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In white-light diffraction phase imaging, when used with insufficient spatial filtering, phase

image exhibits object-dependent artifacts, especially around the edges of the object,

referred to the well-known halo effect. Here we present a new deep-learning-based

approach for recovering halo-free white-light diffraction phase images. The neural

network-based method can accurately and rapidly remove the halo artifacts not relying

on any priori knowledge. First, the neural network, namely HFDNN (deep neural network

for halo free), is designed. Then, the HFDNN is trained by using pairs of the measured

phase images, acquired by white-light diffraction phase imaging system, and the true

phase images. After the training, the HFDNN takes a measured phase image as input to

rapidly correct the halo artifacts and reconstruct an accurate halo-free phase image.

We validate the effectiveness and the robustness of the method by correcting the

phase images on various samples, including standard polystyrene beads, living red

blood cells and monascus spores and hyphaes. In contrast to the existing halo-free

methods, the proposed HFDNN method does not rely on the hardware design or does

not need iterative computations, providing a new avenue to all halo-free white-light phase

imaging techniques.

Keywords: quantitative phase imaging, diffraction phase microscopy, deep learning, halo-free, white-light

illumination

INTRODUCTION

In recent years, quantitative phase imaging (QPI) is a rapidly growing research field, which has been
broadly used in cell biological research and disease diagnosis [1]. Quantitative phase imaging can
acquire quantitative phase measurement without the need for tagging, investigating optical path
delays induced by the specimen at the full field of view. And the optical pathlength data can be
further converted into various biologically-relevant information [2–4]. Kinds of QPI techniques,
such as optical coherence tomography (OCT) [5, 6], digital holographic microscopy (DHM) [7, 8],
diffraction phase microscopy (DPM) [9, 10], transport of intensity equation (TIE) [11, 12], optical
diffraction tomography (ODT) [13, 14], and so on, have been developed to help access to this
valuable phase information.
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Diffraction phase microscopy combines many of the best
attributes of current QPI techniques. Its common-path [15],
off-axis [16] approach takes advantage of both the low
spatiotemporal noise and fast acquisition rates of previous
QPI techniques. Diffraction phase microscopy using white-light
illumination (wDPM) [17, 18], exhibits lower noise levels than
its laser counterparts, although requires more precise alignment.
This is a result of the lower coherence, both temporally and
spatially, which reduces speckle [19, 20]. Due to the dramatically
low spatiotemporal noise, wDPM has been receiving intense
scientific interest as a new modality for label-free cell biology
studies and medical diagnostics.

However, unfortunately, like all white-light phase contrast
imaging systems, when used with insufficient spatial filtering,
wDPM exhibits object-dependent artifacts not present in laser
counterparts, especially around the edges of the object, referred
to the well-known halo effect, which disrupt the accuracy of
quantitative measurements. Previous many methods have been
proposed to eliminate the halo problem. A possible way is to
simply reduce the area of the illumination aperture to improve
the spatial coherence of the illumination, thus reducing the halo
artifacts [21–25]. It is feasible for wDPM to adopt proper spatial
filtering at the condenser and the output Fourier plane to ensure
adequate spatial coherence and remove the halo artifacts. The
solution introduces a trade-off. Sufficient spatial filtering leads
to reducing the illumination power. In turn the exposure time
has to be increased, which prevents real-time imaging. Edwards
et al. [25] presented the investigated experimental data on the
exposure time and the spatial filter diameter in wDPM. Using
a standard halogen lamp (HAL 100 Halogen Lamp) and a gain
setting of 0 dB on the CCD camera, the exposure time was above
about 600ms when proper spatial filtering was adopted to ensure
the halo-free imaging. The second class of approaches involves
pure numerical processing [26–28]. A real-time numerical
processing approach for removing halos was described in [26],
which can remove the negative values around the edge of
an object but not correct the underestimated phase values
to the accurate measurement. The third method, combining
both hardware and numerical processing, relies on an iterative
deconvolution algorithm to invert a non-linear image formation
model with partially coherent light [29]. While successful for
correcting the phase values to the accurate measurement, the
approach suffers from poor numerical convergence leading to
long computation times, impractical for real-time measurement.

