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A novel hybrid continuous inverse power amplifier (PA) that is constituted by a continuum
of PA modes from the continuous inverse class-F to the continuous inverse class-B/J is
proposed, and a detailed mathematical analysis is presented. The fundamental and
second harmonic admittance spaces of the hybrid PA proposed in this article are
analyzed mathematically. By introducing the phase shift parameter into the current
waveform formula of the hybrid continuous inverse PA, the design space of the
fundamental and second harmonic admittance is expanded, further increasing the
operating bandwidth. The efficiency of the amplifier under different parameter
conditions is calculated. In order to verify this method, a broadband high-efficiency PA
is designed and fabricated. The drain voltage and current waveforms of the amplifier are
extracted for analysis. The experimental measured results show a 60.7–71.5% drain
efficiency across the frequency band of 0.5–2.5 GHz (133% bandwidth), and the designed
PA can obtain an 11.8–13.9 dB gain in the interesting frequency range. The measured
results are confirmed to be in good agreement with theory and simulations.
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INTRODUCTION

RF power amplifiers are widely used in various wireless communication systems. With the rapid
growth of modern mobile communication services, the requirements of low consumption, wide
bandwidth, high efficiency, and small size are also increasing rapidly [1–5]. The RF power amplifier
(PA) is one of the modules with the most power loss in RF transmission. Therefore, the improvement
of amplifier efficiency and the expansion of bandwidth have become the focus of current
research [6–12].

The continuous operation modes based on class-B were proposed by S. C. Cripps et al. [13]. By
introducing the expansion factor into the voltage or current equation, a new mode of amplifier is
formed, which has obvious advantages in expanding the fundamental and second harmonic
impedance spaces. In addition, the continuous PA can achieve higher efficiency in a wide
frequency range by increasing the suppression of high harmonic components. Therefore, in
recent years, the study of continuous PAs has attracted extensive attention.

Having gone through several important stages, the research on continuous power amplifiers has
made great progress recently. For example, as mentioned by the authors in reference [14], even–odd
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mode analysis and a series of continuous modes are first proposed
to design broadband and high-efficiency PAs. Under the action of
the ring resonator microstrip band-pass filter, the operating
bandwidth of the designed PA is across 0.8–3.2 GHz with a
drain efficiency of 57–74%. A continuous class-B/J PA using a
nonlinear embedding technique was proposed by the authors in
reference [15], with which the designed amplifier can operate
across 1.3–2.4 GHz with a drain efficiency of 63–72%.

An ultra-wideband high-efficiency PA based on optimal
fundamental input and output loads was designed by the
authors in reference [16]. Starting from the optimum ideal
loads, the input and output matching network of the amplifier
was designed step by step. The PA was designed over the
frequency band from 0.8 to 4.0 GHz with a drain efficiency of
40–55%.

Some achievements have also been made in the field of the
inverse class-F PA. A comparison between class F and inverse
class F is faced and a novel analytical method for studying the
inverse class-F PA is proposed by the authors in reference [17].
The amplifier was designed at a center frequency of 9.6 GHz, and
the peak efficiency is 54%.

The hybrid continuous inverse PA can be formed by
introducing different parameters into the current equation of
the continuous inverse modes. In this study, a phase-shifted
current waveform is proposed to be explored in the design of
the hybrid continuous inverse PA. Based on the new theoretical
model, the current and voltage waveforms of the amplifier are
reconstructed so that the design space of the fundamental
admittance of the mixed continuous inverse PA is expanded.
In addition, the new waveforms enable the second harmonic
admittance of the hybrid continuous inverse PA to have both
resistive and reactive parts. Meanwhile, with the introduction of
the phase shift parameter, the proposed impedance space is very
different from the previous modes [18–23]. A high-efficiency PA
is designed and fabricated to validate this theory. Simulation and
experimental results show that the drain efficiency of this PA is
60.7–71.5%, and there is an output power of 39.8–41.9 dBm in the
target band from 0.5 to 2.5 GHz.

