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Complex networks have become a powerful tool to describe the structure and evolution in
a large quantity of real networks in the past few years, such as friendship networks,
metabolic networks, protein–protein interaction networks, and software networks. While a
variety of complex networks have been published, dense networks sharing remarkable
structural properties, such as the scale-free feature, are seldom reported. Here, our goal is
to construct a class of dense networks. Then, we discover that our networks follow the
mixture degree distribution; that is, there is a critical point above which the cumulative
degree distribution has a power-law form and below which the exponential distribution is
observed. Next, we also prove the networks proposed to show the small-world property.
Finally, we study random walks on our networks with a trap fixed at a vertex with the
highest degree and find that the closed form for the mean first-passage time increases
logarithmically with the number of vertices of our networks.

Keywords: dense feature, scale-free property, small-world property, mean first-passage time, mixture degree
distribution

1 INTRODUCTION

The exploding interest in complex networks during the several decades of the 21st century is rooted
in the discovery that despite the diversity of complex networks, the structure and the evolution of
each network are driven by a common set of basic laws and principles. Examples include the Internet
and the World Wide Web [1], biological networks [2], social networks [3], and communication
networks [4, 5], to mention but a few. There are two common considerable properties, the small-
world effect and the scale-free feature. The well-known WS-network (Watts and Strogatz, WS) was
proposed byWatts and Strogatz in Nature to explain small-world phenomena in diverse networks by
two indices, diameter and clustering coefficient [6]. The most pioneering of generally studied
networks is the BA-network (Barabási and Albert, BA) built by Barabási and Albert in Science using
two rules, namely, growth and preferential attachment [7].

In currently existing studies, the main concentration is to create networks which have scale-free
and small-world properties as mentioned above. However, most networks are sparse, which means
that the average degree of networks is asymptotically equal to a positive constant under the limitation
of a large number of vertices. The principal reason is that numbers of real-world networks have been
found to indicate sparsity. On the contrary, a few scholars have discovered the existence of dense
networks in [8, 9]. For probing such networks, several available networks have been presented and
analytically explored with primary methods, including mean-field theory [10, 11], generate function
[12], and rate equation [13, 14]. In particular, the vast majority of these networks are proved to have
no scale-free feature. To put this in another way, the degree distribution of these networks does not
obey the power-law distribution. Therefore, it is of interest to develop new theoretical frameworks for
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producing networks with both the density feature and the scale-
free feature. Here, we propose a class of networks with the
appropriate structural properties mentioned above. Specifically
speaking, these networks are precisely proved to be not only scale-
free and small-world but also dense. Throughout this article,
because graphs are abstract representations of networks, there is
no need to distinguish between graph and network, which
indicates that these two terms are considered to be the same.

The remainder of this article can be organized into the
following sections. In Section 2, our task is to introduce
network construction and discuss some extensively reported
structural properties, including the average degree, mixture
degree distribution, small-world property, and mean first-
passage time. Among them, our networks are analytically
proved to show both the density and scale-free features
since the power-law exponent of cumulative degree
distribution is equal to constant 2. Afterward, all the
networks have a smaller diameter and a higher clustering
coefficient, suggesting that they share the small-world
property. Then, we derive an explicit expression of the
mean first-passage time on our networks associated with the
trapping problem. Finally, we close this article with a
Conclusion and Discussions in the last section.

2 NETWORK CONSTRUCTION AND
TOPOLOGICAL PROPERTIES

In this section, our intention is to generate a class of networks: let
N(t;m) denote the network with parameter m and step t(t ≥ 0).
Then, we investigate some topological properties of our networks
under consideration, including the density feature, mixture
degree distribution, small-world property, and mean first-
passage time.

A Network Construction
Here, we will present our network, N(t;m)(m≥ 2). The network
is built in an iterative fashion, with each iteration, with respect to
the elements, generated in the previous steps. We divide this
process into the following steps.

Step 0: We start from a single vertex, we designate it as the
active vertex of the network, and the active vertex is placed in the
layer zero, denoted by L � 0.

