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Solar radio bursts can be used to study the properties of solar activities and the underlying
coronal conditions on the basis of the present understanding of their emission
mechanisms. With the construction of observational instruments, around the world, a
vast volume of solar radio observational data has been obtained. Manual classifications of
these data require significant efforts and human labor in addition to necessary expertise in
the field. Misclassifications are unavoidable due to subjective judgments of various types of
radio bursts and strong radio interference in some events. It is therefore timely and
demanding to develop techniques of auto-classification or recognition of solar radio
bursts. The latest advances in deep learning technology provide an opportunity along
this line of research. In this study, we develop a deep convolutional generative adversarial
network model with conditional information (C-DCGAN) to auto-classify various types of
solar radio bursts, using the solar radio spectral data from the Culgoora Observatory
(1995, 2015) and the Learmonth Observatory (2001, 2019), in the metric decametric
wavelengths. The technique generates pseudo images based on available data inputs, by
modifying the layers of the generator and discriminator of the deep convolutional
generative adversarial network. It is demonstrated that the C-DCGAN method can
reach a high-level accuracy of auto-recognition of various types of solar radio bursts.
And the issue caused by inadequate numbers of data samples and the consequent over-
fitting issue has been partly resolved.

Keywords: deep learning, deep convolution generation confrontation network, image reconstruction, convolutional
neural networks, space weather

INTRODUCTION

Solar radio bursts are emission enhancements at radio wavelengths released during solar activities
such as flares and coronal mass ejections (CMEs) [1]. They can be used to diagnose the properties of
the associated solar activities and the underlying coronal conditions on the basis of the present
understanding of emission mechanisms. For instance, many solar radio bursts observed in the metric
wavelengths have been attributed to the plasma emission mechanism, according to which the
emission frequency represents the fundamental or harmonic of plasma oscillation frequencies which
are given by the plasma electron density. Thus, the radio data can be used to infer the plasma density
in the corona [2, 3] and of the emission source such as coronal shocks.

Solar radio bursts in the metric wavelengths are classified into various types, including type I to V,
according to their manifestation on the dynamic spectrum which presents the temporal variation of
spectral intensities [4]. In Figure 1, we present examples of these five types of solar radio bursts
observed by the Culgoora Observatory. The type I burst consists of two components, including the
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background continuum and short-term radio enhancements
(called type I storm). The type II burst represents narrow-
band drifting structures in the dynamic spectrum, generally
attributed to energetic electrons accelerated around coronal
shocks. The type III burst has fast-drifting features on the
dynamic spectrum, usually attributed to fast, energetic
electrons releasing from the flare reconnection site and
escaping outward (or inwards) along field lines. They are
called as the type III storm if they occur in groups over an
extended interval. The type IV burst represents a wideband
continuum on the dynamic spectrum, which can be further
classified into two subgroups, including stationary ones and
moving ones. The type V burst occurs immediately after the
type III burst while occupying a wider spectral regime than the
type III burst; it is generally attributed to energetic electrons that
are strongly scattered by coronal waves.

Radio spectral data with high temporal and spectral
resolutions are important for scientific research of solar radio
bursts. To demonstrate the present status of the field using such
data, in the following, we just present two examples of studies on
the temporal delay of solar spikes. Using the spectral data (with a
temporal resolution of 10 ms and a spectral resolution of
100 kHz) from the Chashan Solar Observatory (CSO) operated
by Shandong University, Feng et al. [5] found that the time delay
between harmonics of solar radio spikes could be as small as the
temporal resolution of the data (∼10 ms), while in an earlier
study, Bouratzis et al. (2016) found that the duration of metric
radio spikes is ∼60 ms according to an analysis of 12,000 events
[6] (see Chernov et al. [7] for more studies on radio fine structures
using high-resolution spectral data).

In addition to the increased resolution of the data, the number
of solar radio observatories also increased around the world. For
example, the Expanded Owens Valley Solar Array (EOVSA) [8] is
operating in the frequency range of 1–18 GHz. Mingantu Spectral
Radioheliograph (MUSER) [9] generates nearly 3.5 TB data per
day. Chashan Solar Observatory (CSO) [6] operated by Shandong
University obtains up to 300 GB of data per day. This results in a
rapid increase of data volume waiting to be classified and
analyzed.

