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A Poincaré sphere is a powerful prescription to describe a polarized state of coherent

photons, oscillating along certain directions. The polarized state is described by a vector

in the sphere, and various passive optical components, such as polarization plates

and quartz rotators are able to rotate the vectorial state by changing the phase and

the amplitude among two orthogonal basis states. The polarization is originated from

spin of photons, and recently, significant attentions have been made for optical Orbital

Angular Momentum (OAM) as another fundamental degree of freedom for photons. The

beam shape of photons with OAM is a vortex with a topological charge at the core, and

the state of vortexed photons can be described by a hyper-Poincaré sphere. Here, we

propose a compact Poincaré rotator, which controls a vortexed state of photons in a

silicon photonic platform, based on Finite-Difference Time-Domain (FDTD) simulations.

A ring-shaped gear is evanescently coupled to two silicon photonic waveguides, which

convert optical momentum to OAMwith both left and right vortexed states. By controlling

the relative phase and the amplitude of two traveling waves in input ports, we can control

the vortexed states in the hyper-Poincaré sphere for photons out of the gear. The impact

of the geometrical Pancharatnam-Berry-Guoy’s phase and the conservation law of spin

and OAM for vortexed photons out of the gear are discussed.

Keywords: orbital angular momentum, vortex, Poincaré sphere, stokes parameter, silicon photonics

1. INTRODUCTION

Planck discovered momentum p of a photon is determined by its wavelength λ in a vacuum as

p = h

λ
= h̄

2π

λ
= h̄k, (1)

where h is the Plank constant [1], h̄ = h/(2π)is the Dirac constant [2], and k is the wavenumber,
through investigations on black body radiation [3, 4]. This discovery was a landmark for the
development of quantum mechanics, which is based on fundamental principles of all elementary
particles [5–7]. The quantization condition of the Plank formula was further refined by the
Bohr-Sommerfeld model [3, 4, 8, 9],

∮

C
p · dq = nh, (2)

where q is a generalized coordinate, which is the conjugate of the momentum p for a counter
integration along a closed loop of C, and n is a quantum number for this orbital. By applying
the quantization condition for the orbitals of electrons in an atom, the electronic structures
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were systematically classified by radial and azimuthal quantum
numbers for energy and angular momentum to explain various
material properties based on atomic orbitals for the periodic
table [3, 4, 8, 9]. In modern quantum mechanics, momentum
and angular momentum are understood based on generators of
translational and rotational symmetries of the system [5–7, 10–
13]. It is interesting to be aware that both photons and electrons
are characterized by integer quantum numbers of orbitals,
regardless of the difference in statistics governed by Bose-Einstein
and Fermi-Dirac distribution functions, respectively [14–18].

Despite its historical importance on the nature of photons,
it is relatively recent to pay attention to optical Orbital Angular
Momentum (OAM) [19–46]. Allen et al. showed that the optical
beam with Laguerre-Gauss mode carry OAM of h̄m per photon
along the direction of propagation, where m is the integer
quantum number to characterize the helical rotation of the phase
front [19]. In order to allow the finite OAM (|m| 6= 0), the
amplitude of the Laguerre-Gauss mode must have nodes at the
core, and m is the winding number of the phase along the
closed contour perpendicular to the direction of propagation
[19, 32, 33, 47–49]. m is also called as a topological charge
[19, 21, 22, 26, 32, 33, 35, 38, 39]. From fundamental points of
views, it was argued whether it is possible to split spin angular
momentum andOAM from the total angularmomentum defined
from the Poynting vector [24], or not [20, 27, 34]. This issue is
posing a critical question whether we can treat OAM as a similar
degree of freedom with polarization [50, 51] for internal spin
degree of freedom. It is beyond our scope of this paper to explore
the splitting issue of spin and OAM in a rigorous way [20, 27, 34].

Practically, however, it is well-established that a state with
OAM is described in a hyper-Poincaré sphere [21, 28, 36, 37]
similar to a Poincaré sphere [52–54] for visualizing Stokes
parameters [47, 48, 52, 54–64] of polarization states. Polarization
states are described by two level systems corresponding to an
arbitrary orthogonal states, such as left (|L〉) and right (|R〉)
circularly polarized states, horizontally (|H〉) and vertically (|V〉)
linear-polarized states, or diagonally (|D〉) and anti-diagonally
(|A〉) polarized linear-polarized states [47, 48, 52, 54–64]. We
can also consider corresponding states with OAM in the hyper-
Poincaré sphere [21, 28, 36, 37]. We propose to call a beam with
OAM as vortexed in a close similarity to polarized photons.

Padgett and Courtial proposed to use a hyper-Poincaré sphere
by using a superposition states of left- and right- vortexed states,
and demonstrated such a superposition state is controlled by a
phase-shift, generated by rotated cylindrical lenses [21, 65]. In the
definition of the work of Padgett and Courtial [21], the duality
between vortexed states and polarized states was discussed in
general, and the polarization state of the vortexed state was not
specified. Thus, the superposition of left- and right vortexed
states with a certain fixed polarization state was considered [21].
Later, Milione et al. clarified the polarization states for photons
with OAM, and showed rich vortexed states could be realized
by allowing the superposition states of orthogonally polarized
states with a proper OAM [28]. Here, instead of considering left-
and right-vortexed states, arbitrary polarized states with a certain
vortexed state were clarified, and the further superposition
states with different OAM states were also discussed [28].

More recently, several groups successfully generated arbitrary
OAM states by transferring polarized states to vortexed states
[36, 37, 66].

In order to change the polarized state in Poincaré sphere, we
can utilize various passive and active optical components, such as
retarder plates, phase-shifters,Mach-Zehndermodulators, quartz
rotators and so on [48, 50, 51, 60, 62, 64]. We can also use several
optical components, such as vortex retarders [25, 31] and novel
micro-gears [29, 67–69] for the generations of beams with OAM.

In particular, the micro-gears [29, 68, 69] in a silicon (Si)
photonic platform [70, 71] are promising to encode various
vortexed states, such as amplitudes, phases, and vorticities
(topological charges) for high-speed optical communications
[72] as well as for potential quantum communications [46].

Nevertheless, it is not so straightforward to manipulate
vortexed states dynamically for photons in the hyper-Poincaré
sphere, compared with the polarized photons without OAM, due
to the lack of appropriate phase-shifters and rotators for OAM,
compared with those for polarization.

