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Comparative analyses of the nuclear matrix elements (NMEs) related to the 0νβ+β+

decay of 106Cd to the ground state of 106Pd and the ordinary muon capture

(OMC) in 106Cd are performed. This is the first time the OMC NMEs are studied

for a nucleus decaying via positron-emitting/electron-capture modes of double beta

decay. All the present calculations are based on the proton-neutron quasiparticle

random-phase approximation with large no-core single-particle bases and realistic

two-nucleon interactions. The effect of the particle-particle interaction parameter gpp

of pnQRPA on the NMEs is discussed. In the case of the OMC, the effect of different

bound-muon wave functions is studied.

Keywords: nuclear double beta decay, nuclear muon capture, nuclear matrix elements, quasiparticle

random-phase approximation, bound-muon wave function, particle-particle interaction parameter

1. INTRODUCTION

Neutrinoless double beta (0νββ) decay is a process in which a nucleus (A,Z), with mass number
A and proton number Z, decays to a daughter nucleus with two more or two less protons. In the
0νβ−β− mode the final nucleus is (A,Z + 2), and two electrons are emitted. In the case of the
0νβ+β+ mode the final nucleus is (A,Z − 2), and two positrons are emitted. In the latter case also
the electron capture (EC) is possible through the mode 0νβ+EC. In this article we denote also this
mode by the generic symbol 0νβ+β+. In the case of 106Cd also the 0νECEC (neutrinoless double
electron capture) [1] is possible, but it goes to an excited state, and thus is beyond the scope of
the present work, as we analyze here only the ground-state-to-ground-state transition. In addition,
it should be noted that the same nuclear matrix elements (NMEs) are involved in the 0νβ+β+

and 0νβ+EC modes. In any case, the neutrinoless double beta decay would immediately provide
striking new-physics vistas beyond the standard model, since it not only violates lepton-number
conservation, but also requires the neutrino to be of Majorana character. After the discovery of
neutrino oscillations [2–4], this process has become even the more of vital interest because its
discovery could potentially provide us with information on the yet-unknown absolute mass scale
of neutrinos.

While neutrinoless double beta decay remains hypothetical, the two-neutrino decay mode
(2νββ), which is allowed by the standard model, has been observed in several isotopes. Most
of the observed decays are of two-neutrino double-beta minus (2νβ−β−) type, and there are
only six isotopes capable of 2νβ+β+ decaying: 78Kr, 96Ru, 106Cd, 124Xe, 130Ba, and 136Ce.
Naturally, these isotopes can also decay via the 2νβ+EC and 2νECEC (two-neutrino double
electron capture) modes. Of these isotopes, 106Cd is a particularly promising candidate for the
2νβ+β+-decay searches since it has the biggest decay energy, Qββ = 2775.39(10) keV, as well as
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other experimentally favorable features. At present, there are
three running experiments searching for the β+β+ decay of
106Cd, namely COBRA [5, 6], TGV-2 [7], and 106CdWO4 crystal
scintillator [8].

Ordinary muon capture (OMC) on nuclei is a weak-
interaction nuclear process, in which a negative muon µ− is
captured by a nucleus (A,Z) resulting in an atomic-number
reduction by one and emission of a muon neutrino. It can
significantly extend the kinematic region of ordinary beta decay,
owing to the high energy release and large momentum transfer
associated with the process. The energy release in the nuclear
capture process is about 100 MeV, of which the largest fraction is
donated to the neutrino, being the lightest particle in the process.
Large mass of the captured muon allows highly-forbidden
transitions and high excitation energies of the final states. These
features make the OMC a particularly promising probe for the
0νββ decay. In fact, there are several completed, ongoing and
planned experiments aiming to study OMC in double-beta-decay
triplets. In [9], partial OMC rates to numerous excited states of
intermediate nuclei of ββ-decay triplets, including the A = 106
triplet we are studying here, were extracted from γ-ray spectra.
In [10], on the other hand, OMC strength function and the
associated giant resonances in 100Nb were studied for the first
time. There is an ongoing joint program pursued at RCNP, J-
PARC, and the Paul Scherrer Institute (PSI) aiming to extend
these studies to a wide range of nuclei from sd-shell nuclei such
as 24Mg up to as heavy nuclei as 240Pu [11].

In the work of Kortelainen et al. [12] the OMC rates were
compared against the 2νβ−β−-decay NMEs for light nuclei
using the nuclear shell model. It was found that there was a
clear correlation between the energy-distributed OMC rates to
1+ states and the energy-based decomposition of the NMEs
for the 2νβ−β− decays of the sd-shell nuclei 36Ar, 46Ca, and
48Ca. In [13], we extended these studies to 0νβ−β− decays
of medium-heavy and heavy nuclei by computing the average
matrix elements corresponding to the OMC transitions to the
intermediate nuclei of 0νβ−β− decays up to some 50 MeV
using the pnQRPA formalism. We then compared these matrix
elements with the energy-multipole decompositions of the NMEs
of 0νβ−β− decays computed using the same formalism and
model spaces. We found that there are clear correspondencies
between the 0νβ−β−-decay NMEs and the average OMC matrix
elements, especially for the Jπ = 3+, 3−, 4+, and 4− states.