Here, we propose a novel deep-learning-based method for
accurately and rapidly removing the halo artifacts. Deep learning
(DL) is a machine learning technique for data modeling, and
decision making with a neural network trained by a large amount
of data [30, 31]. The application of machine learning techniques
in optical imaging was first proposed by Horisaki et al. who
used the support vector regression (SVR) to recover the image
through a scattering layer [32]. In the recent years, the application
of DL has been rapidly developed in solving various inverse
problems in optical imaging. For example, DL has been used
for imaging through thick scattering media [33], ghost imaging
with the data under the significant reduction of sampling [34],
image reconstruction in the Fourier ptychography [35], image

reconstruction and automatic focusing in digital holography [36,
37], image classification and recognition [38, 39], fringe pattern
analysis imaging [40] and so on. Although neural networks
have been extensively studied for tasks in optical imaging, to
our knowledge, it has not been concerned for halo-free phase
image processing. We develop a deep neural network (DNN) and
thus we term it to accurately correct halo artifacts by an end-
to-end learning approach, namely HFDNN. First, the HFDNN
architecture is designed. Then through iterative training and self-
learning features, the HFDNN is constructed. Last, after any
phase image with halo artifacts, captured on our wDPM setup,
is sent into the HFDNN, it can be corrected into an accurate
halo-free phase image rapidly. In contrast to the existing halo-
free methods, the proposed HFDNN method does not rely on
the hardware design or does not need iterative computations,
resulting in correcting the phase image accurately and rapidly.

EXPERIMENTAL SETUP

Figure 1 shows a schematic of the white-light diffraction phase
imaging system. The part in the dotted line frame illustrates the
schematic of a bright light microscope, and DPM interferometer
is an added-on module to the bright light microscope, created
using a diffraction grating in conjunction with a 4f lens system.
First, a Ronchi diffraction grating is precisely placed at the
output image plane of the microscope and multiple diffraction
orders containing full spatial information about the sample are
generated. Then, a filter is placed at the Fourier plane (i.e., the
spectral plane) of the first lens, which takes a Fourier transform in
the 4f configuration, creating a Fourier plane. The design of the
filter is as shown in Figure 1. It allows the 1st diffraction order to
pass completely through the rectangular hole and the 0th order
is filtered down by the small pinhole. Finally, the second lens
takes a Fourier transform again. The 1st order light forms the
imaging field and serves as the object wave field. The 0th order
serves as the reference wave field. The object wave field and the
reference wave field are superposed at the CCD plane to form
an interferogram.

In wDPM system, the measured quantity is the temporal
cross-correlation function of the object wave field and the
reference wave field [21, 26, 29]. Because the two fields pass
through the same optical components, the time delay between
them is evaluated to zero, that is, τ = 0. Therefore, the measured
quantity can be written as

Ŵs,r (r, r, 0) =
〈

Us (r, t)U
∗
r (r, t)

〉

t
(1)

where Us (r, t) is the object wave field, Ur (r, t) is the
reference wave field, the angular bracket denotes ensemble
average. Assuming that fields are ergodic and, thus, stationary.
Thus, the ensemble averaging in Equation (1) can be replaced by
time averaging. As a result of the generalized Wiener-Khintchine
theorem, the cross-correlation function Γs,r (r, r, τ ) is the Fourier
transform of the cross-spectral density Ws,r (r, r, w). Thus,
according to the central ordinate theorem, Equation (1) can be
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FIGURE 1 | The wDPM add-on module uses a 4-f system coupled to the output port of a bright light microscope. A camera is placed at the output of the module to

record the interference intensity.

written as

Ŵs,r (r, r, 0) =

∫

Ws,r (r, r,w) dw

=

∫

〈

Us (r,w)U∗
r (r,w)

〉

dw (2)

where Us (r, w) and U∗
r (r, w) are the Fourier transforms of Us (r,

t) and U∗
r (r, t), respectively.

In order to establish the model of image formation, we further
analyze the object and reference wave fields. The diffraction
grating creates copies of the image at different angles, and
the filter allows the 1st order to completely pass through the
rectangular hole. Thus, the object light field at CCD plane can
be written as Us (r, w) = T(r)Ui (r, w), where Ui (r, w) is the
illumination field at the sample plane and T(r) is the transmission
function of the measured sample. However, the 0th order field is
filtered by the pinhole, expressed as Ur (r, w) = [T(r)Ui (r, w)]
⊗ h0(r), where h0(r) is the Fourier transform of the transmission
function of the 0th filter aperture,⊗ denotes the two-dimensional
convolution operator. Equation (1) can be written as