Motivated by these fundamental progresses on OAM and
practical advances in Si photonics, here, we propose a Poincaré
rotator to generate a beam with an arbitrary vortexed photons
in an integrated optical circuit. We use Finite-Difference
Time-Domain (FDTD) simulations for an Si micro-gear [29]
evanescently coupled to two Si photonic wire waveguides
(Figure 1). We discuss the impacts of the conservation law of
OAM and spin as well as the geometrical Pancharatnam-Berry-
Guoy’s phase [26, 48, 73–76] for vortexed photons.

2. MODEL

2.1. Device Structure
The device structure is schematically shown in Figure 1. We
assume the use of Si-On-Insulator (SOI) substrate with the top
Si layer thickness t of 220 nm, on the buried-oxide (BOX)
thickness of 2µm or beyond on top of the supporting Si substrate
[70, 71]. Two standard straight wire waveguides are designed to
be single mode with the width W of 440 nm. The polarization
of the mode propagating in the Si wire waveguide is the quasi-
Transverse-Electric (TE) mode [47, 48, 70], such that the electric
field is dominated by the horizontal linearly polarized state with
the momentum p = h̄kneff , given by the wavenumber kneff =
2πneff/λ with the effective refractive index of neff.

The Si wire waveguides are located near the Si micro-gear
(Figures 1A,B,D,E) with the distance d of 100nm. We have also
considered a ring resonator (Figure 1C) for the reference. The
width of both gears and a ring is the same width (W) with the
waveguide. The radius R of gears and a ring is 1µm.

For the gear, we introduced the grating in the inner surface of
the ring. The depth of the dip dr = W/2 is designed to be half
of the waveguide width. We have calculated modes for gears with
the grating number N of 10 (Figure 1B), 9 (Figure 1D), and 8
(Figure 1E), respectively, in order to see the impact of the grating
to the conservation law. The wavelength we have considered in
this work is fixed at λ = 1, 540 nm, for which the grating of
N = 10 satisfies the Bragg reflection condition.
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FIGURE 1 | Poincaré rotator. (A) Birds’ view of the proposed device. The silicon (Si) micro-gear is coupled to two Si wire waveguides located on top of silicon dioxide

(SiO2). Two input ports (1 and 2) are used to inject photons with certain phases and amplitudes to generate a vortex beam with a superposition state of left and right

vortexed states. The thickness of the Si layer is t = 220 nm. (B) Gear of the grating number N of 10. The width of waveguide is W = 440 nm. The depth of the grating

dip is dr = 220 nm. The distance of between the gear and the waveguide is d = 100 nm. The radius of the grating is 1µm. (C) Ring resonator for the reference. Unit

vectors of nr and nφ are shown. (D) Gears of N = 9. (E) Gears of N = 8.
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Two input ports of 1 and 2 are used to inject photons from the
waveguide into the gear. Photons from port 1 will couple to the
gear to rotate along the right hand direction, seen from the top of
the chip (from the +z direction), while photons from port 2 will
rotate the gear along the left hand direction. The idea is to control
the phase and the amplitude of the input ports to generate the
vortexed photons under a superposition state between left and
right vortexed states.

One might think that one bus arrangement is enough to
generate both left- and right- vortexed states, as demonstrated in
previous works [29, 68]. In our case, however, we are considering
to connect the waveguides to integrated Si photonic optical
modulators [70, 71, 77] to allow the phase-shift for left- and
right-vortices. Unfortunately, the coupling efficiency to a ring
resonator from a waveguide is not high [70, 78, 79], and it is
extremely sensitive to temperatures. Therefore, we must avoid
interferences from the lights passing into the other ports. So far,
on-chip isolators [80] are not integrated as an option for standard
foundries of Si photonics chip, yet. A practical option at this
moment was to employ two-bus arrangements [69, 81], such that
the transmitted lights in the through-ports could be terminated
to avoid the back reflections.

Here, we had better to explain our definition of the rotation.
We use a standard right handed (x, y, z) coordinate as shown
in Figure 1. (x, y) define the plane for the surface of the SOI
substrate, and z is perpendicular to the substrate. We define the
direction of rotation of photons, seen from the detector side. We
believe this is a natural direction to describe the rotation, since
we consider the rotation of the phase front in the (x, y) plane for
a vortex, propagating along the +z direction. Consequently, the
phase front of the left vortex is rotating in the counter clock wise
(left rotation), seen from the +z direction, while the phase front
of the right vortex is rotating in the clock wise (right rotation).
We had better to clarify the way to describe the time evolution
of the wave. We use ei(kz−ωt) for the plane wave propagating
along +z direction over t with the wavenumber of k and the
angular frequency of ω. Physicists prefer this definition, while
engineers prefer e−i(kz−ωt). Due to the duality for the definition
of the imaginary number, i2 = (−i)2 = 1, both definitions
work, properly. The use of a complex electric field is a useful
technique to calculate an electro-magnetic field, and there is no
issue to extract the observable real electric field by calculating the
sum of the complex field and its complex conjugate at the end
of the calculation [47, 48, 60]. But, the interpretation to consider
the direction of the oscillation will be opposite in the complex
fields of E, such that we needed to clarify to avoid unnecessary
confusion.We are also aware that some physicists prefer to define
the direction of rotation of photons, seen from the source side.
This is in fact quite common, for example, to define the rotation
of the screw driver or to consider the use of a handle to drive a car.
However, as far as we use the left handed x = (x, y, z) coordinate,
it is easier to show modes and phase angles in the (x, y) plane,
such that the natural direction of the observation is from +z
direction, which is the detector side.We needed to emphasize this
point, since our results would be complicated, if we are not sure
about our definition. We apologize from the beginning for those
who are not happy about our convention.

We also use the cylindrical coordinate r = (r,φ, z), as
shown in Figure 1C. The unit vectors along the radical and
the azimuthal directions are nr and nφ , respectively. These unit
vectors depend on the locations, nr = nr(r,φ) = (cosφ, sinφ, 0)
and nφ = nφ(r,φ) = (− sinφ, cosφ, 0), such that we must take
care of the difference of the fixed unit vectors to define the (x, y, z)
coordinate. Even if the components of (r,φ) are constant over
the area, the real vectors in (x, y) coordinate are changing over
the space.