In [14], double beta decays of 106Cd were studied in the
pnQRPA framework using 40Ca as the inert core. Here we extend
those studies, for the ground-state-to-ground-state transition, by
making a comparative analysis of the 0νβ+β+-decay and OMC
NMEs of 106Cd in the pnQRPA formalism with large no-core
single-particle bases, in a manner pursued in [13]. The OMC
on 106Cd leads to excited states of 106Ag which, on the other
hand, act as virtual intermediate states of the β+β+ decay of
106Cd (see Figure 1). Hence, we hope the comparison between
OMC and 0νβ+β+-decay matrix elements will help improve the
accuracy of the 0νβ+β+-decay NMEs by using the data of future
muon-capture experiments. Particularly, in the case of 106Cd,
a measured OMC-strength spectrum would help pin down the
value of the particle-particle parameter gpp of pnQRPA, which in

this case cannot be adjusted to 2νββ-decay data. We also study
the effect of different bound-muon wave function on the OMC
matrix elements. This is the first time when such calculations are
being done on the positron-decay side of the nuclear chart.

2. TWO-NEUTRINO DOUBLE-BETA DECAY

The half-life of a ground-state-to-ground-state two-neutrino
double-beta decay can be written in the form

[

t
(2ν)
1/2 (0

+
i → 0+

f
)
]−1

= (geffA )4G2ν

∣

∣

∣
M(2ν)

∣

∣

∣

2
, (1)

where geffA is the effective value of the weak axial-vector
coupling strength. The factor G2ν is a leptonic phase-space factor
(in units of inverse years) defined in [15, 16]. The ground
states of the initial and final nuclei are denoted by 0+i and
0+
f
, correspondingly.

The Gamow-Teller NME involved in Equation (1) can be
written as
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with the energy denominator

Dm =
( 1
21+ 1

2 [E(1
+
m)+ Ẽ(1+m)]−Mi

)

/me , (3)

where 1 is the nuclear mass difference between the initial and
final 0+ ground states, Mi the mass of the initial nucleus, and
me the electron rest mass. Ẽ(1+m) and E(1+m) are the (absolute)
energies of the mth 1+ state in a pnQRPA calculation based on
the left- and right-side ground states.

In principle, the expression in Equation (2) could also contain
a Fermi NME. However, the ground states of the mother and
daughter nuclei belong to different isospin multiplets, and due
to the isospin symmetry, the Fermi contribution to the 2νββ-
decay NME should vanish, leaving the Gamow-Teller NME in
Equation (2) as the sole contributor to the 2νββ-decay rate.

In [16], the phase-space factors for the 2νβ+β+ decay, as
well as for the competing modes 2νβ+EC and 2νECEC were
computed. In [8], the experimentally extracted lower limits for
half-lives of the different modes for 106Cd were given. These
values, together with the corresponding phase-space factors and
resulting experimental matrix elements, are listed in Table 1.

3. NEUTRINOLESS DOUBLE-BETA DECAY

We assume that the 0νββ decay is dominated by
the light-Majorana-neutrino-exchange mechanism, and exploit
the formalism presented in [17]. Here we are only interested in
the ground-state-to-ground-state transitions. The half-life for
such a 0νββ transition can be written as

[

t
(0ν)
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FIGURE 1 | Level scheme of the A = 106 system. The solid red line indicates the 0νβ+β+-decay transition from the ground state of 106Cd to the ground state of
106Pd, and the dashed red lines refer to virtual transitions related to the 0νβ+β+ decay. The green lines correspond to OMC on the ground state of 106Cd leading to

different excited states of 106Ag. The excitation energies of 106Ag are shown in units of keV.

where G0ν is a phase-space factor for the final-state leptons
in units of inverse years (see [15, 16]), defined here without
including the axial-vector coupling gA. The effective light-
neutrino mass, 〈mν〉, of Equation (4) is defined as

〈mν〉 =
∑

j

(Uej)
2mj (5)

with mj being the mass eigenstates of light neutrinos. The
amplitudes Uej are the components of the electron row of the
light-neutrino-mass mixing matrix.

The 0νββ-decay NMEM(0ν) in Equation (4) is defined as

M(0ν) = M
(0ν)
GT −

(

gV

geffA

)2

M
(0ν)
F +M

(0ν)
T , (6)

where we adopt the CVC value gV = 1.0 for the weak vector
coupling strength. The definitions for the double Fermi, Gamow-

Teller, and tensor NMEs M(0ν)
F , M(0ν)

GT , and M
(0ν)
T can be found

e.g., in [17].
For the nucleon-nucleon short-range correlations (SRC) [18,

19], included in the NMEs, we use the CD-Bonn form [20] with
the parametrization,

fCD(r) = 1− 0.46e−(1.52/fm2)r2 [1− (1.88/fm2)r2] . (7)

TABLE 1 | Phase-space factors [16], half-lives [8], and the resulting experimental

NMEs of different decay modes of 106Cd.

Decay mode G2ν [1/y] t1/2[y] M(2ν)

2νβ+β+ 2× 10−26 ≥ 1.7× 1021 ≤ 171.5

2νECβ+ 7.02× 10−22 ≥ 2.1× 1021 ≤ 0.824

2νECEC 5.41× 10−21 ≥ 4.7× 1020 ≤ 0.627

The results correspond to the effective value geffA = 1.0 of the axial coupling.