Ŵs,r (r, r, 0)

=

∫ 〈

T (r)Ui (r,w)

[∫ ∫ ∞

−∞

T
(

r′
)

Ui

(

r′,w
)

h0
(

r − r′
)

d2r′
]∗〉

dw

= T (r)

∫ [∫ ∫ ∞

−∞

Wi

(

r, r′,w
)

h∗0
(

r − r′
)

T∗
(

r′
)

d2r′
]

dw

= T (r)

∫ ∫ ∞

−∞

Ŵi

(

r − r′, 0
)

h∗0
(

r − r′
)

T∗
(

r′
)

d2r′

= T (r)
[

T (r) ⊗ h (r)
]∗

(3)

here, h(r) = Ŵ∗
i (r, 0)h0(r) where Ŵ∗

i (r, 0) is the conjugated term
of the temporal cross-correlation function of the illumination
source, and Ŵi (r, 0) reflects the coherence of the illumination
field;Wi (r, r′, w) is the cross-spectral density of the illumination
field, assuming that fields are stationary, i.e., Wi(r, r′, w)=Wi(r–
r′, w). Equation (3) establishes a relationship between the
measured quantity Ŵs,r (r, r, 0) and the sample transmission
function T(r). Solving the phase value from Equation (3), the
relationship between the measured phase value and the true
phase value can be obtained as:

ϕm (r) = ϕ (r) − arg
[(

T ⊗ h
)

(r)
]

(4)

here, φm(r) is the measured phase value, φ(r) is the true
phase value, arg[(T ⊗ h)(r)] indicates that the measured phase
distribution is smoothed. The effects of phase underestimation,
can be clearly seen, that is, the measured phase value is lower
than the true phase value, even causing a negative value around
the edges of the object, which is known as the halo effect.

Conventionally, to obtain the true phase distribution, given
correlation measurements of the light source Γ i (r, 0) and the
filter function h0(r), Equation (4) is solved by the constrained
optimization problem as follows

ϕ† (r) = argminϕ

{

∥

∥

∥ϕm − ϕ (r) + arg
[

eiϕ(r)⊗r

(

Ŵi
∗h0

)

(r)
]∥

∥

∥

2

2

+λTV (ϕ)} (5)

here, TV=
∫

d2r

√

(∂ϕ/∂x )2 (r) +
(

∂ϕ/∂y
)2

(r), is the total

variation term, which suppresses the noise effects and enforces
the sparsity assumption of the sample phase distribution.
||.||2 denotes the l2-norm. While successful for the phase
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values estimation, the approach suffers long computation times,
impractical for real-time measurement [29].

THE HFDNN METHOD

Here, we propose a deep learning approach that uses end-to-
end learning to reconstruct the true phase from the measured
phase. The end-to-end learning approach is to use a set of
data, consisting of the measured phase images (φm)n and their
corresponding ground-truth phase images (φ(r))n, where n = 1,
. . . , N, to learn the parametric inverse mapping operator R(F)
from the measured phase to the true phase. The inverse mapping
operator R(F) can be expressed as:

R (F)= argminF

N
∑

n=1

L
(

(ϕ (r))n, F
{

(ϕm (r))n
})

+ λJ (F) (6)

where F denotes the deep neural network model, which contains
the two types of parameters. The first type includes the
parameters that specify the structure of the network, such as
the number of the layers and neurons in each layer, the size of
the kernels, etc. This type of parameters needs to be determined
before training according to the training data sets and the
purpose of learning. The other type includes the internal weights
of different convolutional kernels. The weight parameters are
adjusted autonomously during the training. L is the loss function
to calculate the error between (φ(r))n and F{(φm)n}. And J is
a regularization function, aim of constraining iterations and
avoiding overfitting, and λ is the coefficient for balancing the
loss and the regularization. Once the inverse mapping has been
learned autonomously, the neural network can be used to recover
the true phase directly from the measured phase, removing the
halo artifacts.