Step 1: We add a cycle Cm with m vertices and m edges, each
vertex in the cycle is labeled as 0, and we connect each vertex
labeled as 0 to the active vertex; then, we obtain N(1;m), all the
cycle’s vertices of network N(1;m) at the layer L � 1.

Step 2: We generate m replicas of N(1;m), each replica
identical to the network created in the previous iteration
(step 1), add a new vertex regarded as an active vertex,
connect each of the bottom vertices of these m replicas to
the new active vertex, and attach each of the non-bottom
vertices of the m replicas to form an m cycle, so we acquire
N(2;m), where the bottom vertices of network N(1;m) at the
layer L � 2. Figure 1 explains the process of obtaining our
network N(2,m).

Step 3: We add m replicas of N(2;m) and create a new active
vertex, and then join each of the bottom vertices of these m
replicas with the active vertex, and connect each of the non-
bottom vertices of thesem replicas to form 33−1 − 1/2 cycles; thus,
we get N(3;m).

These steps can be easily generalized. In fact, step twill involve
the following operation:

Step t: We add m replicas of N(t − 1;m), with each being
identical to the network created in the previous iteration (step
t − 1); create a new vertex treated as an active vertex; link each of
the bottom vertices of thesem replicas with the active vertex; and
connect each of the non-bottom vertices of these m replicas to
produce 3t−1 − 1/2 cycles; thus, we arrive at the network N(t;m).

Indefinitely repeating the steps of replication and connection,
apparently, we obtain a class of networks. As an illustrative
example, a network N(3; 3) for the particular case of m � 3 is
shown in the right of Figure 1.

Now, we compute some related basic parameters of our
networks by construction. Let V(t;m) and E(t;m) denote the
set of vertices and edges, with the number of vertices |V(t;m)|
and the number of edges |E(t;m)| of N(t;m), respectively.
According to the growth steps of network N(t;m), we can
easily compute and get a pair of equations satisfied by the
number of vertices |V(t;m)| and the number of edges
|E(t;m)| at step t as follows:

⎧⎪⎪⎨⎪⎪⎩
|V(t;m)| � m|V(t − 1;m)| + 1

|E(t;m)| � m|E(t − 1;m)| +mt+1 −m
m − 1

. (1)

FIGURE 1 | Illustration of iterative construction leads to proposed network N(t;m) with m � 3 at time t � 0, t � 1, t � 2, t � 3 respectively, showing the first four
steps of the iterative process.
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At step t � 0, clearly, there is |V(0;m)| � 1 and |E(0;m)| � 0.
At step t � 1, we have |V(1;m)| � m + 1 and
|E(1;m)| � m(m + 1)/2. According to known conditions, we
straightforwardly calculate the value of |V(t;m)| and |E(t;m)|
from Eq. 1 and arrive at

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|V(t;m)| � mt+1 − 1

m − 1

|E(t;m)| � |E(1;m)|mt+1 +
(t − 1)mt+1 −mt −m

m − 1
m − 1

(2)

.

Until now, we have finished the construction of our networks
and computed certain fundamental quantities. It is an extremely
evident fact to discover the hierarchy of our network related to the
step. It is worth noticing that the involved network construction
with hierarchy has been discussed in [1]. In [1], Ravasz et al.
constructed a hierarchical network that combines the scale-free
property with a high clustering. However, it should be noted that
the approach adopted in this article is slightly different from the
approach in [1]. While Ravasz etal. applied an iterative process
for all vertices, our method is based on an idea that the next
network N(t;m) is created by connecting a part of vertices of
each replica N(t − 1;m) of the proceeding model to an active
vertex instead of all vertices in network N(t − 1;m). What calls
for special attention is that for different m, our networks are
different due to the number of vertices and edges being different,
but the topological structure of our networks is the same.
Additionally, as will be shown later, our network N(t;m) are
proven to have some distinguished topological properties, such as
the density feature and mixture degree distribution.