4. MUON CAPTURE

Ordinary muon capture (OMC) is a semileptonic weak
interaction process, quite like electron capture (EC). The OMC
process we are interested in here can be written as

µ− + A
ZX(0

+) → νµ + A
Z−1Y(J

π ) , (8)

where the negatively charged muon (µ−) is captured by the 0+

ground state of the even-even nucleus X of mass number A and
atomic number Z. The process leads to the Jπ multipole states of
Y, the odd-odd isobar of the mother nucleus, of atomic number
Z − 1; here J is the angular momentum and π the parity of the
final state. At the same time a muon neutrino νµ is emitted.

4.1. Bound-Muon Wave Functions
The wave function of the muon bound on an atomic orbit of the
initial nucleus can be written as an expansion in terms of the
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normalized spherical spinors χκµ

ψµ(κ ,µ; r) = ψ (µ)
κµ =

[

−iFκχ−κµ
Gκχκµ

]

, (9)

where Gκ and Fκ are the large and small radial components of
the wave functions of the bound state [21]. Here κ denotes the
atomic orbit in the following manner

{

l = κ and j = l− 1
2 , for κ > 0

l = −κ − 1 and j = l+ 1
2 , for κ < 0.

(10)

After being stopped in the outermost shell of an atom, the
negatively charged muon undergoes a cascade of transitions to
lower atomic orbitals, leaving it finally on the lowest, K atomic
orbit. Hence, the captured muon can be assumed to be initially
bound in the lowest state, 1s1/2, corresponding to κ = −1 and
µ = ± 1

2 . Making this assumption, we can estimate the bound-
muon wave function by the Bethe-Salpeter point-like-nucleus
approximation formulae [22]

G−1 = (2Z/a0)
3
2

√

1+ γ

2Ŵ(2γ + 1)

(

2Zr

a0

)γ−1

e−Zr/a0 ,

F−1 = −

√

1− γ

1+ γ
G−1 ,

(11)

where γ is defined as

γ =
√

1− (αZ)2 ,

where α is the fine-structure constant and Z the atomic number
of the nucleus. The Bohr radius of the µ-mesonic atom is

a0 =
h̄

m′
µcα

=
1

m′
µ

,

where we have adopted the values h̄ = c = 1. The

m′
µ =

mµ

1+
mµ
AM

(12)

is the reduced muon mass in the µ-mesonic atom. If we assume
that αZ is very small, γ ≈ 1, and therefore

G−1 = 2(αZm′
µ)

3
2 e−αZm

′
µr ,

F−1 = 0 .
(13)

Alternatively, we can reconstruct a realistic bound-muonwave
function by solving from the Dirac wave equations the large,G−1,
and small, F−1, parts of the wave function (9) in the Coulomb
field created by the nucleus. If we assume that the muon is in
the lowest state 1s1/2 (κ = −1), the components satisfy the
coupled differential equations (see, e.g., [23], but note that they
use different notations for the large and small parts)

{

d
drG−1 +

1
rG−1 =

1
h̄c
(mc2 − E+ V(r))F−1 ,

d
drF−1 −

1
r F−1 =

1
h̄c
(mc2 + E− V(r))G−1 .

(14)

FIGURE 2 | The large component, G−1, of the bound-muon wave function in
106Cd. Here “B-S” refers to the Bethe-Salpeter approximation formula and

“Dirac” to the wave function obtained by solving the Dirac equation.

Furthermore, “pl” refers to a point-like nucleus and “fs” to a finite-size nucleus.

Assuming finite nuclear size and uniform distribution of the
nuclear charge within a charge radius Rc = r0A

1/3 with r0 = 1.2
fm, the potential energy V(r) in Equation (14) can be written in
the form

V(r) =







(Z−1)e2

2Rc

[

3−
(

r
Rc

)2
]

, if r ≤ Rc

(Z−1)e2

r , if r > Rc ,
(15)

similarly as in [15, 16, 24] in the case of bound-electron wave
functions in the context of double beta decay. Equation (14) can
then be solved by means of the package RADIAL [25] by using
a piecewise-exact power-series expansion of the radial functions,
which then are summed up to a prescribed accuracy.

In Figure 2, we compare the large component, G−1, of
the bound-muon wave function, computed using this method
(blue line), with the approximate wave function (black line) of
Equation (13). For the sake of comparison, we have also plotted
the exact solution of the Dirac equation corresponding to point-
like nucleus (red line). The exact solution for the point-like
nucleus is notably close to the Bethe-Salpeter approximation,
whereas the finite-size-nucleus solution differs significantly from
the point-like-nucleus solution, especially at r ≤ 7 fm.