We propose a HFDNN model, which is plotted in Figure 2,
partially inspired by the autoencoders [41], to realize halo-
free white-light phase imaging. The HFDNN architecture is
composed of the convolutional blocks, the pooling blocks,
and the up-sampling blocks. The convolutional block is a
convolutional layer, with an activation function, which is used
to extract local features and increase the expression ability of
measured data. The pooling block is a max pooling or an
average pooling layer, which can selectively extract representative
features and reduce parameters. The up-sampling block is an
up-sampling layer used to restore high-dimensional features to
the reconstructed data with the same size as the input data.
There is an apostrophe in the middle of the HFDNN architecture,
which means that the number of the blocks can be increased
or decreased, according to the size and complexity of the data,
which affects the feature representation of the data during the
calculation process. It is worth noting that that the compression
ratio of the pooling layer should be equal to the expansion
ratio of the up-sampling layers, otherwise the data size will have
a mismatch.

In the proposed HFDNN architecture, the network first
performs a 3 × 3 convolution operation with 3 channels to
increase the depth on the input data. Then through three

convolutional layers with 3×3 kernel size, whose channel
numbers are 8, 16, and 32, respectively, to extract important
local features, and each layer is interleaved with a 2 × 2 max
pooling layer. By setting the down-sampling process as above,
we can avoid extreme compression by increasing the number of
channels of the feature map while reducing the size of the feature
map. In the up-sampling process, there are also three 3 × 3
convolutional layers with 32,16 and 8 channels, respectively, and
each layer is interleaved with a 2× 2 up-sampling layer. And then
we use the concatenation operation on the first convolutional
layer and the last up-sampling layer to get a feature map of
11 channels. Each convolutional layer has rectified linear units
(ReLU) [42], called an activation function, which allow for faster
and more effective training of deep neural architectures on large
and complex data sets. However, the final layer uses a depth-
reducing 1× 1 convolutional filter without an activation function
to create the reconstructed data. In our network, the measured
phase images with 1,024 × 1,024 pixels are used as the input
to the HDFNN architecture. The image is calculated by the first
3 × 3 convolutional layer to increase the number of channels.
After the following three convolutional and pooling calculations,
the size of the data is reduced to 512 × 512 pixels, 256 ×

256 pixels, 128 × 128 pixels, respectively, and the number of
convolutional channels for extracting local features are 8, 16, and
32, respectively. During the up-sampling process, the data with
128 × 128 pixels is restored to the one with 1,024 × 1,024 pixels
by symmetric three up-sampling calculations. Last, the halo-free
phase image with the same size is outputted.

After the structure of the network is established, the network
will be trained to obtain the internal weights. The process of
training the HFDNN network is as shown in Figure 3. The
input data is calculated by the HFDNN network to generate a
reconstructed data every time. And the error is calculated by
comparing the reconstructed data with the target data. We used
the back-propagation algorithm to back propagate the error into
the network, and the Adaptive Moment Estimation (Adam) [43]
based optimization to optimize the weights. The weights at when
the error remains a constant or reaches a value are saved. And the
HFDNN network is established. In the method proposed in this
paper, the error is calculated as

eerror =
1

M × N

M
∑

u=1

N
∑

v=1

(

F
{

(ϕm (u, v))n
}

− ϕ(u, v)n
)

2

(7)

where eerroris the error between the reconstructed data and the
target data.

The HFDNN architecture is implemented using Keras [44]
with TensorFlow [45] backend. We perform the training and
validation on a personal computer with two-core 2.60 GHz CPU,
56 GB of RAM, and Nvidia Quadro K5000. For the training of
the model, we select an initial learning rate of 1e-4 for the Adam
optimizer and train the network for 200 epochs on a batch of 8
training data with1,024× 1,024 pixels.

Frontiers in Physics | www.frontiersin.org 4 April 2021 | Volume 9 | Article 650108

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Zhang et al. Deep Learning for Halo-Free

FIGURE 2 | A schematic of the proposed HFDNN architecture. The digits above each layer denote the number of input channels.

FIGURE 3 | A schematic of the process of the HFDNN training. In the process of data preparation, the measured images are acquired by our wDPM system, which

are used as the input data; the measured images are reversed into the halo-free images by the iterative algorithm, which are used as the target data. In the process of

the HFDNN training, when the error remains a constant or reaches a value, the training is terminated and the HFDNN model is established.