Similar to many other data-intensive scientific research works,
solar astronomy has benefited from interdisciplinary study with

computer science and information technology. In particular, the
rapid development of deep learning technology has provided new
avenues in astronomical research.

The deep neural network (DNN) [10], as a functional unit of
the deep learning technology, has been designed to learn how
human beings think and recognize objects on the basis of
hierarchical layer structures. It represents one of the most
important advancements in the developments of machine-
learning algorithms and has been applied to many research
fields when processing a large amount of data. In the field of
image processing and computer vision, the convolutional neural
network (CNN) [11] becomes the most popular deep-learning
method, which is composed of convolution filters to extract
information from the input datasets automatically without any
human intervention, while traditional machine-learning
algorithms require researchers to manually select and
construct these extractors [12]. This great advantage is very
useful, especially when being applied to research problems
without sufficient knowledge or the problems are just too
complex to build a “good” simplified model.

Deep learning technology has been applied to the
classification of solar radio bursts in the last decade. For
example, Gu et al. [13] used a combination of principal
component analysis (PCA) and support vector machine
(SVM) for the mentioned purpose, yet the obtained accuracy
of recognition needs to be improved. To do this, Chen et al. [14]
applied the multimodal network to auto-classify types of radio
bursts, and later, they also tried the method of the deep belief
network (DBN) [15] and the convolutional neural network
(CNN) [16]. In addition, Yu et al. [17] classified the solar
radio data by using the long short-term memory network
(LSTM) and obtained some improvement of the classification
accuracy.

Nevertheless, to train a neural network model to a satisfactory
level, a large amount of data is needed along with manual labeling
and the input of the classifying information. This is usually very
time-consuming. In addition, the occurrence numbers of
different types of radio bursts are very different from each
other. For example, the numbers of type IV and V bursts are
significantly less than the other types of radio bursts. The main
aim of this study is to utilize a proper deep learning algorithm to

FIGURE 1 | Examples of type I–type V solar radio bursts observed in the metric decametric wavelengths (A–E). The spectra used in this study are obtained from the
Australian Bureau of Meteorology’s Culgoora Observatory and Learmonth Observatory (http://www.sws.bom.gov.au/World_Data_Centre/1/9). The Culgoora
Observatory monitors solar radio bursts in the frequency range 18–1800 MHz, and the Learmonth Observatory radio observatory monitors solar radio bursts in the range
25–180 MHz.
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resolve the issue caused by an insufficient dataset. This is achieved
by applying the method of the generative adversarial network
(GAN) [18].

GAN has received a lot of attention since its emergence. It
[11] introduces the idea of game theory into the training
process, in which generator and discriminator are trained
alternatively to learn the major characteristics of the data. Its
neural network structure greatly enhances the capability in
generating samples to provide more dataset when training
the classification network.

GAN can be further extended to a conditional model (CGAN)
if both the generator and discriminator are conditioned on some
extra information (c). Condition c can be fed into both the
discriminator and generator as additional input information
[19]. In addition, the GAN model is further improved as the
deep convolutional generative adversarial network (DCGAN) to
increase the quality of image fitting through the confrontation
learning of the generating model and the discriminating model
[20]. This potentially increases the number of samples. These
generated samples are then used together with the original dataset
for training purpose.

In this study, we develop a novel machine-learning program,
the conditional deep convolutional generative adversarial
network (C-DCGAN) model, on the basis of the DCGAN
model, to automatically classify solar radio bursts observed
by the Culgoora Observatory from 1995 to 2015 and the
Learmonth Observatory from 2001 to 2019. The model has
been tested using the MNIST dataset. The results demonstrate
that the C-DCGAN method can capture the major
characteristics of each type of solar radio bursts and yield a
satisfactory level of recognition accuracy of these bursts. The
following section presents the details of the model and the
dataset. Section Results of Automatic Identification of Solar
Radio Bursts With C-DCGAN shows the classification results
with the C-DCGAN method. The Discussion and Conclusions
are given in the last section.

