t, σ̄ ) =
4δ̂ϕ (t)/(ζ + 1) , i.e.,

δ (t, σ̄ ) = 4

ζ + 1
δe

(

σ̄

σy

)(ϕ−1)/(ϕ+1) ( t

tc

)θ/(ϕ+1)

(29)

This can be written as,

δ (t, σ̄ ) = δc

(

σ̄

σ̂V

)(ϕ−1)/(ϕ+1) ( t

tc

)θ/(ϕ+1)

(30)

where we have used the definition,

δc ≡ δ̂c

(

σ̂V

σy

)(ϕ−1)/(ϕ+1)

(31)

Where,

σy = 2τy δe
d

A
≈ 2τy

δe

d
(32)

is a critical “yield” stress [see Appendix A in the Supplementary
Material, and specifically, the discussion surrounding (A42),
motivating the emergence of the length scale, δe in (32)].

This result is consistent with (26) in the case of viscoelastic
creep at longer times. However, the length scale δ (t, σ̄ ) of (30)
reveals interesting effects in the case of non-linear creep: When
ϕ → 1+, we see that δ (t, σ̄ ) of (30) and (31) is consistent
with δ (t) derived from (26) in the case of linear viscoelasticity.
However, when ϕ → ∞, time dependence disappears, and
δ (t, σ̄ ) = δ̂cσ̂V/σy for all t ≥ 0 reminiscent of plastic
behavior. In general, σ̂V > σy and thus, δc will be larger than

δ̂c when ϕ > 1.
When deriving the distribution function (17), for composite

strength where effectively the loading time is of order tc or less,
the appropriate length-scale for fiber-to-fiber load transfer is, δc.
However, from (30) to (32), we see that when t = tc, we obtain
the length δ (tc, σ̄ ) which differs from δc when ϕ > 1 as reflected

by the factor,
(

σ̄ /σ̂V
)(ϕ−1)/(ϕ+1)

, whereas no such effect arose
in the case of a linear viscoelasticity, since ϕ = 1. This leads to
changes in (17) through (20) that must be accommodated.
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As was done with the extension of (28) to (29) for non-
linear matrix shear strain behavior to accommodate initial elastic
effects, we also extend (30) to the form:

δ (t, σ̄ ) = δc

(

1+
(

σ̄

σ̂V

)ϕ−1( t

tc

)θ
)1/(ϕ+1)

. (33)

This has the correct asymptotic behavior of (30) as t/tc grows
large, and is consistent with the behavior of δ (t) derived from
(25) when ϕ = 1, as well as producing a fixed value, δc, when
t = 0, which also accommodates a yielding effect in (31).

As mentioned in the introduction, there are several
experimental works that demonstrate the effects of non-linear
matrix creep [57–62] on fiber stress relaxation and fiber-to-fiber
load transfer around breaks. These include observations of
matrix yielding and interface debonding and slip. The above
results are consistent with the behavior seen, and in large part,
were the motivation for revising this aspect of the previous
model [78].

Distribution Function for Composite
Lifetime in Stress Rupture
Next we model the occurrence of stress rupture in a composite
structure that has been loaded according to (2) for some time
period, and where the fixed applied stress level satisfies σ̄ <

σ̂V . The lifetime distribution function, HV (t; σ̄ ) , t > 0, which
gives the probability of stress-rupture failure occurring by time,
t, can be derived in a manner similar to that used to derive the
strength distribution (17), above. Using similar arguments, the
distribution function for composite lifetime also follows:

HV (t; σ̄ ) ≈ 1− exp
[

−VW
k̂
(t; σ̄ )

]

, t > 0 (34)

analogous to (13), whereW
k̂
(t; σ̄ ) is a characteristic distribution

function analogous to (14), but with an added time component:

W
k̂
(t; σ̄ ) ≈ c

k̂
Fδc (σ̄ )





k̂−1
∏

i=1

Fδc (Kiσ̄ , t)



 (35)

where k̂ is again defined by (21) (where the actual values of Njare
later called Nj,ϕ and specified in more detail). Also Fδc (σ̄ ) is as in
(4), i.e., using (33) with t = 0, and Fδc (σ̄ , t) in [78] is modified
to give:

Fδc (σ̄ , t) = 1− exp

(

−δ (t, σ̄ )

δc

(

σ̄

σδc

)ζ
)

≈ δ (t, σ̄ )

δc

(

σ̄

σδc

)ζ

≈
(

σ̄

σ̂V

)(ϕ−1)/(ϕ+1) (
σ̄

σδc

)ζ( t

tc

)θ/(ϕ+1)

≈
(

σδc

σ̂V

)(ϕ−1)/(ϕ+1) (
σ̄

σδc

)ζ+(ϕ−1)/(ϕ+1)

(

t

tc

)θ/(ϕ+1)

, t ≫ tc (36)

where δ (t, σ̄ ) is given by (30), and the lower-tail approximation,
using (6), is always sufficiently accurate in this setting, since
0 < σ̄ ≪ σδc . Note that Fδc (σ̄ ), corresponding to t = 0, is also
given by (6). Thus, this added time component is based on the
assumptions of linear or non-linear matrix creep and shear lag in
a power law framework, as discussed below.