2.2. Ring: Momentum to Orbital Angular
Momentum Converter
First, we have simulated a standard ring resonator [70, 82]
(Figure 1C) to understand how OAM is generated. The single
mode in the waveguide has no orbital angular momentum, and
it is propagating with the momentum of p = (px, 0, 0) injected
from the input port 1 (Figure 2). If we do not have the gear,
p is conserved due to the translational symmetry of the wire
waveguide along the x direction. This symmetry is broken due to
the presence of the ring, and the modes in the waveguide and the
ring are degenerate at the point of contact, where the resonance
to the ring waveguide is taking place [70, 82], and the fraction of
photons are transferred from the waveguide to the ring resonator.

The single mode of the input is oscillating predominantly
along y direction, since it is a TE mode, given by E = (Ex,Ey) ≈
(0,Ey). We use the arbitrary units throughout this paper, and the
input mode is normalized as

∫

dy |Ey|2 = 1. (3)

In order to see how the direction of oscillation has been changed,
we have projected E = (Ex,Ey) to the azimuthal and the radical
directions to get each component as

Eφ = E · nφ = −Ex sinφ + Ey cosφ (4)

Er = E · nr = Ex cosφ + Ey sinφ, (5)

respectively. As shown in Figure 2, the mode in the ring
resonator is predominantly oscillating in the radical direction
(Figures 2E,F), such that the direction of the oscillation is
perpendicular to the direction of the propagation. This is
consistent with the single TE mode nature of the ring resonator.
Nevertheless, some interesting features are already going on,
since the unit vector nr is changing the direction along the
circulation. Therefore, the polarization is changing azimuthally
from horizontal, diagonal, vertical, vertical, back to horizontal
upon the rotation. In other words, the average spin angular
momentum becomes zero for the resonant mode, circulating in
the ring resonator, because of the change in the direction of
oscillation upon the time evolution. On the other hand, OAM
becomes non-zero, since the mode acquired the phase as

Er ∝ eimφ , (6)
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FIGURE 2 | Ring resonator coupled to a wire waveguide. (A) Real and (B) imaginary part of the azimuthal component of the electric field, its (C) phase, and
(D) intensity. (E) Real and (F) imaginary part of the radial component of the electric field, its (G) phase, and (H) intensity. The orbital angular momentum of m = −10 is

obtained for a ring of the radius of 1µm at the wavelength of 1,540 nm. The mode is rotating along the clock-wise (right) direction.

where the m is the OAM component along the quantization axis
of z. We confirm that it is the eignemode of the OAM operator

L̂zEr =
h̄

i

∂

∂φ
Er = h̄mEr . (7)

In our example of Figure 2, the input mode from the port
1 is coupled to the resonator mode of m = −10 and it is
rotating along the clock-wise right direction, as is evident from
the phase evolution from blue (the phase of −π), green, to red
(the phase of π) toward the right circulation (Figures 2C,D).
This corresponds to the right circulation over the time evolution.
Due to the rotational symmetry of the ring, OAM is preserved,
if it is isolated. In reality, the ring resonator is coupled to wire
waveguides, such that the loss is expected to loose some fractions
of photons leaking from the resonator. We also confirmed that
Eφ also has the same phase and OAM ofm = −10.

In this classical example, we see that the momentum of
photons in the waveguide is transferred to OAM in the ring
resonator. Therefore, the ring resonator works as a converter of
momentum to OAM. Due to the broken symmetry of the system,
the momentum is not conserved, and it adiabatically changes the
direction of the propagation. In the ring, it is circulating in the
right direction, such that the mode acquired OAM.

It is also interesting to be aware that the Bohr-Sommerfeld
quantization condition [3, 4, 8, 9],

∮

C
pφ · Rdφ = hm, (8)

is certainly satisfied to obtain the azimuthal component of
the momentum

pφ = h
m

2πR
= h

λneff
(9)

and the effective wavelength in the waveguide

λneff = 2πR

m
. (10)

It is also important to have a node at the center of the ring. In
the ring waveguide, the amplitude of the mode vanishes at the
center due to the absence of the material of a high refractive
index, and therefore it is obvious. Even if we use a disk instead
of the ring, the Whispering-Gallery-Mode (WGM) [67] has a
node at the center. Otherwise, OAM would diverge at the center
[19]. Thus, the finite m is also called as topological charge, since
it characterizes the nature of the electric fields surrounding it.
We had better to emphasize, though, that there is no physical
observable in the unit of charge. There is no singularity of the
fields, either. It is just a node, andm is the winding number of the
phase to characterize the vortex, andm is the quantization integer
for the OAM component along the direction of the propagation.

2.3. Gear: Generator of Vortices and
Conservation Law for Optical Angular
Momentum
Next, we discuss about the generation of vortices out of the gear,
coupled to the Si wire waveguide [29, 68, 69]. Our design is much
smaller than the original proposal of Cai et al. [29], and we found
an interplay between spin and OAM upon the conservation law.
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FIGURE 3 | Left vortex generated from the gear of N = 10. The input port 1 is used to inject photons to the waveguide, and the mode profile is obtained at z = 1µm

above the gear. (A) The amplitude (|Ex |) and (B) the phase (φx ) of the horizontal electric field Ex . (C) The amplitude (|Ex |) and (D) the phase (φy )of the horizontal electric

field Ey . They show Ey ∼ −iEx ∝ eiφ , showing the direct tensor product state of the right-circularly-polarized state and the left-vortexed state, | �〉spin ⊗ | 	〉orbit.
(E) The local intensity, s0, (F) local horizontal/vertical spin component, s1, (G) local diagonal/anti-diagonal spin component, s2, and (H) local left/right spin component,

s1. Normalized Stokes parameters of (I) S0, (J) S1, (K) S2, and (L) S3. White arrows in (F–H) schematically show the direction of oscillations.

In the design of Cai et al. [29], the depth of the grating is not
significant, such that the small azimuthal component of Eφ was
scattered by the grating. On the other hand, the width of our
grating is the half of the width of the waveguide, dr = W/2,
(Figure 1B) and strong scattering of the entire mode is expected
in our design.

First, we have simulated for the gear of N = 10 (Figure 1B).
In this design, the Bragg reflection condition is satisfied, such
that the grating will give the momentum of h̄2π/3, where 3 =
2πR/N ∼ 628nm is the period of the grating, and we expect

pφ − h̄
2π

3
≈ 0 (11)

due to the momentum conservation law in a periodic system
[48, 83–85]. Using the effective refractive index of the grating as
the average value of Si and SiO2 as neff = (3.48+ 1.44)/2 = 2.46,
we obtain λneff ∼ 626 nm, and thus λneff ∼ 3. Therefore, the
momentum of photons in the plane vanishes upon acquiring the
Bragg momentum, and photons will be projected out of the gear.