THE C-DCGAN MODEL AND THE DATASET
OF SOLAR RADIO BURSTS

In this section, we present the technical details of the C-DCGAN
model, the dataset of solar radio bursts, and how we use the data
to train our model for the purpose of auto-recognition of the
types of bursts.

C-DCGAN Model
The C-DCGAN model is a combination of two networks, CGAN
and DCGAN. In comparison to the initial GAN model, CGAN
performs better in generating categories of images, while DCGAN
is better in generating artificial images. Specific conditions, for
example, types of radio bursts of the sample spectra, are supplied
to the C-DCGAN model during the training process. This allows
the model to generate images representative of any type of radio
bursts, which will be used in the deep learning process.

In Figure 2, we present the basic structure of the network. It
can be seen that the C-DCGAN includes three major modules
including the classifier which is a convolutional neural network
used to classify and identify the different types of solar radio
bursts, the generator (G), and the discriminator (D). G and D are
trained in an adversarial manner; in other words, G is designed to
generate artificial images as real as possible, while D tries to
differentiate the real and fake inputs. And the classifier tries to
classify all available datasets including real data and those
generated by G, designed to get the most optimized outputs.
Through their competition, D can proceed effectively, and the
over-fitting issue caused by insufficient dataset can be largely
avoided, while the classification accuracy can be improved, as
shown by the following results.

The distribution of the real data (x) is taken to be Pdata(x),
which is unknown. Yet the discriminator has a known noise of
Pz(z). Through G, the model learns this distribution and outputs
artificial image data (G(z|c)) on condition c. To generate an
artificial data image (Pdata(x)), the data noise Pz(z) should be

FIGURE 2 | Structure of the C-DCGAN model, including three major modules: the classifier, the discriminator (D), and the generator (G) (see text for details).
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added by the generator G. This is achieved with the following
cross-entropy loss function:

min
G

max
D

V(D,G) � Ex ∼ Pdata(x)[logD(x)] + Ez ∼ Pz(z)[log(1 − D(G(z|c)))],

where V (D, G) represents the loss functions of G and D, and E
represents the expected value. And x represents the real sample, D
(x) represents the probability of discriminating x as a real sample
with the discriminator D, G(z) is the sample generated from noise
z by the generator G, Ex ∼ P

data(x)
represents the real data sample

extracted from the training data x, and Ez ∼ P
z(z)

the generated

image; D (x) and D(G(z|c)) are outputs of discriminator D to
determine how close the included dataset to the “real” data. In
ideal situations, both parameters should be close to 1.

Dataset of Solar Radio Bursts
The dynamic spectral data of solar radio bursts recorded by
the Culgoora Observatory from 1995 to 2015 and the
Learmonth Observatory from 2001 to 2019 are used to
train the C-DCGAN model. The horizontal axis and
vertical axis of a map of the dynamic spectrum are time
and frequency, respectively. The online data are represented
with JPEG format of images with different dimensions in
pixels that are 600 × 1750 for Culgoora and 300 × 1700 for
Learmonth. These spectral data should be preprocessed
before inputting them into the model.

First, we rebind both datasets into the resolution of 128 × 128.
The event lasting longer than 60 min will be downsampled to

128 × 128, and the event shorter than 60 min will be upsampled to
128 × 128. This does not affect the statistical properties of the data
significantly [16], according to Figure 3, which presents the
comparison before and after the rebinding, in particular, the
downsampling process. The comparison of the histogram of the
original and the downsampled images indicates that the data
preprocessing does not change their statistical properties
significantly.

To increase the recognition accuracy, we further remove
events that are incomplete and with mixing types of bursts
according to the online log files of the data. We end up with a
data sample including 36,005 burst images, of which 7,201
are used in the testing process (see Table 1 for a list of the
numbers of various types of radio bursts used here). It can be
seen that type III burst has the largest sample numbers,
while type I burst from Learmonth and type V burst from
Culgoora have the least number of samples. Note that only 4
events are included for type V burst for Culgoora. This
affects the performance of our model, as will be
discussed later.