The key result used here for δ (t, σ̄ )as derived from results in
[66] was given earlier by (30) and (31). Upon substituting this
into the lower-tail approximation for Fδc (σ̄ , t), given in (36),
and then substituting the result into (35), we obtain after some
rearrangement and factoring:

W
k̂
(t; σ̄ ) ≈ c

k̂

(

σδc

σ̂V

)

(

k̂−1
)

ϕ−1
ϕ+1





k̂−1
∏

i=0

Ki





ζ+ ϕ−1
ϕ+1
(

σ̄

σδc

)ζ

(

(

σ̄

σδc

)ζ+ ϕ−1
ϕ+1
(

t

tc

)
θ

ϕ+1

)k̂−1

≈ c
k̂

(

σδc

σ̂V

)

(

k̂−1
)

ϕ−1
ϕ+1





k̂−1
∏

i=0

Ki





ζϕ
(

σ̄

σδc

)k̂ ζϕ− ϕ−1
ϕ+1

(

t

tc

)

(

k̂−1
)

θϕ
2

, t ≫ tc (37)

where

ζϕ = ζ + ϕ − 1

ϕ + 1
. (38)

and

θϕ = 2θ

ϕ + 1
(39)

Substituting (37) into (34), we can write an expression for the
composite lifetime in the form:

HV (t; σ̄ ) ≈ 1− exp











−Vc
k̂

(

σδc

σ̂V

)

(

k̂−1
)

ϕ−1
ϕ+1





k̂−1
∏

i=0

Ki





ζϕ

(

σ̄

σδc

)k̂ζϕ− ϕ−1
ϕ+1
(

t

tc

)

(

k̂−1
)

θϕ
2











(40)

This can also be written as:

HV (t; σ̄ ) ≈ 1− exp







−
(

(

σ̄

σ̂V ,ϕ

)ρ̂ϕ t

tc

)β̂ϕ







, t ≫ tc (41)

where the lifetime shape parameter, β̂ϕ , is given by:

β̂ϕ =
(

k̂− 1
)

θϕ/2, (42)
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and the power-law exponent, ρ̂ϕ , is given by:

ρ̂ϕ =
(

k̂

k̂− 1

)

2

θϕ

(

ζϕ − 1

k̂

ϕ − 1

ϕ + 1

)

, (43)

and where the lifetime scale parameter, σ̂V ,ϕ , is given by:

σ̂V ,ϕ = σδc






Vc

k̂

(

σδc

σ̂V

)

(

k̂−1
)

(ϕ−1)/(ϕ+1)




k̂−1
∏

i=0

Ki





ζϕ






−1

k̂ ζϕ−(ϕ−1)/(ϕ+1)

= σδc

(

Vc
k̂

)
−1

k̂ ζϕ

(

1

1−(ϕ−1)/(ϕ+1) /(k̂ ζϕ)

)





k̂−1
∏

i=0

Ki





(

−1

k̂

)

(

1

1−(ϕ−1)/(ϕ+1) /(k̂ ζϕ)

)

4ϕ (44)

This scale parameter can be reduced to:

σ̂V ,ϕ = σδc









(

Vc
k̂

)−1/
(

k̂ ζϕ

)





k̂−1
∏

i=0

Ki





−1/k̂








1

1−(ϕ−1)/(ϕ+1) /(k̂ ζϕ)

4ϕ

(45)

Where,

4ϕ =
(

σ̂V

σδc

)1/
((

k̂

k̂−1

)(

ϕ+1
ϕ−1

)

ζ+1
)

(46)

and we note that since k̂≫ 1 we have approximately that:

4ϕ →
{

1, as ϕ → 1
(

σ̂V/σδc

)1/(ζ+1)
, as ϕ → ∞ (47)

Also, the exponent 1/
(

1− (ϕ − 1)/(ϕ + 1) /

(

k̂ ζϕ

) )

in the

first term of the right-hand side of (45) is typically very close
to unity.

Thus, the difference between σ̂V ,ϕ of (45) and σ̂V of (18) for
the strength distribution is almost completely dominated by the
factor, 4ϕ , and the effect of ϕ on the first factor on the right-
hand side of (45) is relatively small, since, ζϕ typically differs
little from ζ , which is the Weibull shape parameter for the fiber
strength distribution.

Retrieving Results for Linear Matrix
Viscoelasticity From the Non-linear Matrix
Creep Results
The linear viscoelastic version of the lifetime distribution given in
[78] is retrieved from the results above, simply by setting ϕ = 1,
in which case:

ζϕ = ζ , (48)

β̂ϕ = β̂ ≡
(

k̂− 1
)

θ/2, (49)

ρ̂ϕ = ρ̂ ≡
(

k̂

k̂− 1

)

2ζ

θ
, (50)

and

σ̂V = σδc






Vc

k̂





k̂−1
∏

i=0

Ki





ζ






− 1

k̂ ζ

(51)

since 4ϕ → 1 as ϕ → 1+ in (47). Thus, when ϕ = 1, the scale
parameter, σ̂V , for stress level is identical to that given by (18)
for the strength distribution and the shape parameter, α̂ of (19) is
simply ρ̂β̂ from (49) to (50), which does not involve ϕ.

Interpreting the Strength Distribution in the
Case of Non-linear Matrix Viscoelasticity
The assumption of non-linear viscoelastic behavior of the matrix
does mean, however, that the strength distribution (17), and
associated parameters require reinterpretation. In this case we
use σ̂V ,ϕ of (45) in place of σ̂V in (17) and replace α̂ by:

α̂ϕ = ρ̂ϕ β̂ϕ (52)

based on (49) and (50), which both involve ϕ. Furthermore,
a practically meaningful strength distribution can be extracted
from (41) by setting t = tc.

While both parameters β̂ϕ and ρ̂ϕ see effects from ϕ ≫ 1,

the product ρ̂ϕ β̂ϕ , and thus the effective α̂ϕ on the strength
distribution is little affected. Also, if we use (41) to calculate the
probability of failure by a fixed time, t ≈ tc, associated with
various stress levels, σ̄ , we see that the probability of failure vs.
stress level, σ̄ , also follows a Weibull distribution, with scale
parameter σ̂V ,ϕ of (55), but reduced in magnitude in comparison
to σ̂V of (18), because 4ϕ < 1 since typically σ̂V/σδc < 1. Also,
the Weibull shape parameter now becomes:

α̂ϕ = ρ̂ϕ β̂ϕ = k̂ζϕ − ϕ − 1

ϕ + 1
(53)

By comparison, the Weibull distribution for composite strength
(17), has scale parameter, σ̂V , given by (18), and shape parameter,

α̂ = k̂ζ , given by (19), where implicit to the derivation is that the
timescale for the strength test is 0 < t ≪ tc whereby non-linear
matrix creep effects do not have time not come into play, other
than instantaneous plastic-like effects reflected in Nj in (20) used

to calculate k̂ (see later discussion whereNj becomesNj,ϕ). Such a
derivation requires thinking in terms of (33) rather than (30), the
latter being the basis for the derivation of the lifetime distribution
(41) and the extracted Weibull scale and shape parameters (45)
and (53) for strength.