The amplitudes and phases of the mode simulated at z =
1µm above the gear is shown in Figure 2. To our surprise,
OAM was not zero, and both Ex and Ey showed the clear
anti-clock-wise (left) circulation (Figures 3A–D) with the OAM
quantum number of m′ = +1, where we used ′ to stand for
the quantum number after the scattering. This corresponds to
the left circulation of a vortex over the time evolution. We
have numerically confirmed that OAM of the left-vortexed state
(Figures 3B,D) is

m =
∮

C

dφ

2π
∇φx =

∮

C

dφ

2π
∇φy = 1, (12)

which means that the winding number gives the expected z
component of OAM.

The amplitudes of |Ex| and |Ey| show the presence of a node
at the center of vortex. Moreover, if we compare the phase φx of
Ex with the phase φy of Ey, it shows φy = φx −π/2, which means
that spin s′ = −1, showing the right-circularly-polarized state.
Consequently, our numerical simulation shows the left vortexed
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FIGURE 4 | Right-circularly-polarized state, generated from the gear of N = 9. The input port 1 is used to inject photons to the waveguide, and the mode profile is

obtained at z = 1µm above the gear. (A) The amplitude (|Ex |) and (B) the phase (φx ) of the horizontal electric field Ex . (C) The amplitude (|Ex |) and (D) the phase (φy )of

the horizontal electric field Ey . There is no node in the modes, such that there is no OAM. They show Ey ∼ −iEx , such that the polarization is right-circularly-polarized

state, | �〉spin.

state, given by the extended Jones vector [48, 52, 55–57, 60]

|L〉 = e−i π4
√
2

(

1
−i

)

eiφ , (13)

where the first component is proportional to Ex and the second
component is proportional to Ey. The polarization state is
described by the SU(2) state [5–7, 10, 11]. Here, we have omitted
to include the radial dependence, given by the Laguerre-Gauss
function or the Hermite-Gauss function [19, 48]. The global
phase factor of e−i π4 is not necessary but useful to understand
the azimuthal component. The global phase also depends on
the U(1) wave from e−i(kz−ωt), standing for the propagation
along z and t, and the choice of the phase of e−i π4 is just
coming from our random choice of the detector position at
z = 1µm. The important point of our left-vortexed state |L〉
is based on the fact that it is a direct tensor product state of
spin and OAM with opposite rotation. Therefore, it can also

be described as

|L〉 = | �〉spin ⊗ | 	〉orbit. (14)

We described this state as left-vortexed state, since we are
primarily interested in a vortex for the present work.

Consequently, the conservation law of angular momentum is
described as

s+m+ N = s′ +m′, (15)

where s = 0, m = −10, N = 10, s′ = −1, and m′ = 1.
Therefore, both spin and OAM are involved upon the scattering
from our grating gear to produce a vortex, while the total angular
momentum along the direction of propagation is zero due to the
opposite rotation by spin.

The importance of the conservation law of spin and OAM of
photons in a micro-gear was first discussed by Shao et al. [68],
where the local spin components were experimentally measured
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and spin-orbit interaction was demonstrated. They used the gear
with R = 80µm, and the conservation law of angular momentum
at the local edge of the grating was discussed [68]. Our design
is based on R = 1µm, and the entire mode profile affects the
conservation law of angular momentum. Following the analysis
[68], we have also calculated the local spin density of photons,
s = (s1, s2, s3), defined by

s1 = E† σ̂3 E =
(

E∗x E∗y
)

(

1 0
0 −1

)(

Ex
Ey

)

= |Ex|2 − |Ey|2 (16)

s2 = E† σ̂1 E =
(

E∗x E∗y
)

(

0 1
1 0

)(

Ex
Ey

)

= E∗xEy − E∗yEx (17)

s3 = E† σ̂2 E =
(

E∗x E∗y
)

(

0 −i
i 0

)(

Ex
Ey

)

= −iE∗xEy + iE∗yEx,

(18)

which satisfy s0 =
√

s21 + s22 + s23 = |Ex|2+|Ey|2 (Figure 3E). We

have also calculated the local Stokes parameters, given by

S1 = S1(x) =
s1

s0
(19)

S2 = S3(x) =
s2

s0
(20)

S3 = S2(x) =
s3

s0
, (21)

which is normalized as
√

S21 + S22 + S23 = 1 at each point x, while

S0 = S0(x) (Figure 3I) is a normalized s0 with its maximum
value. As shown in Figures 3H,L, the local density of the right-
circularly polarized state (s3 and S3) is distributed over the ring,
which describes the opposite rotation of the polarization to the
rotation of the left-vortex state, described by the left rotation of
the phases (Figures 3B,D). We also found components of locally
linearly-polarized states (s1 and s2), which are changing signs
depending on the positions (Figures 3F,G,J,K) and described by

|local spin〉 = Espin

(

− sin(φ)
cos(φ)

)

. (22)

FIGURE 5 | Right vortex generated from the gear of N = 8. The input port 1 is used to inject photons to the waveguide, and the mode profile is obtained at z = 1µm

above the gear. (A) The amplitude (|Ex |) and (B) the phase (φx ) of the horizontal electric field Ex . (C) The amplitude (|Ex |) and (D) the phase (φy )of the horizontal electric

field Ey . They show Ey ∼ −iEx ∝ e−iφ , showing the direct tensor product state of the right-circularly-polarized state and the right-vortexed state, | �〉spin ⊗ | �〉orbit.
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FIGURE 6 | Generation of left vortex from the gear of N = 10. The input port 1 is used to inject photons to the waveguide. The mode profiles are obtained at

z = 0, 0.25, 0.5, 0.75, and 1µm above the gear, which are shown in (A–C), (D–F), (G–I), (J–L), and (M–P), respectively. The amplitude |E|2 = |Ex |2 + |Ey |2 and the

phases φx = arg(Ex ) and φy = arg(Ey ) are shown in (A,D,G,J,M), (B,E,H,K,N), and (C,F,I,L,P), respectively.