B Topological Properties
As has been mentioned above, we mainly focus on the
investigation of certain topological properties related to the
potential structure of the proposed network. In this section,
we will calculate several topological properties, including the
density feature, mixture degree distribution, small-world
property, and mean first-passage time. What we present here
will be significant constituents in the coming subsections.

Density feature: A key topological structure of a network is its
average degree. Average degree 〈k(t;m)〉 can be defined as the
average value of all such vertex degrees over the entire network,
which is applied to judge whether the network is sparse or dense.
One can call a network sparse if
|E(t;m)|≪ |V(t;m)|(|V(t;m)| − 1)/2; in other words, the
value of 〈k(t;m)〉 tends to a finite and positive real value in
the large number of vertices [15]. According to the definition of
sparsity, the majority of real networks with scale-free properties,
both stochastic and deterministic, are sparse. Yet, for our
networks, we have

〈k(t;m)〉 � 2|E(t;m)|
|V(t;m)| ∼ 2[t − 1 + |E(1;m)|(m − 1)]. (3)

We give a detailed calculation process of the average degree in
the Appendix. From Eq. 3, it goes without saying that the average
degree 〈k(t;m)〉 increases linearly with t and does not tend to a

real positive constant. In the large number of vertices, the average
degree 〈k(t;m)〉 of Eq. 3 approaches to infinity, as shown in
Figure 2. Consequently, we have the result that our network
N(t;m) turns out to be of density. It can be said with certainty
that our networks are different from some real-world networks
with sparse networks, such as hierarchical networks [1] and
deterministic networks [16]. Therefore, our network N(t;m)
can be selected as an underlying network to reveal some
remarkable properties behind those dense networks in real life.

Mixture degree distribution: The concept of degree is the most
fundamental character and measure of a vertex in a network.
Since in a network every vertex has a degree value, some large and
some small, the distribution of vertex in the network is a key
topological feature, which may be of great concern in application.
The degree distribution is one of the most important topological
features of a network. Degree distribution can be applied to
determine whether a given network is scalefree or not.
Combined with the process of network construction, it is
straightforward to find that the degree spectrum of network
N(t;m) is a series of discrete real values. Armed with the
above constructions and the method proposed by
Dorogovtsev, the cumulative degree distribution of our
networks can be calculated in a discrete form, as follows in [17]:

Pcum(k≥ ki) � ∑k≥ kiNk

|V(t;m)|, (4)

where notation Nk denotes the total number of vertices with a
degree exactly equal to k in network N(t;m). As stated in Eq. 4,
according to the vertex degree of our networks, we need to classify
all the vertices of networks to determine the degree distribution of
our networks.

For a network N(t;m) with t + 1 layers, it has to be noticed
that the largest degree vertex is that active vertex which joins at
time step t and has degree mt , and the next largest vertices are m
vertices, that is, the active vertex of the m units added to the

FIGURE 2 |Diagram of the average degree 〈k(t;m)〉 of networkN(t;m).
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network in the last layer (namely, L � 1) . Based on this
classification, there is no denying the fact that all vertices at
the layer L � t have the degree t + 2. This degree value must be
within the interval [mti + 2(t − ti),mti+1 + 2(t − ti − 1)]. Hence,
for the sake of simplicity, we will only adjust the initial layer of
vertices with respect to the vertex degree. Then, we have Table 1.

On the basis of the aforementioned Table 1 and Eq. 4, the
dependence of the cumulative distribution Pcum(k≥ kL,t:m) on the
degree kL,t:m and the step t is captured by the following equation:

Pcum(k≥ kL,t:m) � { k−cαL,t:m mti > 2(t − ti)
e− λkL,t:m mti ≤ 2(t − ti) , (5)

where power-law exponent cα � 1. Taking the derivative of both
sides of k in Eq. 5 yields

P(k) � k−c, c � cα + 1 � 2 (6)