One effect on Weibull strength behavior, is a slight shift in the
Weibull shape parameter for strength changing from α̂ at short
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times t≪ tc, to α̂ϕ at times t ≈ tc. However, this shift is relatively
small since from (53) and (19) we have:

k̂ζ = α̂ < α̂ϕ < α̂ +
(

k̂− 1
)

= k̂ (ζ + 1) − 1 (54)

where the upper bound occurs when ϕ → ∞. Thus, the
difference in theWeibull shape parameter for composite strength
is less than would occur by increasing the Weibull shape
parameter for fiber strength from ζ to ζ + 1.

In summary, the most important effect on Weibull strength is
seen in comparing the scale parameter, σ̂V , in (18), which is also
the scale parameter for stress level when modeling lifetime under
linear viscoelasticity, to σ̂V ,ϕ of (45).

Effects of Non-linear Matrix Behavior of
Determining the Effective Number of
Overloaded Fiber Elements Surrounding a
Break Cluster and Calculating the Critical
Cluster Size
The key results in the paper, especially the calculation of σ̂V in

(18) and σ̂V ,ϕ in (45) and k̂ itself in (20) require calculation of c
k̂

in (10), which in turn requires calculating Nj, j = 1, 2, · · ·, k̂ − 1
of (11). In Appendix A in the Supplementary Material we have
shown that in the case of non-linear matrix creep, the Nj values
for under a linear viscoelastic matrix or in the absence of time
dependence must be modified to

Nj,ϕ =















22/(ϕ+1)j(ϕ−1)/(ϕ+1),
planar fiber array

φπ (ϕ−1)/(ϕ+1)/2jγ+(ϕ−1)/(ϕ+1)/2,
hexagonal fiber array

, j = 1, 2, 3, . . .

(55)

and these values are used in (10) to calculate, c
k̂
. Clearly the

resulting effect depends on the value of ϕ, and as ϕ → ∞ results
in proportionality to the number of breaks, j, in the planar case,
and in the hexagonal case to

√

j together with a change in φ to
φ
√

π . However, when ϕ → 1+ there is no effect compared to
linear viscoelasticity.

For fiber Weibull shape parameter values, ζ ∼ 5, and
using Monte Carlo failure simulations as a basis for comparison,
Mahesh and Phoenix [44]. suggest the values φ = 2.5 and γ ≈
0.27 using (55) with ϕ → 1+, i.e., for Nj = Nj,1. On the other

hand, taking φ =
√
4π ≈ 3.54 and γ = 1/2 as in [5] has the

interpretation that Nj is the number of neighbors surrounding
a circular cluster of diameterD and containing approximately
j ≈ πD2/4 fiber breaks, as just noted. This results in:

Nj,ϕ = 2
(

√

π j
)1+(ϕ−1)/(ϕ+1)

, hexagonal fiber array,

j = 1, 2, 3, . . . (56)

However, this assumption effectively overcounts the number
of severely overloaded neighbors to growing approximately
hexagonal cluster that has incomplete rings, as some of the actual

neighbors tend to be shielded and loaded significantly less than
others, as discussed in [10, 72]. Nevertheless, non-linear matrix
effects have a considerable effect when ϕ is larger by substantially
increasing the effect of overloading of neighboring fibers to a
break cluster.

Regarding (11), (55), and (56) wemention interesting analyses
and Monte Carlo simulations in Mahesh and colleagues [74–
76] on bundles up to size 106, and which show why values
for γ and φ are difficult to establish, especially as the Weibull
shape parameter, ζ , decreases below 5. They show that the fiber
load-sharing during break cluster formation begins to have ELS-
like behavior in terms of the failure of small ELS bundles as
the cluster grows large. However, the eventual size effect and
distribution shape into the lower tail robustly retains LLS features
and weakest-volume scaling that is the basis for the model we
develop in this paper, especially for ζ values of interest.

LIFETIME DISTRIBUTION OF A
COMPOSITE COMPONENT THAT HAS
SURVIVED A PROOF TEST

Proof testing consists of loading a composite structure to some
proofing stress, σp > σ̄ , and holding that stress for at most a
few minutes, and then lowering the stress to, σ̄ , which is the
stress used in service. The idea is that applying a proof test
will weed out inferior structural components thus improving the
overall reliability of passing components put in service. Classic
models used for composite stress rupture support this strategy.
We shall determine whether this is true for themodels considered
in this paper.

We assume the simplified load profile given by (3) where we
recall that σp > σ̄ was the proof stress held for time 0 ≤ t < tp,
where tp was the proof hold time, after which the stress is reduced
to σ̄ for the life of the component. In studying the effects of
a proof test a special fiber break cluster size becomes relevant,
called kp = kp(σ̄ /σp ), and which satisfies Kkp−1σ̄ < σp ≤ Kkp σ̄ .
From (19) we obtain:

kp =











⌈

4
π

{

(

σp/σ̄
)2 − 1

}⌉

, planar fiber array
⌈

π3

4

{

(

σp/σ̄
)2 − 1

}2
⌉

, hexagonal fiber array
(57)

And typically, kp ≪ k̂. Clusters that form in the proof test that
are smaller than size kp will lead to overloads existing after time
tp, under stress σ̄ , that are smaller than the proof load itself,
i.e., Kkp−1σ̄ < σp. In contrast, clusters that form in the proof
test that are larger than kp will produce overloads, under stress
σ̄ , after time tp that are larger than the proof load itself, i.e.,
σp ≤ Kkp σ̄ . These two conditions give rise to much of the
complication in describing the probability of failure following a
proof test, as given in [78] [Note that special circumstances arise
where σp < σ̂V but σ̄ is so small that σp/σ̄ > σδc/σ̂V , and

thus, kp > k̂. This does not mean that a cluster of size kp actually
occurs, but rather it is one possible cluster size that was originally
considered in the theory in [78]].
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From Equation (72) in [78], the characteristic distribution
function following a proof test is:
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≈ c
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,

t ≥ tp, t ≫ tc, and k̂ ≥ 2 (58)

where Fδc (σ̄ ) is as in (6), and Fδc (σ̄ , t) is as in (36), where (30)
describes the change in overload length as a function of time,
t, and stress, σ̄ , and where c

k̂
is given by (10), and Ni,ϕ by (55).