4.2. Muon-Capture Matrix Elements
We compute the OMCmatrix elements using the formalism that
was originally developed byMorita and Fujii [21]. This formalism
takes into account both the genuine and induced vector and axial-
vector weak nucleon currents. TheOMC rate from a Ji initial state
to a Jf final state can be written as

W = 2π〈|M.E.|2〉avq
2 dq

dEf
, (16)
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where

dq

dEf
=

[

1−
q

mµ + AM

]

(17)

and the Q-value of the OMC process can be computed from

q = (mµ −W0)

(

1−
mµ −W0

2(Mf +mµ)

)

, (18)

whereW0 = Mf −Mi+me+EX [21]. HereMf (Mi) is the nuclear
mass of the final (initial) nucleus,me the rest mass of an electron
and EX the excitation energy of the final Jπ state. The expectation
value in Equation (16) can be written as

〈|M.E.|2〉av =
2Jf + 1

(2j′ + 1)(2Ji + 1)

×
∑

ij

∑

κu

[

∑

ν

C(i)
M

(i)
νu

]∗ [
∑

ν′

C(j)
M

(j)
ν′u

]

,
(19)

where j′ is the angular momentum of the bound muon. The

definitions of the matrix elements M(i)
νu and the corresponding

coefficients C(i) can be found in Table 5.1 of [26] (or in Table
1 of [21]). However, note that we use different notation for the
coupling constants.

The factors C(i) contain the usual weak vector and axial-vector
couplings gV ≡ gV(q) and gA ≡ gA(q) at finite momentum
transfer q > 0. The conserved vector current (CVC) and partially
conserved axial-vector current (PCAC) hypotheses give the
values gV(0) = 1.00 and gA(0) = 1.27 for a free nucleon at zero
momentum transfer, and for finite momentum transfer we can
use the dipole approximation [27]. For the induced pseudoscalar
coupling gP the Goldberger-Treiman PCAC relation [28] gives
gP/gA = 7.0. However, at zero momentum transfer deviations
from the CVC and PCAC values have been obtained in several
analyses [29–32].

The matrix elements M(i)
νu in Equation (19) consist of radial

integrals of different integrands containing spherical harmonics,
geometric factors and components of neutrino and muon wave
functions. The different terms are listed in Table 5.1 of [26]. We
assume that the muon is bound on the κ = −1 orbit and that the
small component of the bound muon wave function is negligible,
which simplifies the expressions of the matrix elements notably
[see Equation (5.26) and Table 5.2 of [26] for the Bethe-Salpeter
approximation and Equation (5.37) and Table 5.3 for a general
muon wave function].

Here we define an average OMCmatrix element as

|M(µ)|av =
√

〈|M.E.|2〉av (20)

and compare this quantity, instead of OMC rate, with the
0νβ+β+-decay NME in order to reduce the phase-space effects.

In this work we choose the slightly quenched values of gA(0) =
geffA = 1.0 and gP(0) = 7.0 and keep the CVC value gV(0) = 1.0
for all the studied cases. In general, OMC serves as a probe
of the effective values of these parameters at the momentum-
exchange region g ≈ 100 MeV, which is particularly relevant

for 0νββ decay. These parameter values could be constrained by
the measured capture rates to individual excited nuclear states,
especially in light nuclei which are well-described by shell-model
and different ab initio methods. However, for the lack of the
OMC data on the OMC in 106Cd, this is not possible in the
present study.

5. SPHERICAL PROTON-NEUTRON QRPA
AND ITS HAMILTONIAN PARAMETERS

The results reported in the present study are based on
a spherical proton-neutron quasiparticle random-phase
approximation (pnQRPA), which describes nuclear excitations
in odd-odd nuclei (such as 106Ag) as proton-neutron
quasiparticle pairs. In order to reach wide region of excitation-
energies up to 50 MeV, we use large no-core single-particle
bases consisting of proton and neutron states from the
0s−0p−1s−0d−1p−0f −2s−1d−0g−2p−1f −0h−1g−0i
oscillator shells. As a starting point, the single-particle energies
were generated by a spherical Coulomb-corrected Woods-Saxon
(WS) potential with the parametrization of [33]. This basis is
denoted as “WS” in this study. Furthermore, we modified theWS
energies in the same way as in [34] in order to better reproduce
the spectra of the neighboring odd-A nuclei. This basis, in turn,
is denoted by “Adj.”.

For the muon-capture calculations, we generate the pnQRPA
excitations in 106Ag starting from the even-even mother nucleus,
106Cd. As for the 0νβ+β+ decay, we generate two sets of
pnQRPA excitations for each Jπ multipole—one based on the
mother nucleus 106Cd, and one based on the daughter nucleus
106Pd. We call these sets the right- and left-hand pnQRPA sets,
correspondingly. In the 0νβ+β+-decay calculations, we then use
the average of the left- and right-hand-side excitation energies as
the excitation energy of a given intermediate state. We also take
into account the overlap of these two sets in the definition of the
matrix element.

The quasiparticle spectra for protons and neutrons, needed in
the pnQRPA diagonalization, are obtained by solving the BCS
equations for protons and neutrons in the even-even reference
nuclei. The calculated BCS pairing gaps are adjusted to the
phenomenological proton and neutron pairing gaps in a way
described in detail in [35].

The X and Y amplitudes in the pnQRPA equations are
calculated by diagonalizing the pnQRPA matrix separately for
each multipole Jπ . We adopt as the two-body interaction the
one derived from the Bonn-A one-boson-exchange potential,
introduced in [36]. The particle-hole part was scaled by
a common factor gph fixed by fitting the centroid of the
Gamow-Teller giant resonance (GTGR) in the 1+ channel of
the calculations.