Frontiers in Physics | www.frontiersin.org 9 March 2021 | Volume 9 | Article 646228

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Saito Poincaré Rotator for Vortexed Photons

However, the overall contribution of this component to the total
spin vanishes after the spatial integration, since both negative and
positive values appeared equally (Figures 3F,G,J,K). Moreover,
the contribution of this component to OAM also vanishes, which
is confirmed by calculating

∮

C
dφ〈local spin|L̂z|local spin〉

=
∮

C
dφ
(

− sin(φ) cos(φ)
) h̄

i

∂

∂φ

(

− sin(φ)
cos(φ)

)

= 0. (23)

It is interesting to be aware that the local spin component
is also circulating along the azimuthal direction (schematically
shown as arrows in Figures 3F,G), due to the rotation of
the phases (Figures 3B,D). Numerically, we have obtained the
spatial averages of Stokes parameters, S̄ = (S̄1, S̄2, S̄3) =
(−0.01,+0.01,−0.52) for the left-vortexed state. The spatial
average of the OAM, m̄, was 0.53. The reduction of the expected
OAM of 1 from the left vortex is attributed to the contribution of
the local spin component with vanishing OAM. This means that
about 50% of the mode is made of the purely left-vortexed state
under right polarization, while another 50% of the mode is made
of the local spin components, which are characterized by spatially
rotating linear polarization. Therefore, the efficiency to generate
the left vortex out of our gear is about 50%.

In order to confirm our picture on the conservation law
of angular momentum, we have also simulated for the gear
of N = 9 (Figures 1D, 4). In this case, the node completely
disappeared from the mode (Figures 2A,C), such that OAM
cannot be sustained and we obtained m′ = 0 (Figure 4). On the
other hand, we confirmed the same phase difference at the center
of the mode as before φy = φx − π/2. Therefore, the state is
simply described by a polarization state

FIGURE 7 | Pancharatnam-Berry-Gouy phase for a vortex generated from the

gear. The contribution from the polarization would change the sign of the

complex electric field, and the orbital angular momentum will also add to the

phase change upon crossing of the focal point. The chirality of a vortex would

not be changed upon focusing.

| �〉spin = e−i π4
√
2

(

1
−i

)

, (24)

which is the right-circulary-polarized state without a vortex. The
nodeless mode profile was not reported in the previous work [29],
such that our results are coming from the difference of the design
of the gear. In our example, the conservation law for angular
momentum is given by

s+m+ N = s′ +m′, (25)

where s = 0, m = −10, N = 9, s′ = −1, and m′ = 0.
Therefore, the difference between N = 10 and N = 9 is exactly
what we expected.

Furthermore, we have continued to simulate the structure of
the gear with N = 8 (Figure 1E). In this case, the grating is
far away from the perfect Bragg grating condition, such that
the mode profiles are significantly distorted (Figures 5A,C).
Nevertheless, they showed the presence of the node at the center
(Figures 5A,C), and the phase is rotating along the clock-wise
(right) direction (Figures 5B,D), which is completely opposite to
the result for N = 10, as we expected from the conservation law.
In this case, the vortexed state is described as

| �〉spin ⊗ | �〉orbit =
e−i π4
√
2

(

1
−i

)

e−iφ (26)

The conservation law for angular momentum is given by

s+m+ N = s′ +m′, (27)

where s = 0,m = −10, N = 8, s′ = −1, andm′ = −1.
In all cases, the angular momentum is conserved upon

scattering by gratings. It is important to consider both spin and
OAM, simultaneously, to understand the conservation law. On
the other hand, we cannot understand why s′ = −1 was always
chosen for N = 10, 9, and 8, simply from the conservation
law of angular momentum. This could be understood by the
evolution of the phase front, as shown in Figure 6. The original
input is TE polarized along y direction, such that the phase
front of φy is going ahead of φx, and Ex acquires the same
amplitude with that of Ey at the intersection only after the
quarterly rotation (phases inside the ring of Figures 6B,C). As a
result, we obtain φy = φx − π/2, if we compare the phases at the
same position, leading to the generation of the vortex with right
polarization (Figures 6N,P). Thus, the spin angular momentum
is fixed, while OAM is determined by the conservation law of
angular momentum.

2.4. Pancharatnam-Berry-Guoy’s Phase
We have also considered the Pancharatnam-Berry-Guoy’s phase
on the generation of a vortex from the gear [26, 48, 73–76]. We
considered the design of N = 10 (Figure 1B) and examined
the evolution of mode profiles over the propagation along the
+z direction (Figure 6). The input beam was injected from port
1, and it coupled evanescently to the gear. At the center of the
waveguide at z = 0, the mode is circulating in the ring waveguide
with OAM of m = −10. The phases of φx = arg(Ex) and
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φy = arg(Ey) show the right circulation over time. If we closely
look at φx and φy inside the ring, there is no phase difference
between them (φx ∼ φy), consistent with the dominated radical
polarization (Figures 2E,F) and thus we confirm s = 0. The
beam is diffracted by the Bragg condition by the grating of
the gear, and the mode was emitted vertically from the surface
of the device. The direction of propagation is vertical but is
slightly pointing inside the gear, since the grating is located only
inside of the ring resonator. Consequently, the emitted beam is
focused at around z = 0.5µm (Figure 6G), and defocused again
(Figures 6H,M). It is important to recognize the presence of a
node even at the focussed point (Figure 6G) to maintain the
vortex. We can recognize that the mode gradually changed its
shape to accommodate the left circulation with OAM of m′ =
+1, which is opposite rotation with the circulation of m = −10

in the ring. We also confirmed that φy = φx −π/2 for a vortex at
z ≥ 0.5µm, such that it is in the right-circularly polarized state.

We could also confirm the spatial rotation of φx and φy over

z (Figures 6K,N,L,P), expected from ei(kz−ωt). The phase front
evolution of z is opposite to t, such that the chiral rotation of

the phase of the vortex over the space is opposite to the time
evolution. The phase front has moved to the clock-wise (right)
direction from Figures 6K,L to Figures 6N,P, respectively. This
is in fact opposite to the left circulation of the vortex, and
therefore, our interpretation of OAM and polarization of a vortex
is consistent.

The schematic nature of the evolution of a vortex is shown in
Figure 7. The chirality of the vortex cannot be changed upon the
focussing, and the left circulation of the vortex is maintained. On
the other hand, we had better to be careful about the geometrical
phase facto of Pancharatnam-Berry-Gouy phase [19, 26, 73–76,
86], which is given by

φG = (2n+ |m| + 1) tan−1

(

z

z0

)

, (28)

where n is the radial quantum number of the Laguerre-Gauss
mode, and z0 is the location of the focussing point [19, 48]. In
the example of Figure 6, there is no node in the radial direction,
except for the central core, and we can assign n = 0. In the

FIGURE 8 | Far-fields and Stokes parameters of left vortex from the gear of N = 10. The input port 1 is used to inject photons to the waveguide. Far-fields and Stokes

parameters are shown (A–H) in a polar coordinate (r, θ ,φ) and (I–P) in a cylindrical coordinate (r,φ, z). The ring-shape of the mode in the near-field could not be

sustained in far-fields (A,C,E,I), because our mode is not collimated. Consequently, the vortex is not well-defined in far-fields, while the phase is still rotated over the

hemisphere (J,L), reflecting the original nature of a left-vortexed state. The polarization is also dominated by the right-circularly polarized component (H,P) with
S3 ∼ −1 for the high intensity region.
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absence of OAM (m = 0), φG would result in the phase change
of the complex electric field, (Ex,Ey) → −(Ex,Ey). In our case,
m′ = −1 will give another factor of−1, and therefore, we expect
no change of the sign upon focussing for the far field (z → ∞).