RESULTS AND DISCUSSION

Experimental Results
In order to verify the feasibility and accuracy of the proposed
HFDNN approach, we carry out the experiments on our
established wDPM system. In our initial set of experiments,
we use 2µm polystyrene beads as the samples. Its refractive
index is 1.59. A small number of beads are taken and scattered
on a slide, then the Olympus immersion oil (the refractive
index is 1.518) is dropped to immerse the beads, finally the
sample is covered with the cover glass. The prepared sample

is placed on the stage of the microscope and imaged on the

plane of the CCD camera. The interferograms at different field

of view are captured. And the phase images are reconstructed

by numerical computations. First, the complex amplitude of the

object wave is obtained by the frequency domain filtering and

inverse Fourier transform. Then, by phase unwrapping [46] and

phase compensation operation by the method of the reference
interferogram [47], the quantitative phase image is reconstructed.
Due to the known refractive indexes and the center wavelength,
the thickness image of the polystyrene beads can be further
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FIGURE 4 | The reconstructed results of standard polystyrene beads. (a) The measured image; (b) the target data; (c) the reconstructed image by our HFDNN; (d)

the reconstructed image by the non-iteratitave method —“Non-iterative” in [26]; (e) the thickness profiles along the same diameter of the same bead drawn in (a–d);

the green curve illustrates the profile of the measured data; the blue curve illustrates the profile of the target data; the red dash curve illustrates the profile of the

HFDNN output data; the black dash curve illustrates the profile of the non-iterative reconstruction.

obtained from the reconstructed phase values by hm
(

x, y
)

=
λϕm(x,y)

2π(nbeads−noil)
.

For training the HFDNN network, 1000 interferograms
with 1,024 × 1,024 pixels are captured at different fields of

view for several samples on our experimental setup. After the

reconstructing computation, these measured thickness images
are used as the training data set. In order to augment the data

set by four-fold, the measured data set are further augmented

by rotating them to 0, 90, 180, and 270 deg. The true thickness

images, used as the target data set, are recovered using the
iterative deconvolution algorithm described in [29] based on the
physical parameters of the image formation. As described in [29],
the iterative method can successfully eliminate the halo effect to
recover the true image. Therefore, the corresponding thickness
images after the iterative calculations are taken as the target data
set. For training the network, the data set is divided into the
training and validation sets with the ratio of 7:3.

After the training, next we blindly test the HFDNN network
on the samples that had no overlap with the training or validation
sets. Figure 4 illustrates the success of HFDNN. Figure 4a is a
measured thickness image of polystyrene beads. It is apparent
that there are halo artifacts in the measured image, especially
around the edges of the beads. Figure 4b is the thickness image
calculated by the iterative algorithm in combination with the
hardware parameters. It can be seen that the iterative calculation
succeeded in eliminating the halo effect. Figure 4c is the
thickness image calculated by the HFDNN. It clearly illustrates

that our end-to-end deep learning method can eliminate halo
artifacts like the iterative algorithm. In order to compare the
performance with other previous methods, the reconstruction is
also performed by the direct non-iterative algorithm based on
Hilbert transform [26]. As shown in Figure 4d, the halo artifacts
around the edges of the beads can be removed but the thickness
of the beads is still underestimated than the ones in Figures 4b,c.
Figure 4e is the line profiles along the same diameter of the same
bead that further compares themeasured data, the target data, the
reconstructed data calculated by the HFDNN and by the direct
non-iterative algorithm, respectively. Through the comparison of
the line profiles, it is more clearly seen that the reconstructed data
by the HFDNN is almost identical with the target data but the one
by the non-iterative algorithm seems like a non-negative clipping.
Therefore, Figure 4 illustrates that the HFDNN can successfully
correct halo effect, that is, the negative values surrounding the
beads in the measured data is removed and the thickness of the
reconstructed beads converges to our expected value of 2µm.
The HFDNN algorithm is written in Python and optimized
by GPU codes. Using the HFDNN, it takes only about 60ms
to achieve a halo-free image reconstruction on our personal
computer, which is much more efficient than using the iterative
algorithm (also written in Python and optimized by GPU codes),
which takes about 600ms for the same image. Although the non-
iterative algorithm can reconstruct an image a little faster than
the HFDNN, it can only remove the negative values around the
edge of the object but not correct the underestimated values to
the accurate measurement.
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FIGURE 5 | The reconstructed results of living red blood cells. (a) The measured image; (b) the target data; (c) the reconstructed image by the HFDNN; (d) the

reconstructed image by the non-iteratitave method; (e) the phase profiles along the same position of the same cell drawn in (a–d); the green curve illustrates the

profile of the measured data; the blue curve illustrates the profile of the target data; the red dash curve illustrates the profile of the HFDNN output data; the black dash

curve illustrates the profile of the non-interative reconstruction.