As for the particle-particle parameter gpp, we follow the partial
isospin-restoration scheme introduced in [37], and multiply
the isoscalar (T = 0) and isovector (T = 1) parts of

the particle-particle G-matrix elements by factors g
(T=0)
pp and

g
(T=1)
pp , respectively. The isovector parameter g(T=1)

pp is adjusted
such that the Fermi part of the corresponding two-neutrino
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TABLE 2 | Adopted values of the pairing parameters of the BCS and the

particle-hole and particle-particle parameters of the pnQRPA.

Basis 106Pd 106Cd

g
(n)
pair g

(p)
pair g

(n)
pair g

(p)
pair gph g

(T=0)
pp g

(T=1)
pp

“WS” 0.872 0.932 0.867 0.934 1.405 0.6− 0.80 0.90

“Adj.” 0.798 0.794 0.785 0.881 1.290 0.6− 0.80 0.84

The selection procedures of these values are explained in the text.

double beta (2νβ+β+) NME vanishes, leading to partial isospin-
symmetry restoration. Usually, for the 2νβ−β− decays, the value

of the isoscalar parameter g
(T=0)
pp is determined by fitting the

corresponding experimental half-life. Here we do not have a
measured half-life and the corresponding experimental NME

available (see Table 1) so that the value of g(T=0)
pp is a matter of

choice. In this work we choose to adopt the rather wide range of

values g(T=0)
pp = 0.6 − 0.8 for this parameter, where the upper

limit is at a safe distance from the collapse point of the pnQRPA
for both single-particle bases.

All the parameter values resulting from the above-described
procedures are listed in Table 2.

6. RESULTS

In order to investigate the possibility of using the OMC as a
probe of 0νββ decay, we have studied the 0νβ+β+-decay matrix
elements and the average OMC matrix elements of 106Cd in the
pnQRPA framework in detail. The results are presented in the
following subsections. In order to make the comparison between
the two processes meaningful, we need to adjust the excitation
energies in 106Ag (being the intermediate nucleus of 0νβ+β+

decay and the final nucleus of OMC) in a consistent manner.
For muon capture, the excitation energy of the lowest pnQRPA
excited state for each Jπ multipole is adjusted to the measured
excitation energy, when available. For the 0νβ+β+ decay we
adjust the right-hand pnQRPA set of states in a similar manner.
Hence, we can compare the two processes as a function of the
excitation energy in 106Ag in a consistent way.

6.1. Multipole Decompositions of the Total
0νββ-Decay and OMC Matrix Elements
In contrast to the 2νββ decay which has only the Jπ = 1+

states active in the process, in the case of the 0νββ decay all the
multipole states Jπ of the intermediate nucleus are active. On the
other hand, in the OMC the large mass of the captured muon
allows highly forbidden transitions to all possible Jπ final states
up to highest excitation energy. Hence, by studying the OMC on
relevant nuclei, one can access the intermediate states of 0νββ
decay by complementary means. In this section we investigate
the multipole decompositions of the 0νβ+β+-decay and OMC
matrix elements.

In Figures 3, 4, we show the multipole decompositions of
the total 0νβ+β+-decay NME and the average OMC matrix
element of 106Cd, respectively. The compositions correspond to

the parameter value g
(T=0)
pp = 0.7, which is at a safe distance

from the pnQRPA breaking point. In the case of the 0νβ+β+

decay, the 1+ multipole plays a dominant role both for the bare
Woods-Saxon basis and for the adjusted basis. This ensues from
the dominating role of the Gamow-Teller type of transitions. The
1− contribution is the second largest, whereas the 0+ and 0−

contributions are negligible. The contributions coming from the
higher multipoles decrease rather smoothly as a function of J.

As for the muon capture (see Figure 4), the major part of
the average matrix element consists of transitions to the states
with 1 ≤ J ≤ 4, the leading multipoles being those with Jπ =

2−, 2+, 1−, and 3+. In contrast to 0νβ+β+ decay, the strength is
more evenly distributed among the few leading multipoles. On
the other hand, the multipoles with J ≥ 6 play a minor role
compared with the 0νβ+β+ decay.

6.2. Dependence of the Matrix Elements on
the Single-Particle Bases and gpp
As mentioned in section 5, the particle-particle strength
parameter gpp strongly affects the ββ-decay rates. In the muon-
capture studies of e.g., [38, 39] it was found that gpp affects also
the muon capture rates. Hence, in this section we study the effect
of gpp on both the 0νβ+β+-decay and OMC matrix elements of
106Cd in detail. The exploration also paves the way for possible
future adjustments of gpp using, e.g., the shape of the OMC
strength function.