For the vortex beam with the higher order OAM, the
Pancharatnam-Berry-Gouy phase factor depends on the parity of
m. If |m| is odd, the contribution would vanish together with the
contribution from the polarization, as we saw for m′ = −1. If
|m| is even including m = 0, the phase change is expected upon
crossing over the focal point. Therefore, the parity dependent
interference is expected for a vortex, generated from the gear.

2.5. Far-Fields
We have also calculated far-fields and Stokes parameters in a
polar coordinate (r, θ ,φ) and in a cylindrical coordinate (r,φ, z),
as shown in Figure 8. In a polar coordinate, the polar (Eφ) and
the azimuthal (Eφ) components are obtained (Figures 8A–D).
In particular, the phase of Eφ is constant over the hemisphere
(Figure 8D), showing the electric field is rotating with a fixed
phase along the azimuthal direction. As noted before, the unit
vector of azimuthal component depends on φ, (nφ = nφ(r,φ) =
(− sinφ, cosφ, 0)), such that the fixed phase means the vectorial
direction of azimuthal component is also changing the direction
along the rotation.

As shown in Figures 6, 7, our near-field mode profile is not
collimated at all. Therefore, the vortex and associated OAM
are not maintained in far-fields (Figures 8E,I,K), and the mode

is spreading over the hemisphere. The intensity profiles are
spreading over the polar angle of 10 to 40◦. Nevertheless, the
original nature of rotated phase is sustained, as shown in the
rotated phases of φx (Figure 8J) and φy (Figure 8L), reflecting
the left-vortexed nature in the near-field. The polarization of the
mode is also reflecting the original mode in the near-field, and
the right polarized component of S3 ∼ −1 (Figures 8H,P) is
dominated at the region of high intensities.

3. POINCARÉ ROTATOR

In this section, we discuss about ourmain results for the proposed
Poincaré rotator (Figure 1A). As shown in the previous section,
we could generate the left-vortexed state |L〉 by injecting photons
from the port 1 of the Si wire waveguide. Due to the mirror
symmetry between the port 1 and the port 2 together with
the gear, we can generate the right-vortexed state |R〉, which is
completely opposite chiral rotation to the left-vortex, by injecting
photons from the port 2. The idea, here, is to inject from both
ports after adjusting the relative amplitudes and phases of the
injected beams, to generate an arbitrary vortexed state

|2,8〉 = e−i82 cos

(

2

2

)

|L〉 + ei
8
2 sin

(

2

2

)

|R〉 (29)

in the hyper-Poincaré sphere. In modern Si photonic
technologies, it is easy to control both amplitudes and phases by

FIGURE 9 | Left vortex generated from the gear of N = 10. The input port 1 is used to inject photons to the waveguide, and the mode profile is obtained at z = 1µm

above the gear. (A) Real part, (B) imaginary part, and (C) intensity of the azimuthal complex electric field (Eφ ). (D) Real part, (E) imaginary part, and (F) intensity of the
radial complex electric field (Er ). Eφ is almost constant over the ring, such that the mode is dominated by the azimuthal component.
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FIGURE 10 | Right vortex generated from the gear of N = 10. The input port 2 is used to inject photons to the waveguide, and the mode profile is obtained at

z = 1µm above the gear. (A) Real part, (B) imaginary part, and (C) intensity of the azimuthal complex electric field (Eφ ). (D) Real part, (E) imaginary part, and

(F) intensity of the radial complex electric field (Er ). Eφ is pointing toward nφ .

using integrated photonic circuits, such that we can control the
superposition state in the hyper-Poincaré sphere.

3.1. Left and Right Vortices
First, we continue to evaluate the left-vortexed state, injected
from the port 1. We have calculated azimuthal and radical
components for |L〉 to obtain

Eφ =
(

e−i π4
√
2

)

eiφ (− sinφ − i cosφ) = −1

2
(1+ i) (30)

Er =
(

e−i π4
√
2

)

eiφ (cosφ − i sinφ) = 1

2
(1− i). (31)

Our numerical results support this picture, as shown in Figure 9.
Both Eφ and Er are almost constant over the location of the
ring, where the intensity is maximized. The overall intensity of
Eφ is larger than Er , as explained by the dominant scattering of
evanescent component of Eφ at the internal grating [29]. The
constant Eφ does not preclude, however, the existence of the finite
OAM of m′ = −1, as φx and φy are clearly rotating to the left
over time. The rotated local spin component of |local spin〉 also
gives rise to a contribute for Eφ , since Espin

(

sin2(φ)+ cos2(φ)
)

=
Espin, which also gives a constant Eφ along the direction of the
rotation (φ).

Similarly, we have also calculated the mode profiles for the
input from the port 2 to generate |R〉. We confirmed that the

vortex is approximately expressed as

|R〉 = e−i π4
√
2

(

1
i

)

e−iφ , (32)

which means the generation of the right-vortexed state. As we
expected the total angular momentum is zero, since it is the direct
tensor product state with the left-circularly polarized state,

|R〉 = | 	〉spin ⊗ | �〉orbit. (33)

The conservation law of angular momentum upon the diffraction
by the grating gear is given by

s+m+ N = s′ +m′, (34)

where s = 0,m = +10, N = −10, s′ = +1, andm′ = −1.
The corresponding azimuthal and radical components for

|R〉 become

Eφ =
(

e−i π4
√
2

)

e−iφ (− sinφ + i cosφ) = 1

2
(1+ i) (35)

Er =
(

e−i π4
√
2

)

e−iφ (cosφ + i sinφ) = 1

2
(1− i). (36)

Numerical simulation completely supports this expectation, as
shown in Figure 10. Eφ (Figures 10A,B) changes its sign from
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the corresponding left-vortexed state (Figures 9A,B), while the
relative phase between real and imaginary parts are maintained,
which are determined by the location z of the detector, due to
the simple phase evolution of ei(kz−ωt). On the other hand, Er for
the right vortex (Figures 10D,E) shows the same phase with the
corresponding Er for the left vortex (Figures 9D,E).