The Training Process
The model was run on GPU arrays of the NVIDIA GeForce
quadro RTX 8000; the training process lasts up to 43 h. When
the training data are not enough to provide a good estimate of
the distribution of the entire data, in other words, the model
is overtrained and leads to over-fitting of the data; we employ
the dropout method. Typically, the outputs of neurons are set
to zero with a probability of p in the training stage and

FIGURE 3 | Solar radio spectrograms and histograms before and after downsampling for the event of 2005 August 22 observed by the Learmonth. (A) Histogram
before downsampling, (B) histogram after downsampling, (C) original solar radio image, and (D) downsampled solar radio image.
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multiplied with 1 − p in the test stage [21]. By randomly
taking out the neurons, in other words, dropout is an
efficient approximation of training many different
networks with shared weights of some neurons. In our
experiments, we applied the dropout to all the layers, and
the probability is set as p � 0.5.

We use the MNIST (Modified National Institute of
Standards and Technology) dataset to evaluate the
performance of the model, which is a large database of
handwritten digits commonly used for similar training
purpose. It has 60,000 training samples and 10,000 test
samples. Figures 4A–D show the variation of the
generated image samples with training epochs. Figure 4E
shows the variety of the loss functions of both D and G. It can
be seen that the original data image can be well replicated
within 200 epochs, while at the earlier epochs (<100), the loss
values show large oscillations. And the loss values after Epoch
100 remain below 0.5.

The Recognition Process
The process of image recognition is done through the following
steps: 1) we fix the parameters of G while keeping the accuracy of
D as high as possible, 2) the parameters of D are fixed while
optimizing the output of G so that the discrepancies between the
generated data and the real data are sufficiently small, 3) the

above two steps are conducted repeatedly until the model
achieves high-enough accuracy of image recognition, and 4)
the discriminator is extracted from the trained C-DCGAN
model to form a new structure of recognition. Both the
samples generated by G and the real samples are taken as
inputs to the classifier.

TABLE 1 | Event number of solar radio bursts used in the training process from the two stations.

Type Occurrence number (Leamonth) Occurrence number (Culgoora)

Type I 139 1,144
Type II 519 1,070
Type III 10,143 22,273
Type IV 288 74
Type V 351 4

FIGURE 4 | Testing the C-DCGAN model with the MNIST dataset. (A–D) shows the C-DCGAN generated data at Epochs 20, 50, 150, and 200. (E) The values of
the loss functions versus epoch number for D and G.

FIGURE 5 | Variations of the loss function with epoch number, blue for D
and orange for G.
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RESULTS OF AUTOMATIC
IDENTIFICATION OF SOLAR RADIO
BURSTS WITH C-DCGAN
In total, 28,804 solar radio spectral data images were used as the “real
part” of the training sample; those images of data generated by the
generator were also used. The loss functions of both D (the
discriminator) and G (the generator) are plotted in Figure 5 as a
function of the epoch number of the training process. It can be seen
that the value of the loss function of G is rather small at the start while
that of D is rather large. With increasing the epoch number, say, after
Epoch 30, the two values manifest strong oscillations, indicating the
occurrence of confrontation. After Epoch 100, both values of loss
function remain mostly below 1, indicating the gradual stabilization
of the two networks. They remain largely below 0.8 after Epoch 250,
indicating the data generated by G can be hardly discriminated from
real data by D; in other words, these generated data contain most, if
not all, essential features of the real data.

Examples of the generated data images, at different numbers of
epochs from 50 to 300, for the five types of solar radio bursts
observed in the metric decametric wavelengths are shown in
Figure 6. At the early stage of the training (before Epoch 100), the
generated images are rather blurred; with increasing numbers of
epoch (after Epoch 200), the generated images become very
similar to those observed for the same type of radio burst,
indicating the success of the data-generating process. This

FIGURE 6 |C-GCGAN generated data images of the five types of solar radio bursts at different epoch numbers (50–300). Panels from top to bottom correspond to
type I to type V bursts.

TABLE 2 | Accuracy of identification of different types of radio bursts according to
the C-DCGAN model.