The detailed calculation process of cumulative degree
distribution is presented in Appendix. The cumulative degree
distribution of our networks is composed of two parts,
exponential distribution and power-law distribution. Besides,
this result does not match the statement in the previous work.
Genio believes that there is no network whose power-law
exponent belongs to 0< c≤ 2 in the limitation of the large
number of vertices in [18]. Timar et al. explore two models of
scale-free networks that have the degree distribution exponent
c � 1[8]. Courtney et al. present a modeling framework which
produces networks that are both dense and have scale-free
properties in [9]. In addition, in [19], Ma et al. propose a
framework for producing scale-free networks with the dense
feature using two operations, that is, first-order subdivision
and line operation. However, our approach is different from
those in the above methods for constructing scale-free networks
with dense properties. Meanwhile, the lights shed by themmay be
helpful to construct some novel networks with certain
constraints. Next, we will discuss the small-world property of
our networks.

Small-world property: Watts and Strogatz proposed the small-
world property of complex networks by using two features: a
relative smaller diameter and a higher clustering coefficient [6].
The small-world property of our networks is still not well
discussed; despite that, they well describe these two important
parameters of topological structures. In the coming discussion,
we focus on the diameter and clustering coefficient of our
networks.

Diameter: The distance between two vertices is the smallest
number of edges to get from u to v. The longest shortest path
between all pairs of vertices is called the diameter. The diameter is
itself a feature of network structure and can be applied to
characterize a communication delay over a network. In
general, the larger the diameter is, the lower the
communication efficiency is. The diameter of our network is
denoted as D(t;m). Fortunately, for our networks, it can be
calculated easily. Here, we will introduce the main computation
of the diameter. With the help of the construction process of
network N(t;m), we have

D(t;m) � 4 � O(1). (7)

We give an exhaustive calculation process of diameter in
Appendix. The reason comprises two main cases: 1) all vertices
of the layer L � t are connected to that active vertex of the
highest layer, that is, L � 0; 2) each vertex in the middle layers,
L � 1, . . . , L � t − 1, always attaches to a vertex of the lowest
layer, that is, L � t. In fact, the diameters D(t;m) are equal to
the distance between two vertices, both of which are in the
middle layers and in different branches of network N(t;m).
This forces the network into an active vertex and unit in which
all vertices are close to each other because they all connect to
the active vertex. In this regime, the diameter is independent of
t and m. Note that this D(t;m) actually is not very large,
implying that our networks also have an ultrasmall
diameter—two randomly chosen vertices are connected by a
fairly short path length. Hence, formally, D(t;m) � 4; for any
t ≥ 0, the diameter is small and far less than the number of
vertices. So, we have a surprising result of an ultrasmall
diameter in this sense.

Clustering coefficient: The clustering coefficient is another
vital property of a network, which provides the measure of the
local structure within the network. The most immediate measure
of clustering is the clustering coefficient Ci for every vertex i. By
definition, the clustering coefficient of a vertex i is the ratio of the
total number Ei of edges that actually exist between all ki (its
nearest neighbors) and the number of ki(ki − 1)/2 of all possible
edges between them, that is, Ci � 2Ei/[ki(ki − 1)]. The clustering
coefficient 〈C〉 of the entire network can be defined as the average
of all vertex C’s as follows:

〈C〉 � ∑v ∈ VCv

|V | . (8)

The clustering coefficient of a vertex i in our networks is as
follows:

Ci(k)∝ k−1. (9)

The detailed process of the clustering coefficient will be given
in Appendix. The degree of the clustering coefficient of a whole
network is captured by the average value of the clustering
coefficient, 〈C(t;m)〉, representing the average of Ci over all
vertices i � 1, 2, . . . , |V(t;m)|.

〈C(t;m)〉 �
∑t

i�1
2(mt−i+2i)mi

(mt− i+2i)(mt−i+2i−1) +
2(m−1)mt

(t+2)(t+1)
|V(t;m)| . (10)

TABLE 1 | Degree spectrum.