Furthermore, for any function gi, and any non-negative integers
q, r and i we define:

[[ q
∏

i=r

gi

]]

≡







q
∏

i=r
gi, 1 ≤ r ≤ q

1, 0 ≤ q < r

(59)

where the quantity in double-square parentheses is the usual
product unless q < r where it is unity. We also define a left-
continuous version of the “Heaviside function,” (i.e., H (0) ≡ 0,
instead of equaling “1”):

H (κ) ≡
{

0, κ ≤ 0
1, κ > 0

(60)

and define:

k1 ∨ k2 ≡ min
(

k1, k2
)

(61)

as the minimum of k1 and k2.
Substituting these into (58) and simplifying gives:
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(62)

In the case where ϕ = 1 this reduces to Equation (75) from [78].
Using (62) we can then write an expression for the composite
lifetime, following (34) and using (51) as:
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(63)

where
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t ≥ tp (64)

Of special interest is the reliability of a structure, R
(

t | t ≥ tp
)

,
conditional on surviving a proof test. This is calculated in general
terms using Bayes theorem:

R
(

t | t ≥ tp
)

= R (t)

R
(

tp
) = 1− F (t)

1− F
(

tp
) . (65)

The conditional reliability for lifetime, RV
(

t| t ≥ tp, σp, σ̄
)

,
under a sustained load, σ̄ , and for times t ≥ tp, conditioned
on survived an initial proof loading, σp ≥ σ̄ , up to time tp, is
given as:
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(66)
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Thus, the conditional lifetime distribution following a proof test
is 1− RV

(

t| t ≥ tp, σp, σ̄
)

, yielding:
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, t ≥ tp (67)

Composite Lifetime Distribution Following
a Proof Test Under the Classic CPL-W
Model
Historically stress rupture failure is most commonly described
using the classic power law model in a Weibull framework (CPL-
W model) [1]. For this model, the probability of failure for an
arbitrary stress profile, σ (t) , t ≥ 0, is given by:

HV ,CPL-W (t, σ (�)) = 1− exp
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∫
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,

t ≥ 0. (68)

where the parameters have similar meanings as before, i.e., tc is
still a characteristic time constant and, σref, is a reference stress
scale parameter, β̃ is a lifetime shape parameter and ρ̃ is a power-
law exponent relating lifetime to stress level. However, under the
ramp loading (1), i.e., σ (t) = Rt, t ≥ 0, where R is the loading
rate, the strength distribution takes the form:

HV , CPL-W (σ ;R) = 1− exp







−V

(

(

σ

σref

)ρ̃
σ

R tc (ρ̃ + 1)

)β̃






,

σ ≥ 0 (69)

If σref is chosen originally to satisfy σref = R tc (ρ̃ + 1) then we
can rewrite (69) as:

HV , CPL-W (σ ;R) = 1− exp

{

−
(

σ

σ̃V

)α̃
}

(70)

where

α̃ = β̃ (ρ̃ + 1) (71)

and

σ̃V = V
−1/

(

β̃ρ̃
)

σref (72)

Thus, the CPL-Wmodel’s strength distribution is a standard two
parameter Weibull distribution, with a shape parameter of α̃ and
a scale parameter of σ̃V .

In the case of stress-rupture testing, where the applied load
is constant σ (t) = σ̄ , t ≥ 0 as in (2), then (69) yields the
familiar form:

HV , CPL-W (σ , t) = 1− exp







−
(
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σ̄

σ̃V

)ρ̃ t

tref

)β̃






, t ≥ 0.

(73)

Thus, the CPL-W model for strength and lifetime is similar to
that of current SFB model, but with a slightly different strength
shape parameter, β̃ (ρ̃ + 1), in (69) vs. ρ̂ϕ β̂ϕ from (42) and (43).

Using (67) in the CPL-W model, the lifetime distribution
having survived the proof test is:

HV , CPL−W
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, t ≥ tp (74)

and noting that 0 < β̃ ≪ 1 we can expand the above to give:

HV , CPL−W

(

t| t ≥ tp, σp, σ̄
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≈ 1− exp
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(
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σ̃V

)ρ̃ tp
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1+ β̃
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, t ≥ tp (75)

which is accurate at least out to the time, t = ts in (73)
where the argument is unity and the failure probability is
HV , CPL-W (σ , ts) = 1 − e−1 = 0.632, so more than ½. For
transparency, we have written (75) in a form for easy comparison
to the corresponding result (67), from our model. For σ̄ < σp <

σ̃V , inspection of (75) or (74) compared to (73) shows that, in the
CPL-W model, proof testing will always reduce the probability
of failure (increase the reliability) at any later time for specimens
that “pass” (survive) the proof test.

Thus, despite these similarities in the strength and lifetime
distributions in the model developed in the paper vs. the CPL-
W model, for more complex loading profiles, such as a proof
test, these models will have very different results, with the CPL-W
model predicting an increased conditional reliability after a proof
test and the current model predicting a decreased reliability [78].

RESULTS AND DISCUSSION

We have introduced a new model that builds on our previous
model in [78] and involves two new parameters, ϕ and σy,
which account for non-linear effects in matrix creep and matrix
yielding in shear, respectively. In the limit of ϕ → 1+we
recover the previous model based on a linearly viscoelastic
matrix, whereupon the effects of σy also vanish. In this section
we study the subtle effects of varying these two new parameters,
beginning with their influence on characterizing the composite
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volume in the model, and followed by how they also influence
the distributions for composite strength and lifetime.

