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Digital holographic microscopy enables the measurement of the quantitative light field
information and the visualization of transparent specimens. It can be implemented for
complex amplitude imaging and thus for the investigation of biological samples including
tissues, dry mass, membrane fluctuation, etc. Currently, deep learning technologies are
developing rapidly and have already been applied to various important tasks in the
coherent imaging. In this paper, an optimized structural convolution neural network
PhaseNet is proposed for the reconstruction of digital holograms, and a deep learning-
based holographic microscope using above neural network is implemented for quantitative
phase imaging. Living mouse osteoblastic cells are quantitatively measured to
demonstrate the capability and applicability of the system.
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INTRODUCTION

Optical microscope is an effective diagnostic tool in modern healthcare which allows pathologists to
clearly and qualitatively observe the details of cells and tissues, and make judgments based on
experience. This technique is sufficient in most cases. However, a bright field optical microscope
records the intensity information of the specimen and suffers from low contrast for transparent
biological cells which presents minimal light absorption. Various labeling methods, including
staining and fluorescent tagging, are designed to enhance the imaging effect of the microscope,
but the dyes may cross-react with the biological processes and affect the objectivity of medical
diagnosis [1]. Although phase contrast microscopy or differential interference contrast microscopy,
which converts the sightless phase shifts introduced by the specimen of interest into observable
intensity variations, provide an approach to survey phase specimens without labeling, they cannot
provide quantitative phase information on the specimen-induced phase shifts for subsequent
accurate diagnosis. Furthermore, their inherent contrast mechanism makes automated cell
segmentation hardly robust.

In comparison, quantitative phase imaging techniques enable quantitative light field information
and the visualization of transparent specimens [2–4]. As a typical representative of this technique,
digital holographic microscopy (DHM) can be implemented for complex amplitude imaging and be
used to investigate transparent specimens, such as biological samples including tissues, dry mass,
membrane fluctuation, etc [5–8]. In DHM, a hologram that carries specimen information is recorded
digitally first, and then the hologram is numerically reconstructed to extract the amplitude or phase
of the specimens’ complex field [9–13]. After that, the quantitative phase information can be
converted to dry mass density of the cell with extremely high accuracy which has been demonstrated
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so far as a valuable tool in hematological or cancer diagnosis. The
label-free, submicron scale sensitivity, full-field, non-destructive,
real-time, quantitative and three-dimensional imaging abilities of
DHM present a variety of advantages for biomedical applications,
especially for live cell imaging [14–16]. Nowadays, DHM has
been an important and powerful tool for medical diagnoses.

In our previous work, a common-path digital holographic
microscopy based on a beam displacer unit was proposed for
quantitative and dynamic phase imaging of biological cells [17].
This implementation reduces the system requirement for the light
source coherence, realizes the convenient adjustment of the light
beams and achieves an excellent temporal stability. However, its
hologram reconstruction algorithms are often time consuming
for obtaining satisfactory complex amplitude information of the
specimen, which usually has certain requirements for computer
hardware and need complicated tuning of user-defined
parameters, such as the reconstruction distance, area and
position in the frequency domain, etc. It is necessary to
develop a new holographic reconstruction algorithm to
improve the efficiency of common-path digital holographic
microscopy.

In recent years, deep learning technology has developed
rapidly, and very significant achievements have been made in
areas such as autonomous driving, natural language processing,
computer vision and many more. Currently, deep learning has
also made remarkable achievements in computational imaging,
and it has already been applied to various important tasks in
coherent imaging, such as phase unwrapping [18], phase recovery
[19–22], holograms reconstruction [23–27], and so on.

In this paper, an optimized structural convolution neural
network PhaseNet is proposed for the reconstruction of digital
holograms, and a deep learning-based holographic microscope
(DLHM) using PhaseNet is implemented for quantitative phase
imaging. Living mouse osteoblastic cells are quantitatively
measured to demonstrate the capability and applicability of
the system.