L kL,t:m NL,t:m

0 mt 1
1 mt−1 + 2 m
/ / /

t − ti mti + 2(t − ti) mt−ti
/ / /

t − 2 m2 + 2(t − 2) mt−2

t − 1 m1 + 2(t − 1) mt−1

T t + 2 mt
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Taking the limit on the number of vertices, the clustering
coefficient 〈C(t;m)〉 of Eq. 10 approaches to a nonzero value, as
shown in Figure 3. So we can say that our networks have a high
clustering coefficient.

Consequently, our networks, with a smaller diameter and a
higher clustering coefficient, can be considered as small-world
networks.

Mean first-passage time: In this subsection, we have an attempt to
study the trapping problem on our networkN(t;m). Indeed, what is
considered here is a simple unbiased discrete-time Markovian
random walk with a single trap, namely, an ideal absorber located
at a specified vertex on a network. As previously discussed, that active
vertex of networkN(t;m) at the step t has the largest degree, referred
to as at . For the sake of convenience, let the active vertex at be the trap
vertex. At each time step, a walker starting from its current position v
moves to one of its neighbors Nv with the transition probability
1/dv(t;m) before visiting the absorber, where dv(t;m) is the number
of its existing edges of v in network N(t;m).

Here we think a walker starts from the vertex v at the initial
time. Obviously, we can obtain the fact that the transition
probability Pvu of starting out from v to reach u holds the
following equation:

Pvu(l + 1) � ∑
i ∈ V(t;m)

aiu
di(t;m)Pvi(l), (11)

where aiu is the entry of the adjacency matrix of networkN(t;m) :
aiu � 1 if there is an edge connecting vertices i and u, and aiu � 0
otherwise.

Armed with the rule mentioned above, we want to discuss the
most important quantity for the trapping problem, generally
named the first-passage time FPT . The first-passage time is
the expected number of steps for a walker, starting from the
vertex v to first arrive at the trap in the trapping problem. For our
network N(t;m), we represent the first-passage time for a walker

located in the vertex v by FPTv and let P(FPTv � l) be the
probability for that vertex v to first drop into the trap, namely,
the active vertex at . Similar to Eq. 11, we have

P(FPTv � l) � ∑
i ∈ V(t;m),

i≠ at

aiu
di(t;m) P(FPTv � l − 1). (12)

The classical method to solve the aforementioned equation is
the generating function. Without loss of generality, we can write
down the corresponding generating function of P(FPTv � l) as
follows:

Pv(x) � ∑∞
t�0

P(FPTv � l)xl. (13)

A trial yet helpful fact associated withPv(x), the expected time
FPTv, is exactly equal to the value P′v(1), as we will explain
shortly in the coming discussion.

Before proceeding further, we first define two notations, Pt(s)
and QL(s). Let Pt(s) denote the probability for a walker on any
vertex at the layer L � t + 1 of network N(t;m) to first visit the
active at after s steps and QL(s) represent the probability that a
walker starting from any vertexw at the layer L(L � 1, 2, . . . , t) hits
one at a randomly chosen vertex at the layer L � t + 1 of network
N(t;m), which connects to vertex w, after s steps. Combined with
the structure of network N(t;m) and the statement above, we
arrive at the explicit equation for Pt(s) on our networks as follows:

Pt(s) � δs,1 + ∑t
L�1∑s−1

i�1QL(s)Pt(s − 1 − i)
kL�t+1

, (14)

where δs,1 is the Kronecker delta function defined as δs,1 � 1 if s is
equal to one and δs,1 � 0; otherwise, kL�t+1 is the number of edges
associated with the vertex at the layer L � t + 1 and equals t + 1.

Then, together with Eq. 13, the generating function Pt(x)
corresponding to Pt(s) can be written as

Pt(x) � x
kL�t+1

+ tx2

kL�t+1
Pt(x) (15)

in which we apply a result QL(i) � 1 only for both L � 1, . . . , t
and i � 1and QL(i) � 0 otherwise.