Therefore, we could prepare two orthogonal states of |L〉
and |R〉 simply by injecting photons from different ports. The
orthogonality of the modes is guaranteed in 2-folds: one for the
spin state as

spin〈	 | �〉spin = 1

2

(

1 −i
)

(

1
−i

)

= 0, (37)

and the other for OAM

orbit〈	 | �〉orbit =
∫ 2π

0

dφ

2π
e−2φi = 0. (38)

We can also confirm the proper normalization as

〈L|L〉 = 1

2

(

1 i
)

(

1
−i

)∫ 2π

0

dφ

2π
1 = 1 (39)

〈R|R〉 = 1

2

(

1 −i
)

(

1
i

)∫ 2π

0

dφ

2π
1 = 1. (40)

3.2. Linearly Vortexed States
Now, we have prepared two states of |L〉 and |R〉, and we will
discuss the superposition state among them. We assume that we
can control the amplitudes and phases of two input beams from
port 1 and port 2.

First, we will construct horizontally (|H〉) and vertically (|V〉)
vortexed state. Considering the analogy to the polarization
[48, 50, 51] and a spin 2-level system [5–7], we expect a
unitary transformation

(

|L 〉
|R 〉

)

= 1√
2

(

1 i
1 −i

)(

|H 〉
|V 〉

)

, (41)

whose inverse transformation becomes
(

|H 〉
|V 〉

)

= 1√
2

(

1 1
−i i

)(

|L 〉
|R 〉

)

. (42)

Therefore, the horizontally vortexed state is given by injecting
photons in the same amplitude and the same phase into both

FIGURE 11 | Horizontal vortex generated from the gear of N = 10. The input port 1 and 2 are used to inject photons to the waveguide, and two injected modes are in

the same phase. The mode profile of a vortex is obtained at z = 1µm above the gear. (A) Real part and (B) imaginary part of the horizontal complex electric field (Ex ).

(C) Real part and (D) imaginary part of the vertical complex electric field (Ey ). A horizontal dipole is recognized for Ex with a node at the center. (E–H) The local

spin components (s0, s1,s2,s3), and (I–L) normalised Stokes parameters (S0, S1,S2,S3 ) are also shown. The circularly polarized component of s3 (H) was
substantially reduced.
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FIGURE 12 | Vertical vortex generated from the gear of N = 10. The input port 1 and 2 are used to inject photons to the waveguide, and two injected modes are out

of the phase. The mode profile of a vortex is obtained at z = 1µm above the gear. (A) Real part and (B) imaginary part of the horizontal complex electric field (Ex ).

(C) Real part and (D) imaginary part of the vertical complex electric field (Ey ). A vertical dipole is recognized for Ex with a node at the center. (E–H) The local

spin components (s0, s1,s2,s3), and (I–L) normalised Stokes parameters (S0, S1,S2,S3 ) are also shown.

ports, to get

|H〉 = 1√
2

(|L〉 + |R〉) . (43)

Numerically results for the generated vortex of |H〉 are shown
in Figure 11. It is important to be aware that the node is
maintained at the center of the vortex. The mode profile
of Ex is a dipole-like shape, aligned horizontally. Ex exhibits
horizontal distribution, while Ey has a profile along the vertical
direction. The difference is coming from the phase difference
between real parts and imaginary parts, due to the difference
in polarization. Therefore, the Ey component shows a conjugate
vertically vortexed structure. If we would like to observe a
purely horizontal vortexed state, we can use a polarizer to
extract only the x component. Here, we shall call this mode as
horizontally vortexed state, referring to the x component, while
the y component is always its conjugate state. We have also
calculated the local spin components (Figures 11E,F) and Stokes
parameters (Figures 11I–L). The circularly polarized component
was substantially compensated by the destructive superposition
between left- and right-vortexed states.

On the contrary, the vertically vortexed state (Figure 12) is
given by

|V〉 = −i√
2

(|L〉 − |R〉) , (44)

whose mode profile of Ex is a dipole-like shape, aligned vertically.
The dipole-like shape of Ey is rotated 90◦, which is in fact
a conjugate horizontally vortexed state. It also has a node at
the center.

If we include the spin state, these states correspond to a
singlet state

|V〉 = −i√
2

(

| ↓ 〉spin| ↑ 〉orbit − | ↑ 〉spin| ↓ 〉orbit
)

, (45)

and a triplet state

|H〉 = 1√
2

(

| ↓ 〉spin| ↑ 〉orbit + | ↑ 〉spin| ↓ 〉orbit
)

, (46)

where we have used ↑ and ↓ instead of 	 and �, respectively,
and we have omitted to show ⊗ for simplicity. It is interesting
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FIGURE 13 | Diagonal vortex generated from the gear of N = 10. The input port 1 and 2 are used to inject photons to the waveguide, and the phase of the input 2 is

π/2 ahead of the phase of the input 1. The mode profile of a vortex is obtained at z = 1µm above the gear. (A) The amplitude (|Ex |) and (B) the phase (φx ) of the

horizontal electric field Ex . (C) The amplitude (|Ex |) and (D) the phase (φy )of the horizontal electric field Ey . The phase is not obviously rotating any more. A diagonal

dipole is recognized for Ex with a node at the center. (E–H) The local spin components (s0, s1,s2,s3), and (I–L) normalised Stokes parameters (S0, S1,S2,S3 ) are also

shown.

to make a superposition state by using both internal spin degree
of freedom and OAM. Alternatively, if we describe these states
by the horizontally (↔) and the vertically (l) polarized and
vortexed states, we obtain a singlet state

|V〉 = 1√
2

(

| ↔ 〉spin| l 〉orbit − | l 〉spin| ↔ 〉orbit
)

, (47)

and a triplet state

|H〉 = 1√
2

(

| ↔ 〉spin| ↔ 〉orbit + | l 〉spin| l 〉orbit
)

. (48)

If we use the gear of N = 8, we could also generate another two
states for the triplet states

| 	 〉spin| 	 〉orbit = | ↑ 〉spin| ↑ 〉orbit (49)

| � 〉spin| � 〉orbit = | ↓ 〉spin| ↓ 〉orbit. (50)

For these states, the total sum of angular momentum between
spin and OAM remain finite.