In such a complex model parametric studies are useful for
understanding the effects of the various parameters and their
combinations on overall behavior. In the examples below, we
choose to vary model parameter values keeping in mind that,
in practice, experimental values for several of these parameters
may not be readily accessible. More often, statistical data sets
are available from strength and lifetime tests on composite
samples in multiple replications, where the lifetime tests have
been replicated at several stress levels for various times (often
months, and sometimes years). Thus, we vary certain model
parameters governing fiber and matrix interactions at the
microscale in order to observe their effects on parameters
such as Weibull shape and scale parameters for strength and
lifetime, that are typically obtained from fitting actual test data
to models that are largely phenomenological [2]. This way the
“practical” effects of various parameter choices will become more
readily apparent.

Typical Parameter Values and Implications
on Interpretation of Volume of Material in a
Specimen or Component Being Loaded
This new model requires a more careful interpretation of
the role of the “volume” parameter, V , which happens to
be the number of material elements of length δc in the
composite, rather than the physical composite volume under
load expressed, for instance, as the total volume of fiber in
the loaded composite. In our parametric study, we naturally
desire to keep the physical composite volume constant for
all cases. However, as both ϕ and σy change in the new
model, so does the element length, δc, sometimes increasing
by an order of magnitude, which means that the number
of elements, V , must likewise decrease. Since δc, changes
according to (31), we can see that, V , varies following
the relation:

V ∝
(

σy/σ̂V
)(ϕ−1)/(ϕ+1)

. (76)

FIGURE 1 | Tows with fibers in a planar array and with matrix parameter, ϕ = 1.
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The definition of δc in (31), also involves (7), (8), and (32), and
thus, δc can also be written as:

δc = δ̂c

(

σ̂V

σy

)(ϕ−1)/(ϕ+1)

= 4

ζ + 1
δe

(

σ̂V

σy

)(ϕ−1)/(ϕ+1)

(77)

where δe ≈ d
√

(E/Ge )
(

w/d
)

and σy = 2τyδe/d . Also, σ̂V ,

given by (18), depends on ζ , and onV itself, although, it is largely

free of ϕ and σy except through minor effects on k̂.

Typical Values of Various Micromechanical

Parameters
Typically w/d ∼ 1/4 , E/Ge ∼ 200, and τy ≈ 35MPa, and
thus, δe ≈ d

√
(1/4 ) (200) = 7.07d and σy ≈ 2 (35) (7.07) ≈

500MPa. This value of the tensile stress level σy, which is
associated with driving matrix yielding shear around a fiber
break, turns out to be an order of magnitude smaller than values
typically obtained for σ̂V , hence the ratio, σ̂V/σy will have a
strong influence on the magnitude of the characteristic element

length δc in (77), and thus on number fiber elements,V , in a given
physical volume according to (76). Note that the effect on V in
(76) can result in no effect at all when ϕ = 1, to a reduction in V
by an order of magnitude when ϕ ≫ 1.

The implications of (76) and (77) are thus twofold: First, the
number of elements, V , changes in formulas such as (18) or (45)
for determining the Weibull scale parameter for strength, and

in (21) for determining the critical cluster size, k̂. Second, the
change in the volume parameter,V , in (76) is also associated with
a change in the failure probability of a fiber element in (6) or
(36), through the influence of δc on σδc . However, he effect of
non-linear viscoplasticity is also seen in the difference between
the Weibull scale parameters for strength, σ̂V of (18), and σ̂V ,ϕ of
(45), through the factor, 4ϕ , of (46). For instance, in the case of

a 2D array where k̂ = 8, ϕ = 4, ζ = 5, and using (9) and (20),
we obtain approximately σ̂V/σδc = 1/2.70 = 0.370, and thus
(46) gives:

4ϕ = (0.370)1/
(

1+
(

8
7

)(

5
3

)

5
)

= (0.370)1/10.52 = 0.910 (78)

FIGURE 2 | Tows with fibers in a planar array and matrix parameters, ϕ = 10 and σy = 0.5GPa.
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Hence, the effect on composite strength, as viewed through the
Weibull scale parameter, σ̂V ,ϕ , compared to σ̂V of the previous
model in [78], also amounts to a strength reduction of about
9%, which is distinct from the ultimate effect of (76) and (77)
in changing the number of fiber elements, V , despite assuming
a fixed overall composite volume.

Parametric Study of Effects of ϕ and σy on
Strength and Lifetime in Two Applications
To illustrate the implications of varying the two new parameters,
ϕ and σy, we study two particular applications of the carbon
fiber/epoxymatrix composites, namely: (i) the behavior of epoxy-
impregnated, carbon fiber yarns (often called carbon/epoxy tows)
building on fiber and matrix properties, and (ii) the behavior at a
larger scale of composite overwrapped pressure vessels (COPVs)
building on tow element and inter-tow interface properties.
which govern the length-scale of tow element load-sharing over
time. The values of various parameters for the cases of each
application are listed at the bottom of each figure. This includes

those parameters initially set in the model and those derived
from the model itself. For simplicity, in all cases we set the
characteristic matrix creep time as tc = 0.01 hour and the proof-
test time as, tp = 1 hour, however, result will be presented in
terms of scaled time, t/tc .

Note that the value of θϕ in (39) has been determined in each
application so that the power law exponent, ρ̂ϕ (or ρ̃), relating
lifetime to stress level generally lies in the range 86–114. Such
values are representative of carbon/epoxy composites (at ambient
temperatures). They also allow for easy comparison among the
cases as well as providing amore fruitful demonstration of certain
model features. For all but one case, the resulting Weibull shape
parameters for lifetime, β̂ϕ or β̃ , satisfy, 0 < β̂ϕ < 1, however
values vary considerably across the various cases, as do values for
theWeibull scale parameters for strength and load level, σ̂V , σ̂V ,ϕ
and σ̃V . Investigation of changes in behavior of these Weibull
strength and lifetime parameters with changes in ϕ and σy is a
key aspect of the study. These values are all given for each case at
the bottom of each figure.