Meanwhile, let FPTt
t+1 represent the first-passage time for a

walker originally placed on any vertex at the layer L � t + 1 which
can be expressed as

FPTt
t+1 �

d
dx
Pt(x)|x�1. (16)

On the basis of Eq. 16, doing the derivative of both sides of Eq.
15 evolves the exact solution of FPTt

t+1. It is represented as

FPTt
t+1 � 2t + 1. (17)

For each vertex at the layer L � 1, . . . , t, together with the
definition of QL(s) and the hierarchical structure of networks
N(t;m), the first-passage time FPTt

L for a walker formerly set on
an arbitrary vertex at the layer L can be expressed in terms
of FPTt

t+1.

FIGURE 3 | Diagram of the clustering coefficient 〈C(t;m)〉 of network
N(t;m).
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FPTt
L � FPTt

t+1 + 1. (18)

Then, the first-passage time FPTt
L for a walker at the layer

L � 1, . . . , t + 1 can be computed in a sharp mode. Our next
purpose is to deduce the mean first-passage time 〈FTP〉t , which
depicts the trapping process with a random walk on average.

〈FTP〉t � 1

|V(t;m) − 1| ∑
t+1

L�1
FPTt

L|Nt(L)|. (19)

Here, we again apply the hierarchical structure of network
N(t;m), and |Nt(L)| represents the total number of vertices at
the layer L(L � 1, . . . , t + 1). As previously stated, we find that
|Nt(L)| is equal to NL,t;m.

Plugging Eqs 17 and 18 and the value of |V(t;m)| into Eq. 19,
we obtain the subsequent equation by taking advantage of several
simple mathematics

〈FPT〉t � O(2t + 1
m
). (20)

Moreover, we think the logarithm of the number of vertices of
network N(t;m), that is, ln|V(t;m)| ∼ (t + 1)lnm. It is
straightforward to discover that for the entire network
N(t;m), the mean first-passage time 〈FPT〉t is closely related
to the number of vertices of network N(t;m).

〈FPT〉t ∼ ln|V(t;m)|. (21)

Thus, in the large limit of the number of vertices of
networkN(t;m), the mean first-passage time increases
logarithmically with the number of vertices of our networks.
Equation 21 reveals the relationship of the mean first-passage
time on the number of edges of our networks. Figure 4 describes
the fact that the mean first-passage time is a function of step t.

This is a bit different from some previous results in the existing
literature; for instance, for a complete graph with N vertices, the

mean first-passage time is exactly equal to N − 1, which scales
linearly with the number of vertices. One can see that the mean
first-passage time of the Apollonian network increases as a
fractional power of the number of vertices, which implies that
the Apollonian network has a faster transmit time than any other
analytically soluble media [20]. In contrast to our networks, the
complete graph has no scale-free feature and hierarchical structure,
but has the ultrasmall diameter and dense feature. On the other
hand, the Apollonian network has a larger diameter than our
networks, which indicates the scale-free feature and hierarchical
structure. All things considered, it may be safely said that our
network N(t;m) outperforms those networks in [20] with respect
to the mean first-passage time in the trapping problem.

3 CONCLUSION AND DISCUSSION

In our article, we present a class of scale-free networks with the dense
feature. On the basis of our analysis, we deduce some striking
results.1) The average degree of our networks is not
approximately a fixed constant value, and its value diverges with
the step t, and then we reveal the fact that our networks are dense. 2)
The cumulative degree distribution of our networks N(t;m)
contains two parts: exponential degree distribution and power-
law distribution with the exponent c � 2. 3) Combined with the
diameter and clustering coefficient, we hold the opinion that our
networks have the small-world effect. 4) Themean first-passage time
in network N(t;m) is approximately related to the logarithm
number of vertices of networks. Our findings are insightful for
the study of the random walks on various deterministically growing
networks. Our work creates a broader perspective on previous
research studies of trapping on diverse networks and sheds light
on some aspects related to the trapping problem, providing some
relationship information between efficiency and underlying the
network size. In the future, we hope that the current study can
provide some inspiration for trapping problems in real networks
with topologies similar to ours.
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