POWER AMPLIFIER DESIGN
METHODOLOGY

The drain voltage of the proposed PA is the same as that of the
traditional inverse continuous modes, and the waveform is
similar to that of the square wave [24], as shown below:

VDC(θ) � VDC · (1 + �
2

√
cos θ + 1

2
cos 2 θ), (1)

where VDC is the operating voltage.
The drain current of the continuous inverse class-F PA is

shown in Eq. 2 as follows:

IDS(θ) � IMAX · (idc − i1 cosθ+ i3 cos3θ) ·(1−csinθ) , 1≥c≥ −1,
(2)

where Imax is the saturated drain current, and idc � 0.37, i1 � 0.43,
and i3 � 0.06 [27]. Normalize the above voltage and current

expressions. The normalized voltage and current expressions are
given below:

vds(θ) � 1 + �
2

√
cos(θ) + 1

2
cos(2θ), (3)

ids(θ) �(1−4337cosθ+
6
37

cos3θ) ·(1−csinθ), 1≥c≥ −1. (4)

By increasing the coefficient and the phase shift factor in the current
equation,Eq. 4 is expanded and the expansion expression is as follows:

ids(θ) � [1−αcos(θ+φ)+βcos(3θ+3φ)] · [1−csin(θ+φ)],
1≥c≥ −1, (5)

where parameter φ is the phase shift factor. The normalized
current expression in Eq. 5 is mathematically expanded as shown
below:

ids(θ) � 1−(αcosφ+csinφ)cosθ+(αsinφ−ccosφ)sinθ
+(αc

2
+βc
2
)sin2φcos2θ+(αc

2
+βc
2
)cos2φsin2θ

+βcos3θcos3φ− βsin3φsin3θ

−βc
2
sin4φcos4θ−βc

2
cos4φsin4θ 1≥c≥ −1.

(6)

In Eq. 6, the ranges of the α and β values are (1, 43/37) and (0, 6/37),
respectively [28]. When α and β are the fixed values, the
parameter c is varied over the range of (−1, 1). According to
Eqs 1 and 2, the fundamental and harmonic admittances can be
calculated by using the following:

Ynf � − ids,n
vds,n

. (7)

The harmonic admittance of the PA can be calculated by
combining expressions (3), (6), and (7). The first three
harmonic admittances can be derived as follows:

Y1 �
�
2

√ (c sinφ + α cosφ + j · (c cosφ − α sinφ)) · Gopt , (8)

Y2 � −2(αc + βc)(sin 2φ + j · cos 2φ) · Gopt , (9)

Y3 � ∞. (10)

In Eqs 8 and 9, Gopt�(1/2)·[Ipeak/(Vds-Vknee)], which is defined as
the optimal admittance of transistors at the current generator
(I-gen) plane [28]. From the above expression of admittance
calculation, it can be derived that both fundamental admittance
and second harmonic admittance are composed of two parts:
resistance and reactance. Where the design space of fundamental
admittance is determined by parameters α, c, and φ, the design
space of second harmonic admittance is determined by
parameters α, β, c, and φ.

The fundamental and second harmonic admittances must be
inside the Smith diagram, so the real part of the admittance is
greater than or equal to zero. Therefore, the phase shift parameter
φ must satisfy the following expressions:

{φ ∈ [arctan(−α), 0] when 0≤ c ≤ 1
φ ∈ [0, arctan(α)] when − 1≤ c≤ 0 . (11)
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FIGURE 1 | Theoretical voltage and current waveforms and drain efficiency. (A–D) Theoretical voltage and current waveforms when φ � arctan(-α), φ � 0, φ �
arctan(α). (A) α � 43/37, β � 6/37, and φ∈[arctan(-α), 0]. (B) α � 43/37, β � 6/37, and φ∈[0, arctan(α)]. (C) α � 1, β � 0, and φ∈[arctan(-α), 0]. (D) α � 1, β � 0, and φ∈[0,
arctan(α)]. (E–H) Theoretical drain efficiency with respect to c and φ. (E) α � 43/37, β � 6/37, and φ ≥ 0. (F) α � 43/37, β � 6/37, and φ ≤ 0. (G) α � 1, β � 0, and φ ≥ 0.
(H) α � 1, β � 0, and φ ≤ 0.
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The normalized voltages and currents of the proposed PA
based on Eqs 1 and 2 are shown in Figure 1. The current
waveform curve without the phase shift is blue, and the
current waveform curve after the phase shift is red. From Eq.
11, we can see that the range of the phase shift parameters is
[arctan(-α), arctan(α)]. Figure 1A shows the normalized current
and voltage waveforms at the boundary values of α � 43/37, when
φ � arctan(-α), φ � 0. Figure 1B shows the normalized current
and voltage waveforms at the boundary values of α � 43/37, when
φ � 0, φ � arctan(α). Figure 1C shows the waveforms at the

boundary values of α � 1, when φ � arctan(-α), φ � 0. Figure 1D
shows the waveforms at the boundary values of α � 1, when φ � 0,
φ � arctan(α).

The DC and RF power of the PA can be calculated using the
following expressions: Eqs 12 and 13. The drain efficiency (DE)
of the modified hybrid inverse continuous modes can be
calculated based on Eqs 3, 6, 12, and 13 as follows:

Pdc � ∫ ids,dc × vds,dcdt, (12)

FIGURE 2 | (A) Equivalent circuit model of transistor modeling showing the parasitics. (B)Output matching network and the admittances at the intrinsic drain plane.
(C) De-embedded voltage and current waveforms of the PA at the I-gen plane.
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PRF � ∫ ids,1f × vds,1f dt. (13)

Using the above expression, the DE which is defined as the ratio
of PRF to Pdc can be written as follows:

DE � ∫ ids,1f × vds,1f dt

∫ ids,dc × vds,dcdt
�

�
2

√
2

(c sinφ + α cosφ). (14)

The DE of the hybrid inverse continuous mode PA, which
depends on c, α, and φ, can be clearly found from the above
expression. According to the relation between c and φ and
the range of c, α, and φ, DE will decrease with the increase in
the absolute value of φ. By calculating, it is concluded that
when the DE is greater than 60%, the range of c will be
reduced with the increase in the absolute value of φ and when
α � 1 and α � 43/37, the corresponding relations for the
theoretical DE are plotted in Figures 1E,F, respectively.
Figure 1E shows DE at the boundary values of α � 43/37,
β � 6/37, and φ ≥ 0. When φ � 0, the amplifier has a maximum
DE of 82.17%, and the DE does not change with the c. With
the increase in φ, the DE decreases gradually. At the same
time, the DE will decrease with the decrease in c. The
maximum value of DE also appears at φ � 0, as shown in
Figure 1F. As the absolute value of φ increases, the DE
decreases. When φ has a fixed value, the DE will also
decrease with the increase in c. Figure 1G,H show DE at
the boundary values of α � 1 and β � 0. The DE has a similar
variation law to those in Figure 1E,F.

In order to obtain the design space of the fundamental and
second harmonic admittances for DE over 60%, the expressions
in Eqs 8, 9, 11, and 14 must be combined. Figure 2B shows the
fundamental and second harmonic design spaces for a � 1, a � 9/8,
and a � 43/37. It can be seen from Figure 2B that the
fundamental admittance space is a large continuous region,
which improves the sufficient design space for us to design
broadband power amplifiers. In addition, the second harmonic
admittance has a completely new region compared with the
traditional inverse continuous type, and the efficiency of the
amplifier can be further improved by controlling the harmonic
component.