The total 0νβ+β+-decay NME of 106Cd is plotted as a
function of the isoscalar part of the particle-particle parameter

g
(T=0)
pp in different single-particle bases in Figure 5. For the

isovector part g(T=1)
pp , we adopt the value that was adjusted so that

the Fermi part of the 2νβ+β+-decay NME vanishes, as explained
in section 5. It is evident from the plots that the value of M(0ν)

is sensitive to the value of g(T=0)
pp : increasing g(T=0)

pp decreases the
value of the matrix element. In both bases, varying gpp from 0.6 to
0.8 reduces the value ofM(0ν) by some 25%. Hence, constraining
the value of gpp is of utmost importance in the 0νβ+β+-decay
studies. In the absence of a measured 2νβ+β+-decay half-life,
adjusting gpp to OMC data, once measured, would help reduce
the large uncertainty related to gpp. It is seen that in the adjusted
(“Adj.”) basis, the matrix element is consistently about 20% larger
than in the bare Woods-Saxon (“WS”) basis. It is to be noted
that soon after the g

(T=0)
pp values shown in the x axis, between

g
(T=0)
pp 0.82 − 0.84, depending on the single-particle basis, the

ground state of pnQRPA collapses and the value of M(0ν) blows
up: the value rapidly increases by some 10%. Since the values after
the pnQRPA breaking point are not physically meaningful, they
are not shown in the figure.

In Figure 6, we plot the average OMC matrix element

|M(µ)|av as a function of g(T=0)
pp . Contrary to the 0νβ+β+-decay

NME, the OMC matrix element is not sensitive to the small
adjustments of the single-particle bases or to the value of the

g
(T=0)
pp between g

(T=0)
pp = 0.5 − 0.8. Instead, after g(T=0)

pp = 0.8,
close to the pnQRPA breaking point, the average OMC matrix
element becomes unstable. On the other hand, the value of
the average OMC matrix element is much more dependent on
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FIGURE 3 | Multipole decomposition of the total 0νβ+β+-decay matrix element in different single-particle bases. The decompositions correspond to the parameter

value g
(T=0)
pp = 0.7. (A) Basis: “Adj.”. (B) Basis: “WS”.

FIGURE 4 | Multipole decomposition of the total OMC matrix element in different single-particle bases. Here we have used the bound muon wave function solved

from the Dirac equation. The decompositions correspond to the parameter value g
(T=0)
pp = 0.7. Note that the unit and scale of the matrix element comes from our

definition of the average OMC matrix element (20). For more information, see the text and [26]. (A) Basis: “Adj.”. (B) Basis: “WS”.

the bound-muon wave function: the use of the Bethe-Salpeter
approximation results in about three times larger values than
those obtained with the exact Dirac wave function.

The different parts of the 0νβ+β+-decay NMEs in different
single-particle bases in the adopted ranges of the parameter
g
(T=0)
pp (see Table 2) are listed in Table 3. In Table 4, we list the
corresponding values obtained in [14] in a smaller single-particle
basis, which corresponds to the “Adj.” basis in the present study.

In [14], the NMEs were computed by the use of Jastrow [18] and
UCOM [19] short-range correlations.

The total 0νβ+β+-decay NMEs computed in the present
study (Table 3) are consistently larger than those computed in
the smaller, core-based single-particle bases, used in [14]. The
values computed with the UCOM short-range correlations are
closer to the values computed in the present study, which is
natural since the presently adopted short-range correlations are
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FIGURE 5 | Dependence of the 0νβ+β+-decay NME on the isoscalar part of

the particle-particle parameter gpp in the two different single-particle bases.

FIGURE 6 | Dependence of the average OMC matrix element on the isoscalar

part of the particle-particle parameter gpp in the two different single-particle

bases, and for the exact Dirac finite-nucleus and approximate Bethe-Salpeter

point-like-nucleus bound-muon wave functions.

a parametrization of the UCOM correlator. The dependence of
the NMEs on the size of the single-particle bases is in accordance
with the findings of our previous work [40], where we noticed
that the size of the single-particle bases affects the 0νβ−β−-decay
NMEs much more than the different adjustment procedures of
the particle-hole parameter gph of the pnQRPA. This is most
likely due to the fact that in the smaller bases we cannot reach the
highly-excited intermediate states which play a non-negligible
role in the 0νββ-decay process.

According to Figures 3, 4 the multipoles Jπ = 1+ and 2+ are
among the leading ones for both the 0νβ+β+-decay and OMC

TABLE 3 | Nuclear matrix elements for 0νβ+β+ decay of 106Cd corresponding to

gA (0) = geffA = 1.0.

Basis g
(T=0)
pp M

(0ν)
F M

(0ν)
GT M

(0ν)
T M(0ν)

“WS” 0.6 −1.90 7.91 −0.41 9.40

0.7 −1.90 6.95 −0.42 8.43

0.8 −1.89 5.75 −0.43 7.21

“Adj.” 0.6 −2.34 9.24 −0.48 11.10

0.7 −2.35 8.04 −0.50 9.89

0.8 −2.35 6.47 −0.52 8.30

The matrix elements are computed in different single-particle bases with different

values of gpp.

TABLE 4 | Nuclear matrix elements for 0νβ+β+ decay of 106Cd corresponding to

gA (0) = geffA = 1.0 in the single-particle bases used in [14], corresponding to the

“Adj.” basis of the present study.