METHODS

Suppose the intensity of the recorded digital hologram in DHM is
I (x,y), the complex amplitude of the object light field U (ξ,η) can
be numerically reconstructed by using the scalar diffraction
theory,

U(ξ, η) � ∫∞

−∞
∫∞

−∞
I(x, y)R(x, y)g(ξ, η, x, y)dxdy, (1)

where R (x,y) is the reconstruction reference light field and g (ξ,η;
x,y) is the impulse response function [28–30].

The hologram is usually reconstructed using convolution
algorithm, corresponding reconstructed object light field U (ξ,
η) can be expressed as

U(ξ, η) � IFFT{FFT{I(x, y)R(x, y)} · FFT{g(ξ, η, x, y)}}, (2)

where FFT and IFFT represent the Fourier and inverse Fourier
transform operations, respectively.

And then, the intensity and phase information of the specimen
can be calculated subsequently by

I(ξ, η) � ∣∣∣∣U(ξ, η)∣∣∣∣2 (3)

and

φ(ξ, η) � arctan
Im[U(ξ, η)]
Re[U(ξ, η)] (mod2π) (4)

where Re and Im represent the real and imaginary parts of the
object light field, respectively. Further by eliminating the 2π
ambiguity due to the argument operation, the true phase
information of the original object wavefield can be obtained.

After the object beam passes through the biological specimen,
the optical path difference ΔOPD will be introduced due to the
phase difference Δφ and the difference of refractive index (RI)
between the cells and the culture medium, which is dependent on
the laser wavelength λ, the RI of the surrounding medium
nmedium, the cell thickness d and integral mean RI nspecimen.
Therefore, the ΔOPD can be calculated as

ΔOPD � (nspecimen − nmedium) · d � λ

2π
· Δφ. (5)

The ΔOPD is an integral effect of the optical path along the
optical axis. Different parts of the cell have different RI resulting
in different ΔOPD. Thus, in a certain sense, the ΔOPD represents
the thickness of the cell.

DEEP LEARNING-BASED HOLOGRAPHIC
MICROSCOPE

The proposed deep learning-based holographic microscope
includes a set of digital holographic microscope for the
hologram recording and a deep neural network PhaseNet for
the numerical reconstruction of digital holograms.

Digital Holographic Microscope
The main body of the proposed DLHM is a common-path digital
holographic microscope as shown in Figure 1, which is modified
based on a commercial microscope. The light source of the
microscope was replaced by a fiber-coupled DPSS laser
(Cobolt Samba, 532 nm). Then the laser beam is focused by a
lens L to illuminate the specimen and magnified by a ×20 long
working distance microscope objectiveMO. The transmitted light
beam travels through a polarizer P1 and enters into the beam
displacer BD, in which it’s separated into two orthogonally
polarized beams with a small displacement. The two output
beams pass through a polarizer P2 and interfere with each
other at the lateral shearing region of BD. The polarization
direction of P2 is set at 45° with the two output polarized
beams, respectively. Thus, the two output beams interfere with
each other in their overlap part and an off-axis digital hologram is
recorded by a white-black CCD camera (target size of 5.95 mm ×
4.46 mm, 1,280 × 960 pixels, pixel size 4.65 μm × 4.65 μm). The
BD and two polarizers are assembled together as a simple, low-
cost and compact beam displacer unit, as shown in Figure 1B. In
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FIGURE 1 | Deep learning-based holographic microscope and PhaseNet architecture. (A) Optical schematic of the common-path digital holographic microscope
based on a beam displacer unit; (B) deep learning-based holographic microscope; (C). Detailed schematic of PhaseNet architecture. Each blue box corresponds to a
multi-channel feature map. The number of channels is provided on top of the box. The x–y-size is denoted at the lower left edge of the box. White boxes represent copied
feature maps.
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fact, benefiting from the simple optical structure and common-
path design, the commercial microscope has been improved to a
digital holographic microscope for promising and potential
applications in quantitative phase measurement.