Type Accuracy (Leamonth) (%) Accuracy (Culgoora) (%)

Type I 85.82 86.01
Type II 85.43 85.30
Type III 91.97 91.06
Type IV 89.32 89.16
Type V 84.79 81.43
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mostly resolves the issue of insufficient data sample and the consequent
over-fitting problem of earlier network models and improves the
performance of our model as will be demonstrated soon.

Table 2 presents the identification accuracy of different types of
metric decametric solar radio bursts. It can be seen that the accuracy
of type III identification is the highest, reaching above 91% for both
datasets (91.97% for Learmonth and 91.06% for Culgoora). The
accuracy for type IV also has a high rate of 89.32% for Learmonth
and 89.16% for Culgoora. This is likely due to the easy-to-identify
features of the two bursts, in comparison to others. For example, type
III is a very rapidly drifting feature with high brightness, while type
IV is a long-duration wideband continuum. In addition, type III
bursts usually last for less than 60 min; thus, they are not affected
much by the downsampling preprocessing. The recognition
accuracy of type I and type II bursts is relatively low, around
85%, while that for type V bursts are the lowest (84.79% for
Learmonth and 81.43% for Culgoora). This is likely due to the
smaller number of events in the sample for these bursts. Note that
only 4 spectra are available for type V bursts from Culgoora; thus,
C-DCGAN cannot catch the full features of the burst. This indicates
that although C-DCGAN can largely resolve the inadequate data
problem, its performance is yet to improve when the number of
samples is too low. The average identification accuracy for the five
types of radio bursts for Learmonth is higher than that for Culgoora,
mainly because the sample data from Learmonth are more balanced
among different types of bursts than those from Culgoora.

To further look into the causes of false recognition, we present
three such examples in Figure 7. They were all misidentified as
type V bursts. The event in Figure 7A was classified as a type III
event according to the online log file of the Learmonth
Observatory (yet it could be classified as a type V event from
our perspective); the event in Figure 7B was classified as a type II
event, according to the online log file (yet it should be classified as
a mixing-type event with both type III and type II bursts), and the
last event is a type III burst (should be classified as a type III storm
event). Since type V usually takes place after type III burst, in this
case, they coexist as mixing events in one spectral data. In
addition, due to their similar morphology, type V could be
easily misidentified as type III, or the two bursts are not
separable in many events. According to our method of data
selection, we have removed the events of mixing types of

bursts. This contributes to the insufficient number of type V
bursts used in the training process and affects the accuracy of
our model.

CONCLUSION AND DISCUSSION

Observations and studies of solar radio bursts are important to
our understanding of the physics of solar activities and relevant
space weather science as well as the physics of plasma radiation
in both astrophysics and space science. With the increasing
volume of data, it becomes timely and demanding to develop
techniques that can classify various types of solar radio bursts
automatically.

To do this, we developed a C-DCGAN model combining two
networks including the conditional generative adversarial network
(CGAN) and the deep convolutional generative adversarial
network (DCGAN). The main motivation is to resolve the issue
caused by inadequate numbers of data samples and the consequent
over-fitting issue. The database of solar radio bursts recorded by
the Learmonth and the Culggora observatories consists of 36,005
events. We concluded that the C-DCGAN performs well for type
III and IV bursts, reaching identification accuracy as high as
89–92%; for type I and type II bursts, the accuracy reaches
around 85%, while for type V burst, the accuracy is the lowest,
being below 85%.

The results show that our C-DCGAN model can
satisfactorily generate artificial data images from a small set
of data and potentially expand the size of the data sample. This is
important for the better performance of our model over others
published earlier [16] and represents a novel way in the auto-
classification of solar radio bursts using the deep learning
technology.

There exist two major limitations of the present model that
should be overcome in the future: 1) downsampling of the data
may lose some critical information of the original data and thus
affect the accuracy of the recognition; 2) the strong signal of radio
interference may become the major features of a radio spectrum
in some cases; thus, further studies should consider either to
remove these signals from the spectra or learn their major
characteristics so as to identify them.

FIGURE 7 | Three cases that have been misidentified as type V by C-GCGAN. According to the online data log file, (A) has been classified as type III, (B) as type III,
and (C) as type III.
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