Short-range correlation gpp M
(0ν)
F M

(0ν)
GT M(0ν)

Jastrow 0.8 −2.243 6.838 5.812

UCOM 0.8 −2.718 8.307 7.056

The results are adopted from [14].

matrix elements of 106Cd. Hence, it is illuminating to study the
effect of gpp on these multipoles in more detail. In Figures 7, 8
we plot the total 0νβ+β+-decay NME on the positive y axis and
the average OMC matrix element on the negative y axis in the
cases of Jπ = 1+ and 2+, respectively.We decompose the average
OMC NME for the Jπ = 1+, 2+ multipole states within MeV
energy bins while for the 0νβ+β+ decay the energy-multipole
decomposition entails division of the NMEs into multipoles Jπ =

1+, 2+ and their energy distributions binned by MeV-energy
intervals. We have chosen to plot only the absolute values of the
matrix elements since they carry the essential information needed
in the present comparison of the basic features of the OMC and
0νβ+β+ decay.

Figures 7, 8 show similar behavior for both the multipoles

Jπ = 1+ and 2+: decreasing the value of g(T=0)
pp from 0.8 to 0.6

shifts the spectrum to lower energies for both the 0νβ+β+ decay
and OMC. Note that the present comparison does not reflect the
results of Figure 5, since here we are considering the absolute
values of the 0νβ+β+-decay NME for each bin. However, these
figures show that even though the average OMC matrix element
is quite independent of the value of gpp, the shape of the OMC
spectrum depends on gpp. This, in turn, raises interest of studying
the possibility of adjusting gpp to the locations of OMC giant
resonances, once measured.

6.3. Dependence of the OMC Matrix
Elements on the Bound-Muon Wave
Function
As mentioned in section 4.1, the OMC matrix elements have
usually been computed by approximating the bound-muon
wave function by a point-like-nucleus approximation. In our
previous works [13, 41, 42] we used the Bethe-Salpeter point-
like-nucleus approximation formula for the muon wave function.
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FIGURE 7 | Dependence of the energy distributions of the 0νβ+β+-decay and OMC matrix elements for the Jπ = 1+ multipole on the particle-particle parameter

g
(T=0)
pp in different bases. The OMC matrix elements are computed assuming the exact Dirac wave functions for a finite nucleus with uniform charge distribution. (A)

Basis: “Adj.”. (B) Basis: “WS”.

Here we study the effect of the exact muon wave function,
solved from the Dirac equation by taking into account the
finite size of the nucleus with uniform charge distribution,
on the OMC matrix elements. The effects of the two muon
wave functions (see Figure 2) on the OMC matrix element are
clearly seen in Figure 6, where the gpp dependence of the OMC
matrix element is displayed in the two different single-particle
bases and for the exact Dirac finite-nucleus and approximate
Bethe-Salpeter point-like-nucleus bound-muon wave functions.
The difference between the matrix elements is considerable.
However, one has to keep in mind that in the OMC-rate
calculations this difference is to a major part compensated by
the use of a phenomenological effective charge Zeff (the so-called
Primakoff approximation [43]) in the calculations using the
Bethe-Salpeter approximation.

Next we study the effect of the different bound-muon wave
functions on the multipole decomposition of the average OMC
matrix elements in the cases of themultipoles Jπ = 1+, 2+, which
are among the leading ones for both the 0νβ+β+ decay and the
OMC. In Figures 9, 10 we plot the energy-decompositions of the
average OMC matrix element for the transitions to Jπ = 1+

and 2+ states, respectively. In both figures, the Bethe-Salpeter
point-like-nucleus approximation (blue bars) results in notably

larger values of the average OMC matrix element than the Dirac
wave function (black and white bars). All in all, the use of
the Dirac wave function results in about 50–60% reduction of
the matrix elements in all the energy bins. This makes sense,
since looking at Figure 2, especially at r ≤ 7 fm, the behavior
of the Dirac wave function, taking into account the finite size
of the nucleus, differs significantly from the Bethe-Salpeter
approximation. The finding is also in keeping with results for the
total OMCmatrix element, depicted in Figure 6.

6.4. Comparison of the 0νβ+β+ and OMC
Matrix Elements
Here we finally compare the absolute values of the 0νβ+β+-
decay and average OMC matrix elements in the same manner
as in [13]. We analyze the summed absolute values of the
matrix elements in the same way as we did in Figures 7, 8.
We plot the summed absolute values of the 0νβ+β+-decay
NMEs and the average OMC matrix elements for Jπ =

0+, 1+, 2+, 3+, 4+, 1−, 2−, 3−, and 4− in Figure 11. The matrix
elements are computed in the adjusted Woods-Saxon basis

(“Adj.”) with the parameter value g(T=0)
pp = 0.7. The OMCmatrix

elements are computed with the exact Diracmuonwave function.
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FIGURE 8 | Dependence of the energy distributions of the 0νβ+β+-decay and OMC matrix elements for the Jπ = 2+ multipole on the particle-particle parameter

g
(T=0)
pp in different bases. The OMC matrix elements are computed assuming the exact Dirac wave functions for a finite nucleus with uniform charge distribution. (A)

Basis: “Adj.”. (B) Basis: “WS”.