PhaseNet
PhaseNet is one of the core components of data processing
system of DLHM. It completes the intelligent reconstruction of
the hologram and obtains the three-dimensional phase
information of the specimens replacing the traditional
convolution algorithm or the Fresnel transform algorithm in
DHM. Figure 1C shows the detailed schematic of PhaseNet
architecture which is an optimized structural CNN proposed
for phase unwrapping [18]. This architecture contains three
parts: down-sampling, bridge and up-sampling paths. The
down-sampling path consists of five repeated use of two 3 ×
3 convolutions followed by a BN and a ReLU, a residual block
[31], and a 2-stride 2 × 2 max pooling operation for
downsampling. The feature channels are increased by the
first convolution of each repeat (first from 1 to 64 channels,
the rest for double channels). By removing the max pooling
from the down-sampling path, the bridge path is obtained.
Each step in up-sampling consists of a transposed convolution
for upsampling, a concatenation with the corresponding
feature map from the down-sampling path by skip
connection, two 3 × 3 convolutions followed by a BN and a
ReLU, and a residual block between the two convolutions. The
first two convolutions in each repeat decrease the number of
feature channels (the last from 64 to 1 channel, the rest for
halving channels). The residual blocks include two repeated use
of 3 × 3 convolution followed by a BN and a ReLU. The skip
connection is introduced to prevent the network performance
degradation by summing the input and output. The down-
sampling path extracts and advances the features of the
sinogram, while the up-sampling path reconstructs the phase
from the high-level features. The channels from the first two
layers are increased from 1 to 64, which is to ensure that a
sufficient number of low-level features are extracted for use in
the later layers. The skip connections are added to improve the
efficiency of gradient transmission.

Work Procedure
The work procedure of the proposed DLHM are as follows:

1. Hologram recording and reconstruction. Using DLHM to
record off-axis digital holograms of the biological cells.

2. Phase information acquisition. Reconstructing the holograms
by use of convolution algorithm to calculate the phase
information of the biological cells.

3. PhaseNet training and testing. The holograms and phase
results of each cell are used as input and ground truth,
respectively, to train the PhaseNet. 9,000 pairs images are
used for training, 1,000 pairs images for testing. Gaussian
noise with random standard deviations from 0 to 25 is
added into the holograms of the training dataset for better
robustness. The ADAM-based optimization with an initial
learning rate of 0.001 (dropping to the previous 0.75 every

five epochs) is adopted to update PhaseNet’s parameters. The
network is trained for 200 epochs.

4. Network output obtaining. In the network training process, the
PhaseNet output is calculated according to the input of the
network.

5. Loss function calculation. The mean squared error (MSE) of
the PhaseNet output with ground truth (the phase information
of biological cells) is calculated and used as the loss function.
And the loss function is back-propagated through the network.

6. Quantitatively phase imaging of the biological cells. After
finishing the above operations, the network training can be
finally completed, and a neural network PhaseNet matching
this DLHM can be obtained. Then, the digital hologram
recorded by DLHM can be randomly input PhaseNet and
the quantitative phase images of the specimen can be rapidly
output. The network reconstruction time for a phase image is
∼0.014 s.

For PhaseNet implementing, Pytorch framework based on
Python 3.6.1 is used. The network training and testing are
performed on a PC with Core i7-8700K CPU, using NVIDIA
GeForce GTX 1080Ti GPU. The training process takes ∼4 h for
100 epochs (∼10,000 pairs images size of 128 × 128 pixels in a
batch size of 48).

EXPERIMENT RESULTS AND
DISCUSSIONS

The living mouse osteoblastic cells are measured by the DLHM.
These mouse osteoblastic cells IDG-SW3 are cultured in Alpha
minimum essential medium (αMEM, gibco by life technologies).
They stick to the bottom of the petri dish while maintaining
activity and are placed on the DLHM for measurement in room
temperature environment.