We are aware that the intensity of the intensity of |H〉
(Figure 11) is smaller than that of |V〉 (Figure 12). The reason

is presumably because of our Si photonic waveguide design. All
the modes in the waveguide is in the TE mode, which is vertically
polarized along y direction, and there exists a tiny amount of the
longitudinal component, due to the transverse nature of electro-
magnetic waves. Regardless of the cylindrical symmetry of the
gear, most of the photons are diffracted upwards by the grating
without circulating the ring resonator. Therefore, the amount of
the horizontally oscillating mode is reduced.

3.3. Diagonally Vortexed States
Next, we have considered the diagonal |D〉 (Figure 13) and
the anti-diagonal |A〉 (Figure 14) vortices. In analogy to the
polarization, we obtain

|D〉 = 1√
2

(|H〉 + |V〉) (51)

= e−
π
4 i

√
2

(|L〉 + i|R〉) (52)

|A〉 = 1√
2

(|H〉 − |V〉) (53)
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FIGURE 14 | Anti-diagonal vortex generated from the gear of N = 10. The input port 1 and 2 are used to inject photons to the waveguide, and the phase of the input

1 is π/2 ahead of the phase of the input 2. The mode profile of a vortex is obtained at z = 1µm above the gear. (A) The amplitude (|Ex |) and (B) the phase (φx ) of the

horizontal electric field Ex . (C) The amplitude (|Ex |) and (D) the phase (φy )of the horizontal electric field Ey . An anti-diagonal dipole is recognized for Ex with a node at

the center. (E–H) The local spin components (s0, s1,s2,s3 ), and (I–L) normalised Stokes parameters (S0, S1,S2,S3 ) are also shown.

= e
π
4 i

√
2

(|L〉 − i|R〉) . (54)

Numerical results for these states are shown in Figures 13, 14,
respectively. A dipole is aligned diagonally in Ex for the diagonal
vortex (Figure 13A), and anti-diagonally in Ex for the anti-
diagonal vortex (Figure 14A). Phases of these states are not
rotating clearly, such that the average OAM components along
z vanish.

If we include spin states, these states become

|D〉 = 1√
2

(

| ↔ 〉spin| ↔ 〉orbit − | l 〉spin| ↔ 〉orbit
)

(55)

|A〉 = 1√
2

(

| ↔ 〉spin| ↔ 〉orbit + | l 〉spin| ↔ 〉orbit
)

. (56)

We also confirmed the conjugate nature of these states between
Ex and Ey, as shown in Figures 13, 14.

3.4. Hyper-Poincaré Sphere
By extending above ideas, we can generate a superposition state
of left- and right- vortexed state |2,8〉, defined by the polar
angle of 2 and the azimuthal angle of 8 in a hyper-Poincaré

sphere. Here, we consider a superposition state between left- and
right-vortexed states, generated from the gear. In our design,
the polarization degree of freedom is locked to a state, which
is opposite to the direction of the rotation for a vortex. This is
a significant limitation, compared to the hyper-Poincaré sphere,
discussed by Milione et al. [28], and we cannot arbitrary change
the polarization state for each vortex. Our hyper-Poincaré sphere
is similar to the original proposal of Padgett and Courtial [21],
and we would like to control by the gear coupled to the Si
photonic wire waveguides (Figure 1).

In order to achieve it, the amplitude of the input 1 must be
cos(2/2) and the amplitude of the input 2 must be sin(2/2),
while the phase factor of the input 1 must be e−i8/2 and the phase
factor of the input 2 must be ei8/2. This is easily achievable in a Si
photonic platform [70, 71]. Therefore, the vortexed state can be
controlled in our hyper-Poincaré sphere (Figure 15).

In order to see how the vortexed state is changed, it is
convenient to define the OAM operator defined by

Ŝ1 = h̄m σ̂1 = h̄m

(

0 1
1 0

)

(57)
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FIGURE 15 | Hyper-Poincaré sphere for describing a quantum state of a vortex. The polar angle of 2 will control the amplitudes of the left and the right vortexed

states, while the azimuthal angle of 8 will control the phase between these basis states. Insets show examples of various vortexed states simulated in this work.

Ŝ2 = h̄m σ̂2 = h̄m

(

0 −i
i 0

)

(58)

Ŝ3 = h̄m σ̂3 = h̄m

(

1 0
0 −1

)

, (59)

where σi (i = 1,2, and 3) are the Pauli matrices, and these
operators will act to the Hilbert space spanned by |L〉 and |R〉
as basis states. We consider the OAM average per particle, or
we can multiply the density of photons in a coherent vortexed
state, |2,8〉. These definitions are in a close analogy to the Stokes
parameters for polarization [5–7, 10, 11, 48, 48, 50–52, 55–57, 60]
toward the application to OAM [19, 21, 28, 36, 37, 52–54]. If
we take the quantum mechanical average of these operators by
|2,8〉, we obtain Stokes parameters for hyper-Poincaré sphere

S1 = 〈Ŝ1〉 = h̄m sin(2) cos(8) (60)

S2 = 〈Ŝ2〉 = h̄m sin(2) sin(8) (61)

S3 = 〈Ŝ3〉 = h̄m cos(2), (62)

and it is quite convenient to show these parameters in a 3-
dimensional Poincaré sphere, as shown in Figure 15. The polar
angle of 2 is related to the relative amplitude among two
orthogonal modes, and the azimuthal angle of 8 corresponds
to the phase difference between the two modes. Therefore,
the proposed photonic gear with coupled two Si photonic
wire waveguides is one of the practical systems to control
these parameters in a compact on-chip module. Obviously,
there are many other ways to control both amplitudes and
phases to control the superposition state of left and right
vortexed states.
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4. CONCLUSION

We have proposed a silicon micro-gear coupled to two
silicon photonic wire waveguide to control the vortexed state,
generated out of the gear. We have shown the importance
of the conservation law of the total angular momentum
of spin and orbital angular momentum. The generated
vortexed state is described by a tensor product of spin and
orbit, and we proposed to achieve the superposition state
between two orthogonal vortexed states. The amplitudes
and the phases can be controlled by standard optical
modulators, such that the control of the vortexed state
is highly feasible. We believe Stokes parameters in the
Poincareé sphere are one to the most important description
to represent the quantum nature of spin state of photons. By
extending Stokes parameters naturally to the orbital angular
momentum in a hyper-Poincaré sphere is an important step
to utilize OAM for various practical applications including
quantum technologies.
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