Looking at Figure 11, one can see clear correspondences
between the 0νβ+β+-decay and OMC matrix elements,
especially in the cases of Jπ = 3+ (Figure 11D), Jπ = 4+

(Figure 11E) and Jπ = 4− (Figure 11I). This observation is
in accordance with our earlier study in the 0νβ−β− side of
double beta decays [13]. There are also notable similarities in the
distributions corresponding to multipoles Jπ = 2− (Figure 11G)
and Jπ = 3− (Figure 11H). For the rest of the multipoles, the
correspondencies are not so well visible. Especially, in the case
of Jπ = 1+ (Figure 11B), the major part of the 0νβ+β+-decay
NME is coming from the first energy bin E ≤ 1 MeV, while the
OMC distribution is clearly more spread to higher energies. This
is also the most notable difference between the present results
and those of our earlier study [13], where the 1+ contributions
to the 0νβ−β−-decay matrix elements were more evenly
distributed to higher excitation energies.

7. DISCUSSION

Double beta decay is one of the most intensively studied
topics in neutrino, nuclear and particle physics. While the
ordinary two-neutrino double beta decay mode has been

observed in several isotopes, the neutrinoless decay mode
remains hypothetical. Most of the observed decays are of
β−β− type, and there are only six isotopes known to
be capable of β+β+ decaying. Here we have studied a
particularly promising candidate: 106Cd, for which currently
only the lower limit of the 2νβ+β+-decay half-life has been
extracted experimentally.

In the present work, we have made a comparative analysis
of the 0νβ+β+-decay and average OMC matrix elements of
106Cd in the pnQRPA framework using large no-core single-
particle bases. This comparison is the first ever done on
the positron-emission side of the nuclear chart, and could
potentially help improve the accuracy of the 0νβ+β+-decay
matrix elements once access to the data of future muon-
capture experiments is gained. In particular, adjusting the gpp
parameter to future data on OMC giant resonances could
help reducing the sizeable uncertainty related to the unknown
value of gpp.

Analysis of the multipole decompositions of the total
0νβ+β+-decay matrix element and the average OMC matrix
element shows that the Jπ = 1+ multipole has a dominating
role in the 0νβ+β+-decay process, while the total OMC matrix
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FIGURE 9 | Average OMC matrix elements for the captures to Jπ = 1+ states computed with different bound-muon wave functions. “B-S(pl)” denotes the

Bethe-Salpeter point-like-nucleus approximation and “Dirac(fs)” the exact wave function solved from the Dirac equation taking into account the finite size of the

nucleus. The value g
(T=0)
pp = 0.7 is adopted for particle-particle interaction parameter. (A) Basis: “Adj.”. (B) Basis: “WS”.

FIGURE 10 | Average OMC matrix elements for the captures to Jπ = 2+ states computed with different bound-muon wave functions. “B-S(pl)” denotes the

Bethe-Salpeter point-like-nucleus approximation and “Dirac(fs)” the exact wave function solved from the Dirac equation taking into account the finite size of the

nucleus. The value g
(T=0)
pp = 0.7 is adopted for particle-particle interaction parameter. (A) Basis: “Adj.”. (B) Basis: “WS”.

element is more evenly distributed to a few leading multipoles.
The multipoles Jπ = 1+ and 2+ play a major role in both
processes, hence we have studied the transitions involving those
multipoles in more detail: we have studied the effect of different
particle-particle parameter values on both the 0νβ+β+-decay

and the OMC matrix elements, and the effect of different
bound-muon wave functions on the OMC matrix elements
in these cases.

Our studies indicate that the 0νβ+β+-decay matrix element
of 106Cd strongly depends on the value of the isovector
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FIGURE 11 | Multipole decompositions in terms of relative 0νβ+β+-decay matrix elements (positive y axes) and average matrix elements of the OMC (negative y

axes) for 106Cd as functions of the excitation energy E in the intermediate nucleus (106Ag) of the 0νβ+β+ decay of 106Cd. These matrix elements correspond the

adjusted Woods-Saxon basis and g
(T=0)
pp = 0.7. For the bound-muon wave function we have used the realistic exact wave function solved from the Dirac equation.

Here Jπ refer to the angular momenta and parities of the virtual states in 106Ag and all quantities have been summed within 1 MeV energy bins. The subfigures

represent different Jπ values. The scale values of the y axes have been omitted, since they are not relevant for the current analysis. For more information see the text.

part g
(T=0)
pp of the particle-particle interaction parameter

of pnQRPA. Contrary to this, the average value of the

OMC matrix element is less dependent on the g
(T=0)
pp .

However, near the pnQRPA breaking point the average
OMC matrix element becomes unstable and grows fast
in magnitude. Furthermore, when comparing the 0νβ+β+-
decay matrix elements of the present work with those
computed in (much) smaller single-particle bases in [14],
we noticed that the matrix elements are sensitive to the

size of the single-particle basis. This observation is in
accordance with our earlier work on the β−β− type of
decays [13].

Finally, we compared the energy distributions of the
multipole-decomposed 0νβ+β+-decay matrix elements and the
averageOMCmatrix elements, computed in the adjustedWoods-
Saxon single-particle basis. We identified a clear correspondence
between the absolute values of the 0νβ+β+-decay and OMC
multipole contributions, especially in the cases of the Jπ =
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3+, 4+, and 4− multipoles. This finding is in accordance with our
previous work [13], where we compared the energy distributions
of the multipole-decomposed 0νβ−β−-decay and OMC matrix
elements for several 0νβ−β−-decay triplets in a similar manner.
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