Figure 2 shows the numerical reconstruction results of one
mouse osteoblastic cell. Figure 2A is one of the recorded digital
holograms of the cells in which its partially enlarged view clearly
shows the interference fringes. In order to reconstruct the
hologram numerically, Fourier transform is required to
complete the spectral filtering. The spectrum of the hologram
is shown in Figure 2B. After completing the numerical
reconstruction and phase unwrapping, we can finally obtain
the mouse osteoblastic cells’ intensity and phase information.
Figure 2C shows the quantitative two-dimensional phase map of
one mouse osteoblastic cell during the mitotic phase. This phase
map represents the ΔOPD caused by the cell thickness, and it can
also be called optical thickness of cells. In Figure 2C, some
synapses are surrounding the cell. At this time, the cell is
about to finish dividing and has become two cells. The biggest
phase value in the central part of the two cells represents a
maximum cell thickness and it’s where the nucleuses are located.
These are shown very clearly in the three-dimensional phase map
of Figure 2D. The RI of the αMEM is nmedium � 1.3377 calibrated
by an Abbe refractometer, and by assuming a constant and
homogeneous cellular RI nspecimen � 1.375, we can estimate
that a phase difference of 1 rad corresponds to a cellular
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thickness of 2.27 μm according to Eq. 5. Figure 2E shows the
profile map along with the dash lines A, B and C in Figure 2C.
The maximum phase difference is about 7 rad which can be
translated to an optical thickness of 15.89 μm.

1990 holograms of mouse osteoblastic cells are taken with
DLHM. Then the phase images are recovered by traditional

convolution algorithm. In order to improve the generalization
ability of the neural network, data augmentation is a standard
method. The dataset including 1990 holograms and
corresponding phase images is expanded to 10,000 by flipping,
rotating, etc. After that, the holograms and phase images of each
cell are used as input and ground truth, respectively. Figure 3

FIGURE 2 | Numerical reconstruction results of mouse osteoblastic cells by use of convolution algorithm. (A) The digital holograms of a living mouse osteoblastic
cell; (B) The spectrum of the hologram; (C) The quantitative two-dimensional phase map of one mouse osteoblastic cell; (D) three-dimensional phase map; (E) The
profile map along with the dash lines A, B and C in (C).

FIGURE 3 | Dataset examples. The upper part shows the holograms as input, and the lower part shows the phase results as ground truth.
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shows part of the dataset. Among all the data, 90% are used for
training, 10% for testing. Then we can use the prepared dataset to
train the neural network PhaseNet.

As the training progresses, the MSE of the ground truth and
the output are back-propagated to the network, and parameters
such as weights are updated by gradient descent. After 100 epoch
training, the network reaches the convergence state. In the
beginning, the loss function drops the fastest, as the epoch
progresses, it becomes slower and slower, and the speed is
close to zero at 100 epochs.

After training, we feed the holograms in the test set to
PhaseNet, and the corresponding phase results are quickly
reconstructed. Part of the results is visualized in Figure 4.
Figures 4A,B are the ground truth and corresponding
reconstruction results, respectively. From the two-
dimensional phase images of the cell, we can see that the
results of the network reconstruction are very close to the
ground truth. More quantitatively, we calculated its structural
similarity index measure (SSIM), which is used for measuring
the similarity between two images and is a perception-based
model that considers image degradation as perceived change in
structural information, while also incorporating important

perceptual phenomena, including both luminance masking
and contrast masking terms. Finally, the SSIM of the phase
results obtained using PhaseNet can reach 0. 9404. This shows
that PhaseNet can replace traditional algorithms to achieve the
numerical reconstruction of holograms. Figure 4C shows the
three-dimensional phase images of the cells obtained by
PhaseNet.

After completing the network training, the deep learning-
based holographic microscope is feasible for quantitative phase
measurement of living biological cells. It can completely replace
the traditional digital holographic microscope for label-free cell
imaging. At the same time, due to the use of neural networks, the
acquisition of three-dimensional information of specimens can
be completed more quickly.

In conclusion, we proposed PhaseNet for the reconstruction
of digital holograms, based on which the DLHM is
implemented for quantitative phase imaging of biological
specimens. In order to verify the capability and applicability
of DLHM, we used the living mouse osteoblastic cells as
samples to generate dataset and train PhaseNet. The testing
results show that the average SSIM index of DLHM can reach
0.9404.

FIGURE 4 | Neural network reconstruction results. (A)Ground truth; (B) PhaseNet reconstruction result; (C) Three-dimensional image of PhaseNet reconstruction
result; (D) Three-dimensional image of error maps between Ground truth and PhaseNet reconstruction result.
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