FIGURE 3 | Tows with fibers in a planar array and matrix parameters ϕ = 10 and σy = 0.05GPa.
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Additional Parametric Details in the Application to

Carbon/Epoxy Tows
The first application involves predicting the strength and lifetime
distributions of carbon/epoxy tows assuming the fibers follow a
Weibull distribution for strength with shape parameter, ζ = 5,
and scale parameter σ

δ̂c
= 25 GPa. Here we note that δ̂c = δc

in the special case ϕ = 1, but not when ϕ > 1 and σy < σ̂V .

In the latter case δc > δ̂c from (31) and (32), and thus, σδc <

25 GPa based on (77). In this application to tow behavior we
consider both versions of fiber-to-fiber load-sharing: the first is
a planar fiber array, and the second, a fiber array with hexagonal
fiber packing and associated fiber stress redistribution, but also
assuming two different versions of the number of overload fibers
around a break cluster, i.e., (55) vs (56). Results are shown in
Figures 1–3 for a planar fiber array, and in Figures 4–6, for a
hexagonal fiber array, where Figures 4, 5 are under (55) and
Figure 6 is under (56). Among all six figures, Figures 1, 4, show
results for the special case, ϕ = 1, which also happen to serve as
results under the previous model [78] for a linearly viscoelastic

matrix. Thus, these figures provide a basis for comparison of
results from the previous model to the new model in Figures 2,
3, 5, 6, where ϕ > 1 and σy play a major role.

Additional Parametric Details in the Application to

COPVs
The second application involves predicting the strength of
COPVs based on tow strength properties, as specified for the tow
elements in the model, where by the Weibull shape parameter is
ζ = 20, and scale parameter is σ

δ̂c
= 8.0 GPa corresponding

to the case ϕ = 1, where δ̂c = δc. In Figure 7 we show
results for a planar array of tows and associated load-sharing,
and in Figure 8 we show results for tows in a hexagonal array
and sharing load accordingly with (56) governing the number
of overloaded neighbors to a cluster. In both cases we assume
ϕ = 10 and σy = 0.25 GPa for purposes of modeling interface
creep or tow slippage in shear between tows (Results for ϕ = 1
are not shown).

FIGURE 4 | Tows with fibers in a hexagonal array and matrix parameter, ϕ = 1, and with φ = 2.5 and γ = 0.27 in (55) for calculating number of susceptible fibers

around a cluster.
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FIGURE 5 | Tows with fibers in a hexagonal array and matrix parameters ϕ = 10 and σy = 0.50GPa, with φ = 2.5 and γ = 0.27 in (55) used to calculate number of

susceptible fibers around a cluster.

Plotted Quantities and Applied Loadings Used in

Each Particular Application and Case
For all cases plotted in Figure 1 through Figure 8, time begins
at t = 0, though the horizontal axes and plotting of the graphs
begins only at t = tp. For this reason, a virgin specimen initially
loaded at t = 0 can potentially fail before time tp, which is why
the failure probability at time, t = tpis already distinctly non-
zero. On the other hand, a proof-tested vessel sees its proof test
applied over the time period, 0 ≤ t < tp, and if it fails it is
replaced by one that has survived the proof test, at which point
time continues onward, i.e. tp ≤ t. Consequently, exactly at
time t = tp the probability of failure of the proof-tested vessel,
being a conditional probability of failure, is by definition zero.
However, because of the proof test it will have many broken fiber
elements that otherwise would not have occurred, had it been
a virgin specimen that survived to time t = tp. Thus, only a
short time later at some time, [[Mathtype-mtef1-eqn-619.mtf]],
its probability of failure shoots up beyond what occurs without
the proof test. This “overshoot” after the proof test is a key feature

of the model that generally does not occur for the classic CPL-W
model or other models.

These effects are seen in all the figures, where the solid blue
line represents the failure probability vs. time for a lifetime test
under a constant loading (2), i.e., absent a proof test, both for
the classic power-law (CPL-W) model and the current stochastic
fiber breakage (SFB) model (which happen to be the same when
parameter values in (73) and (41) are appropriately matched). In
cases involving a proof test under loading (3), the conditional
probability of failure vs. time following survival of the proof test
is given as a solid orange line for the SFB model, and a dashed
yellow line for the CPL-W model. Above each figure panel is
the loading condition for that particular case, where the results
presented for specific tow cases are in Figures 1–6, and specific
COPV cases in Figures 7, 8. The loading parameter “SR” in the
various cases refers to the stress ratio used for that figure panel,
which is the constant applied stress, σ̄ , in the lifetime test, divided
by the Weibull stress scale parameter, σ̂V ,ϕ , for that case. The
parameter “PR” refers to the proof stress ratio used in a particular
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FIGURE 6 | Tow lifetime distribution with fibers arranged in a hexagonal array with number of overloaded neighbors following (56), and with matrix parameters ϕ = 10

and σy = 0.50GPa.

case of a figure, being the ratio of the proof stress to the applied
stress in the lifetime test, σp/σ̄ . Note that each figure presents
plots for two different stress ratios and three different proof ratios
in tows and two different proof ratios in COPVs. Also kp refers to
the special proof cluster size defined by (57).

Common Features of Plots Associated With a Proof

Test, Whether for Tows or for COPVs
All figures show that when the stress in a proof test is the same
as the lifetime stress level, i.e., σp = σ̄ , the SFB and CPL-
W models predict the same results for probability of failure vs.
time, although with failure probabilities that are initially lower
than when no proof test is applied. However, when σp > σ̄ ,
the SFB model always predicts an higher probability of failure
compared to a standard lifetime test without a proof test, which is
sometimes higher by several orders of magnitude. In contrast, the
CPL-Wmodel predicts a lower probability of failure after a proof
test in the typical case where 0 < βϕ < 1, and typically by several
orders of magnitude. However, in the CPL-W model a higher

probability of failure does occur when βϕ > 1 (see Figures 4,
8), though not of the magnitude seen in the SFP model. This is a
critical difference between the two models, SFB vs CPL-W, also
discussed extensively in [78] for the special case ϕ = 1.