REALIZATION AND EXPERIMENTAL
RESULTS

Output Network and Output Waveform
A 10-WCree CGH40010F GaNHEMT packaged device was used
for implementation. An ultra-wideband high-efficiency PA is
designed to prove the theory proposed in this study. As the
theoretical PA mode analysis refers to the intrinsic drain plane
(I-generation plane), the parasitics of the transistor need to be
properly modeled. Hence, computer-aided design (CAD)-based
modeling can be performed in combination with bare sheet
models and encapsulation models, which are provided by the
manufacturer [25]. The typical equivalent-circuit model of this
transistor is shown in Figure 2A, indicating the intrinsic and
package parasitics [26].

The output matching network with the dimensions of
transmission lines and the admittances at the intrinsic drain
plane are shown in Figure 2B, where the fundamental impedance
is consistent with the results obtained from the previous analysis.
However, since the bandwidth of the PA exceeds one octave, the
second harmonic admittance does not fully enter the ideal space.
As a result, the efficiency of the PA will be affected before
1.5 GHz. In other words, the efficiency of the PA will be
increased after 1.5 GHz. Additionally, when the frequency is
higher than 2.5 GHz, the efficiency of the PA will decrease
significantly.

To verify the operating mode of the designed PA, the
simulated voltage and current waveforms at the intrinsic drain
plane are investigated using the harmonic balance simulator
available in ADS. Figure 2C shows the simulated voltage and
current waveforms when the PA is operating at 0.5, 1.0, 2.0, and
2.5 GHz, respectively. The voltage and current waveforms are
basically in agreement with those of the hybrid continuous
inverse power amplifiers. The drain voltage is set to 28 V with
a quiescent current of 62 mA.

Amplifier Circuit Fabrication and Testing
The circuit is fabricated on Rogers’s RO4350B with εr � 3.66 and
H � 0.762 mm. The photograph of the proposed PA is presented
inFigure 3A. The PA is first tested under the stimulus of a single-tone

FIGURE 3 | (A) Photograph of the proposed PA. (B) Simulated and measured drain efficiency, output power, and gain virus input power at 0.8 GHz. (C) Simulated
and measured drain efficiency, output power, and gains of the designed PA.
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continuous wave signal from 0.5 to 2.5 GHz with a step of
0.1 GHz. The drain bias voltage and the gate bias voltage of the
transistor are both set to the value that causes the best drain
efficiency (DE) in the test.

The simulated andmeasured gain, drain efficiency, and output
power of the designed amplifier versus the input power at
0.8 GHz are shown in Figure 3B. The simulated and
measured results of the output power, drain efficiency, and
gain of this PA over the entire frequency band are given in
Figure 3C. The simulated and measured results show that the
drain efficiency can reach more than 60% in the frequency range
of 0.5–2.5 GHz (relative bandwidth 133%). The test results of
drain efficiency are 60.7–71.5%. Over the same band, the
measured output power from 39.8 to 41.9 dBm is obtained.
The gain is 11.8–13.9 dB within the same frequency band. In
addition, the simulation results of gain and output power are in
good agreement with the measured results due to the EM
simulation of the layout in the ADS. It can be seen from
Figure 3C that the drain efficiency of the amplifier fluctuates
in the operating frequency range. The reason is that the operating
bandwidth of the amplifier is very wide, the operating modes of
different frequencies are different, and the efficiency of different
operating modes is different, so the drain efficiency of the
amplifier will fluctuate in the entire frequency range.

Compared with the previous design, the proposed PA
designed in this study has wider bandwidth, higher drain
efficiency, and stable output power, as shown in Table 1.

CONCLUSION

A high-efficiency and wideband hybrid continuous invert PA
with phase shift parameters is presented in this article, the current
equation of which has been rebuilt to gain greater design space. It
is shown that the fundamental and second harmonic admittances
change with the introduction of the phase shift parameters. On
the basis of this theory, the drain efficiency of the designed PA is
60.7–71.5% and the output power is 39.8–41.9 dBm.
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