FIGURE 6 | The comparison of the reconstructed results of living red blood cells. (a) The measured image; (b) the target data by the iteration method; (c) the

reconstructed image by the HFDNN trained by red blood cells; (d) the reconstructed image by the HFDNN trained by beads; (e) the phase profiles along the same

position of the same cell drawn in (a–d); the green curve illustrates the profile of the measured data; the blue curve illustrates the profile of the target data; the black

dash curve illustrates the profile of the HFDNN trained by cells; the red dash curve illustrates the profile of the HFDNN trained by beads.
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FIGURE 7 | The reconstructed results of the spores in monascus. (a) The

measured image; (b) the reconstructed image by the HFDNN without

re-training; (c) the phase profiles along the same position drawn in (a,b); the

green curve illustrates the profile of the measured data; the red dash curve

illustrates the profile of the HFDNN.

Based on the argument of deep learning, the HFDNN
approach should let the network learn halo-effect features by the
training, i.e., the deep learning method should be generalized for
different types of samples. In order to test this generalization,
next we test the HFDNN on the measured phase data of living
red blood cells captured by our wDPM system. Still using the
HFDNN architecture as shown in Figure 2, only the training data
set is changed. The red blood cells are obtained from our local
hospital using venipuncture and stored in a refrigerator at 4◦C.
The blood is diluted to a concentration of 0.2% in PBSA solution
(0.5% Bovine Serum Albumin in PBS). To prevent cell tilt during
imaging, a sample chamber is prepared by punching a hole into
a piece of double-sided scotch tape and sticking the tape onto
a coverslip. After dispensing a drop of blood into this circular
chamber, the drop is sealed from the top by a Poly-L-lysine coated
coverslip. The coverslip pair is then turned over and the cells
are allowed to settle for 1 h before imaging so that they become
immobilized. The prepared samples are placed on the objective
stage and focused onto the CCD camera. Also for training the
network, we capture 800 interferograms at different fields of view
for several samples. The phase image is reconstructed as shown
in Figure 5a, which is severely affected by halo artifacts. Then
by the iterative calculation, halo-free phase images are obtained
as shown in Figure 5b, used as the target data. And the data set
is still augmented by four-fold. The data set is still divided into
the training and validation sets with the ratio of 7:3. After the
training, the weights of the network are iteratively updated. We
blindly test the HFDNN network on the samples that had no

FIGURE 8 | The reconstructed results of the hyphae branches in monascus.

(a) The measured image; (b) the reconstructed image by the HFDNN without

re-training; (c) the phase profiles along the same position drawn in (a,b); the

green curve illustrates the profile of the measured data; the red dash curve

illustrates the profile of the HFDNN.

overlap with the training or validation sets. The result is shown in
Figure 5c. It can be seen from the visualization that halo artifacts
are successfully corrected. For comparing, we also reconstruct the
image by the non-iterative algorithm. As shown in Figure 5d, the
halo artifacts around the edges of the cells can be removed but
the phase values are still underestimated. Through the further
comparison of the line profiles in Figure 5e, the reconstructed
data by the HFDNN is almost identical with the target data by the
iterative calculation and the one by the non-iterative algorithm
seems like only a negative removing. The results illustrate that
the HFDNN model can successfully remove the halo artifacts for
other sample types.

DISCUSSION

First, to further quantify the accuracy of our proposed HFDNN
method, two evaluation metrics are used to evaluate our
reconstructed data. One is the normalized root of mean square
error (NRMSE) as follows:

NRMSE=

√

√

√

√

√

√

√

√

1
M×N

M
∑

u=1

N
∑

v=1
(ϕ̃ (u, v) − ϕ (u, v))2

1
M×N

M
∑

u=1

N
∑

v=1
ϕ(u, v)2

(8)

where ϕ (u, v) is the target data, and ϕ̃ (u, v) is the reconstructed
data by HFDNN. The smaller the NRMSE, the closer the
reconstructed data is to the target data.