Additional Features of Effects of ϕ and σy on the

Strength Distribution of Tows
Figure 1 through Figure 3 show the lifetime distribution of a
carbon/epoxy tow assuming a planar fiber configuration and
planar load-sharing. Figures 1, 2 showing the effects of changing
ϕ from 1 to 10 when σy = 0.5GPa, and Figures 2, 3 demonstrate
the effect of further lowering σy by an order of magnitude to
σy = 0.05GPa, while maintaining ϕ = 10 (when ϕ = 1 there is
no effect from changing σy). In Figures 2, 3, choosing ϕ > 1 with
σy < σ̂V , requires reducing, V , the number of fiber elements in
the model, in order to maintain the same total material volume.
This reduction in V is associated with the previously mentioned,
increase in δc, which results in a decrease in σδc as well as a

decrease in the critical cluster size k̂ from the value k̂ = 10 in
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FIGURE 7 | COPV lifetime distribution where tows are modeled as being arranged in a planar array, and with matrix parameter ϕ = 10 and σy = 0.25GPa.

Figure 1, to k̂ = 7 in Figure 2 and to k̂ = 6 in Figure 3. This

reduction in k̂ causes a proportional lowering of the Weibull

shape parameter for strength, α̂ = k̂ζ in (19) from α̂ = 50
in Figure 1 down to α̂ = 30 in Figure 3, which happens to
be a more realistic value for tows compared to those obtained
experimentally, but still somewhat larger. This decrease in α̂

reflects an increase in the variability in tow strength.
A significant decrease also occurs in the Weibull scale

parameter for tow strength, σ̂V , from σ̂V = 7.80GPa in Figure 1

to σ̂V = 5.22GPain Figure 2 and then to σ̂V = 3.97GPa in
Figure 3 (Effects on σ̂V ,ϕ will be discussed later in connection
with lifetime behavior). This amounts to decreases of as much
as 50% in strength. Once again, the Weibull shape and scale
parameter values for tow strength associated with Figure 1

are overly optimistic compared to the more realistic values in
Figures 2, 3. Clearly non-linear matrix creep and yielding can
result in large effect in terms of lowering the composite strength
and increasing its variability compared to the case of ϕ = 1.

Figure 4 through Figure 6 provide results similar to those in
Figure 1 through Figure 3, but for the case of hexagonal fiber
packing and associated load-sharing. Figures 4, 5 involve using
the parameter values φ = 2.5 and γ = 0.27 in (55), which
determines the number of fibers around a cluster susceptible
to failure in growing a cluster. Figure 6 is similar to Figure 5,

except that now φ =
√
4π and γ = 0.5, as was used in (56),

for determining the number of susceptible neighbors. Otherwise
we maintain ϕ = 10 and σy = 0.5GPa. Reductions are again
needed in the number of fiber elements, V , with increasing δc,
to maintain the same overall material volume, and the result is a
large decrease in the critical cluster size k̂ from k̂ = 19 in Figure 4

to k̂ = 12 in Figure 5 and to k̂ = 10 in Figure 6. Likewise a
proportional lowering of the Weibull strength shape parameter,

α̂ = k̂ζ , occurs from α̂ = 95 in Figure 4 down to α̂ = 50
in Figure 6 as well as a large drop in the Weibull strength scale
parameter from σ̂V = 11.18GPain Figure 4 to σ̂V = 5.47GPa in
Figure 6, which is a reduction by one-half.

Once again, the values seen in Figure 4 for ϕ = 1 are overly
optimistic compared to the more realistic values in Figures 5,
6, as found in experiments, though still larger. Once again non-
linear matrix creep and yielding can result in a large decrease in
the strength of the composite and an increase in its variability.

Additional Features of Effects of ϕ and σy on the

Lifetime Distribution of Tows
Figure 1 through Figure 6 demonstrate the effects on the
composite tow lifetime distribution not only from changes in ϕ

and σy, but also from changes in the load-sharing arrangement
of the fibers in the tow (planar vs. hexagonal in two versions).
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FIGURE 8 | COPV where tows are modeled as being arranged in a hexagonal array under (56) for the number of overloaded tows around a cluster, and where ϕ = 10

and σy = 0.25GPa.

The latter changes are seen in comparing the two groups of
figures, namely Figure 1 through Figure 3with Figure 4 through
Figure 6.

In Figure 1 through Figure 3, a major effect of the decrease

seen in k̂ from k̂ = 10 in Figure 1 down to k̂ = 6 in Figure 3, is to
decrease the Weibull lifetime shape parameter, from β̂ϕ = 0.54

to β̂ϕ = 0.30. Likewise the lifetime stress scale, σ̂V ,ϕ , decreases
from σ̂V ,ϕ = σ̂V = 7.80GPa down to σ̂V ,ϕ = 3.70GPa, a
reduction by more than a factor of two. On the other hand the
effect on ρ̂ϕ is modest and its value increases from ρ̂ϕ = 93 in
Figure 1 to ρ̂ϕ = 114 in Figure 3. This is caused largely by the

dependence of ρ̂ϕ on k̂ in (43). Otherwise, the plots in Figure 1

through Figure 3 show very similar behavior, with much of the
difference in plotted probability values caused by the decrease
in β̂ϕ (and resulting increase in variability) thus increasing the
failure probabilities since the effect of σ̂V ,ϕ is scaled out, and the
change in ρ̂ϕ is comparatively smaller.

Similarly in Figure 4 through Figure 6, a major effect of the

decrease in k̂ from k̂ = 19 in Figure 4 down to k̂ = 10 in
Figure 6, is to decrease the Weibull shape parameter for lifetime
from β̂ϕ = 1.08 in Figure 4 to β̂ϕ = 0.54 in Figure 6. Note

that since β̂ϕ = 1.08 > 1, which means β̃ = 1.08 > 1
in the CPL-W model, a proof test in that model results in a
slight increase in the probability of failure over time compared

to having no proof test. Likewise the decrease in k̂ also results in a

large decrease in the Weibull lifetime stress scale, σ̂V ,ϕ , decreases
from σ̂V ,ϕ = σ̂V = 11.18GPa down to the more realistic
value, σ̂V ,ϕ = 5.28GPa, again by almost a factor of two. Both
parameters exhibit reductions by a factor of two. On the other
hand, the effect on ρ̂ϕ is a more modest increase from ρ̂ϕ = 88 in
Figure 4 to ρ̂ϕ = 106 in Figure 6, as a result of the dependence

of ρ̂ϕ on k̂ in (43).
Otherwise, the plots in Figure 1 through Figure 6 show

very similar behavior where much of the difference in plotted
probability values is caused by the decrease in β̂ϕ since the large
effect of σ̂V ,ϕ is scaled out, and the change in ρ̂ϕ is modest
by comparison. Generally, the effects seen in Figure 1 through
Figure 6 follow patterns previously discussed in [78].

Effects of ϕ and σy on COPV Strength Based on Tow

Elements Having Weibull Strength
Figures 7, 8 show results for COPV strength and lifetime
assuming tow elements have Weibull strength with shape
parameter ζ = 20 (a more conservative value than the theoretical
values in Figures 3, 6) and scale parameter that in both cases
turns out to be σδc = 7.1GPa. Both figures assume ϕ = 10
and σy = 0.25GPa for the interface between tows, and thus, the
value of σδc is lower than σ

δ̂c
= 8.0GPa for the case ϕ = 1 as a

result of a factor of about 10 increase in tow element length δc as
compared to δ̂c. This element length change also results in a factor
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of 10 reduction in V . Note that the results in Figure 7 assume
planar load-sharing among tows, whereas Figure 8 assumes tows
arranged and sharing load in a hexagonal configuration with (56)
governing the number of overloaded tow elements surrounding
a cluster of tow breaks.

The change in tow load-sharing mechanism leads to an

increase in the critical cluster size, k̂, from k̂ = 3 in Figure 7,

to k̂ = 5 in Figure 8. This in turn causes a proportional increase

in theWeibull shape parameter for strength, α̂ = k̂ζ in (19) from
α̂ = 60 in Figure 7 to α̂ = 100 in Figure 8, thus reflecting a
substantial decrease in the variability in COPV strength. There is
also a significant increase in theWeibull strength scale parameter,
σ̂V , from σ̂V = 4.25GPa in Figure 7 to σ̂V = 4.66GPa in
Figure 8. This increase in σ̂V of about 10% for a COPV is much
less than in the case of tows, largely because the starting value
of ζ is a larger value, 20, rather than 5, and the effect on the

value of k̂ is also much smaller. Nevertheless, changing the value
of ϕ from ϕ = 1 to ϕ = 10 together with the choice of
σy = 0.10GPa ≪ σ̂V does have the effect of decreasing the
COPV strength and increasing its variability (results for ϕ = 1
not shown).

Effects of ϕ and σy on the Lifetime Distribution of

COPVs in Stress-Rupture
Figures 7, 8 also demonstrate the effects on the composite
lifetime distribution of changes in the tow load-sharing
arrangement from a planar array to a hexagonal array. A major

effect is again to increase k̂ from k̂ = 3 in Figure 7 to k̂ = 5 in
Figure 8, which leads to an increase theWeibull shape parameter
for lifetime, from β̂ϕ = 0.60 to β̂ϕ = 1.20. Likewise the Weibull
lifetime stress scale, σ̂V ,ϕ , increases from σ̂V ,ϕ = 4.20GPa to
σ̂V ,ϕ = 4.62GPa. On the other hand there is a decrease in ρ̂ϕ ,
from ρ̂ϕ = 103 to ρ̂ϕ = 86, which in part also contributed to

the large increase in β̂ϕ . Otherwise, the plots show very similar
behavior, withmuch of the difference in plotted probability values
caused by the increase in β̂ϕ since the effect of σ̂V ,ϕ is scaled
out, and there a relatively smaller change in ρ̂ϕ . Again since

β̂ϕ = 1.20 > 1, and thus β̃ = 1.20 > 1 in the CPLW model,
a proof test in that model results in a substantial increase in the
probability of failure over time compared to having no proof test.
Once again, however, the increase is modest compared to the
large increase seen in the SFB model of the current work.

CONCLUSIONS

In this work we have generalized the SFB model derived in
[78], by extending the linearly viscoelastic matrix creep behavior
into the non-linear range. The linear viscoelastic version can be
obtained from the current model by setting ϕ = 1. Since the
general form of the SFB model does not change by adding non-
linear viscoelasticity, the conclusions regarding the detrimental
effects of proof testing still hold as were demonstrated in Figure 1
through Figure 8.

A key advantage of the current non-linear creep model over
the linear viscoelastic model with instantaneous shear modulus,
Ge, is that all the above factors can be accounted for directly in
the model when calculating the distribution for lifetime. This

eliminates the need, in the linear model, to artificially account for
fiber-matrix debonding or matrix shear failure and its effect on
increasing the value δc when trying to make strength predictions
using (17) or lifetime predictions using (41) together with (48)
through (51). This is the critically important aspect of the
new work.

Finally, the development of a stress-rupture model is certainly
an important aspect of the overall technological challenge of
designing and manufacturing highly reliable and human-safe
composite structures, such as COPVS. However, such efforts still
rely on the generation of experimental data, as well as drawing
on databases of previous experimental work and the modeling
approaches used to design the experiments and interpret the data.
A comparison of various models that have been used (which are
largely phenomenological such as the CPL-W model), is given
in [1]. General and parametric features of experimental data for
unidirectional composites that consist of a wide variety of fibers
in a polymermatrix, as well as commonly used statistical methods
(such as maximum likelihood) are discussed in [2]. Also, in
[2] uncertainty distributions on model parameters are obtained
using Monte Carlo simulation. In [3] a unified maximum-
likelihood method is developed for the CPL-W model with
the goal of reducing uncertainty in parameter and reliability
estimation. Finally, in [4] further maximum likelihood analysis
is devoted to removing bias and characterizing uncertainty in
both model parameters and reliability estimates. Monte Carlo
simulation is used to study uncertainty in the parameter and
reliability estimates and to assess bias. In both [3] and [4]
the method is demonstrated using strength and lifetime data
generated on small carbon/epoxy COPVs tested at the NASA
White Sands Test Facility over a two and a half year period.
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