Frontiers in Physics | www.frontiersin.org 8 April 2021 | Volume 9 | Article 650108

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Zhang et al. Deep Learning for Halo-Free

The second one is the Structural Similarity Index (SSIM)
as follows:

SSIM =

(

2µϕµϕ̃ + c1
) (

2σϕ,ϕ̃ + c2
)

(

µ2
ϕ + µ2

ϕ̃
+ c1

) (

σ 2
ϕ + σ 2

ϕ̃
+ c2

) (9)

where ϕ and ϕ̃ represent the target data and the reconstructed
data, respectively, µ is the mean of the data, σ 2 is the variance of
the data, and σϕ,ϕ̃ is the covariance of the two data, c1 and c2 are
two constants. The range of SSIM is from 0 to 1, and when the
reconstructed data is the same as the target data, the SSIM takes
a value of 1.

We calculate the NRMSE and the SSIM over the test images as
the metric values. For the polystyrene beads, the NRMES and the
SSIM are 0.025 and 0.980, respectively. For the red blood cells,
the NRMES and the SSIM are 0.073 and 0.941, respectively. For
comparing, the NRMSE and the SSIM are also calculated over the
reconstructed images by the direct non-iterative method. For the
polystyrene beads, the NRMES and the SSIM are 0.085 and 0.863,
respectively. For the red blood cells, the NRMES and the SSIM are
0.162 and 0.814, respectively. It can be seen from the two image
metric values that the proposed HFDNN can more accurately
correct the halo artifacts than the direct non-iterative method.

Second, the generalization of the HFDNN will be further
discussed. Although in the experiments of red blood cells, the
reconstructed results are calculated by the re-trained HFDNN
network. Factually, as shown in Figure 6 there are almost no
differences between the reconstructed results by the re-trained
network and by the network without being re-trained. For
further comparison, we also analyze the NRMES and the SSIM
between the reconstructed results and the target data. Using the
network without being re-trained, the NRMES and the SSIM are
0.094 and 0.923, respectively. And using the re-trained network,
the NRMES and the SSIM are 0.073 and 0.941, respectively.
However, the NRMES and the SSIM between the measured
results and the target data are 0.514 and 0.665, respectively.
It is clear that using the HFDNN network without being re-
trained also can reconstruct high-quality images on red blood
cells. Therefore, re-training the network, when a new type of
samples is introduced, should be emphasized as a guarantee of
the best results. In order to further prove the generalization
of the HFDNN, we also applied it to other sample types
which are morphologically different. The spores in monascus
are imaged by our wDPM system. A small number of spores
are diluted in water and dropped into a sample chamber,
which is prepared by punching a hole into a piece of double-
sided scotch tape and sticking the tape onto a coverslip. After
dispensing a drop of the spores into this circular chamber,
the drop is sealed from the top by a coverslip. The sample
is stored under the room temperature of 25 ◦C. After about
1 day, the spores grow out the hyphae branches. Figure 7 is
the reconstructed results for the spores and Figure 8 is the
reconstructed results for the hyphae branches. It can be seen from
the visualization that halo artifacts are successfully corrected. The
results show that the HFDNN approach is generalized to different
sample types.

On the other hand, the HFDNN method does not rely on any
system parameter, which lets the network learn the features of
halo artifacts by the training. There exists the low spatiotemporal
noise in wDPMdue to its common-path, white-light illumination
approach. When the systems are well-established, although in
different measurements on the same system or on different
systems there are minor differences to some extent between
system SNR, alignment, etc., the features of halo artifacts for
the same type of samples will be the same. Therefore, it is not
necessary to re-train the network when measuring the same type
of samples at different measurements on the same microscope or
even on different microscopes.

At last, it should be pointed out that the mass measurements
are often required for some types of samples in the practical
applications. Therefore, even if we have to collect training data
(both with halo and halo-free phase images) on that specific
type of cells and redo the training process, we still can get
the more benefits because the deep-learning-based method can
rapidly and accurately remove the halo artifacts in the following
mass measurements.

CONCLUSIONS

In summary, we present the HFDNN method, a deep-learning-
based approach for halo-free white-light phase diffraction
imaging. Unlike the conventional iterative approach, the
proposed deep convolutional neural network can be applied to
the high-speed elimination of halo effects on various samples.
The feasibility of the method is illustrated by the experimental
data captured on our wDPM setup. Factually, the HFDNN
method provides new avenues in all white-light phase imaging
field. The HFDNN can learn the features that the phase images
possess due to the halo effects. Thus, it can eliminate halo artifacts
for different samples in various white-light phase images. In the
future, we aim to validate our algorithm on a larger dataset on
more types of objects to make our algorithm more robust to
sample variation and to improve the generilizeation.
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