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Replacing the Notion of Spacetime
Distance by the Notion of Correlation

Achim Kempf*

Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada

Spacetime is conventionally viewed as a stage on which actors, in the form of massive

and massless matter, move. In this study, we explore what may lie beyond this picture.

The starting point is the observation that quantum field fluctuations are the more strongly

correlated the shorter their spacetime distance. The notion of spacetime distance can,

therefore, be replaced by the notion of correlation strength. This suggests a new picture

in which the abstract 2-point and multi-point correlations are the primary structure, a

picture which is essentially information-theoretic. In the low energy regime, the secondary

notions of spacetime and of matter would then emerge as approximate representations

of the abstract correlators, namely, in the form of Feynman rules on curved spacetime.
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1. INTRODUCTION

The discoveries of general relativity and quantum theory, each, required the abandoning of major
misconceptions. Today, the fact that it has turned out to be extremely hard to unify quantum theory
and general relativity suggests that at least onemoremajormisconception will need to be overcome.
But what deeply held belief about the nature of spacetime and matter may need to be abandoned to
clear the path for the development of the theory of quantum gravity?

One belief regarding spacetime andmatter is that, while they do interact, they are fundamentally
different, with spacetime representing a stage, which is itself dynamical, on which actors, in the form
of massive or massless matter, move. The present study, which lays out ideas first presented orally
in [1], asks if the stage-and-actors picture could be a misconception that needs to be abandoned,
and it explores one possibility for what new picture lies beyond.

2. PROBING THE DESCRIPTION OF SPACETIME OF GENERAL

RELATIVITY

For inspiration, we can take hints from some of the currently most successful descriptions of
spacetime. One general relativistic description of a spacetime is as a pair, (M, g), where M is a
differentiable manifold and g is a Lorentzian metric. Equivalently, a spacetime is often described
as a manifold with Christoffel symbols, Ŵ, or a connection 1-form, ω. Also, equivalently, general
relativity describes a spacetime as a pair (M, σ ), where M is the differentiable manifold and
σ (x, x′) = 1

2 g̃(x, x
′) is the Synge world function. Here, g̃(x, x′) is the geodesic distance between the

events x and x′, as far as that distance is unique. The Synge function, σ , contains all information
about a spacetime since it allows one to recover its metric [2–4]:

gµν(x) = lim
x→x′

σ (x, x′);µν = − lim
x→x′

∂

∂xµ

∂

∂x′ν
σ (x, x′) (1)
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For later reference, notice that Equation (1) proves that knowing
the bi-scalar function g̃ in an infinitesimal neighborhood of its
diagonal is sufficient. Finally, we should add that, to complete
the general relativistic descriptions of spacetimes, Einstein
also provided an exact mapping between the mathematical
concepts and concrete physical measurements, based on rods and
clocks [5].

To search for hints at what may lie beyond general relativity,
let us now probe general relativity for curiosities or odd features
in the way that it describes spacetime. One curious feature
of the description of spacetime of general relativity is that
it utilizes two different notions of distance. One notion of
distance is that of coordinate distance. Finite coordinate distances
are not covariant, but infinitesimal coordinate distances are
used, covariantly, to define the topology (in the sense of open
neighborhoods) of the manifold, which in turn is used to define
the notions of continuity and differentiability of themanifold and
also to define the limit taking for derivatives and integrals. The
second notion of distance is the geodesic distance.

Further, this leads to the curious feature of general relativity
that the topology of a spacetime manifold (in the sense of open
sets) is ignorant of the drama of the light cone. Points that are
arbitrarily close neighbors with respect to the topology of the
manifold (in the sense of open sets) can be on either side of a
light cone, which is the difference between being fully causally
connected or not at all.

Underlying the presence of two notions of distance in general
relativity is another curious feature of general relativity. On the
one hand, general relativity describes space and time identically,
except for a minus sign in the metric. On the other hand,
space and time are to be measured using rods and clocks, but
rod-like and clock-like physical instruments appear to differ
by substantially more than a minus sign. It also appears odd
that rods and clocks should play a fundamental role in general
relativity, given that they each measure finite and, therefore, non-
covariant coordinate distances. Further, nature does not provide
rods or clocks in Einstein’s sense at sub-atomic scales.

For now, let us take away the hint that it is worth considering
to replace rods and clocks in general relativity in some way with
tools that are more canonical.

One may ask, for example, whether it is useful to replace
traditional clocks that define a notion of time by counting
periodic processes with clocks that measure a notion of time
that is based on the exponential decay of unstable particles.
Intuitively, this would amount to switching from clocks
describable by the oscillations of a complex exponential function
to a decay-based clock that measures time through a decay-
describing real exponential function, thereby possibly accounting
for the extra sign in the signature of the metric. Still, even such
decay-based, rather than oscillation-based, clocks would appear
to differ from rods in their physical appearance by more than a
minus sign. We will in the present study, therefore, not follow
these lines.

Instead, let us explore how both clocks, as well as rods, could
be replaced by tools that are more canonical in the sense that
they allow us to determine spacetime distances directly instead
of inferring them from measurements of spatial and temporal

distances which are themselves not covariant. This could provide
us not only with a more canonical method for measuring the
spacetime distance between two events. We should thereby also
obtain a new method to map a spacetime’s curvature. This
is because, as Equation (1) showed, knowledge of the (even
just infinitesimal) spacetime distances is sufficient to calculate
the metric.

3. MEASURING SPACETIME DISTANCES

BY MEANS OF CORRELATORS

There may exist multiple ways to replace rod-like and clock-like
tools by more canonical tools for measuring spacetime distances.
In the present study, the idea is to replace rods and clocks with
quantum field vacuum fluctuations. This is possible because the
quantum fluctuations of a field are correlated and the strength
of the correlation decays with the magnitude of the spacetime
distance. The strength of the correlation can, therefore, serve as a
measure of the spacetime distance.

For an example of a correlator of the fluctuations of a quantum
field, let us recall the Feynman propagator of a free massless
scalar. In flat spacetime, it reads:

GF(x, x
′) = 〈0|Tφ̂(x)φ̂(x′)|0〉 (2)

= −
∫

d4p

(2π)4
e−ipµ(xµ−x′µ)

pµpµ + iǫ
(3)

= 1

4iπ2

1

(xµ − x′µ)(xµ − x′µ)− iǫ
. (4)

In this case, as well as in curved spacetime [3, 4, 6], the correlator
GF(x, x′) is finite both inside and outside the lightcone. On
the lightcone, it diverges and changes sign. Important to note
here is that as we move away from the lightcone, i.e., as we
increase the magnitude of the spacetime distance, the smaller
the absolute value of GF(x, x′) becomes, i.e., the weaker do the
correlations become. Let us review the reasons why the correlator
decays away from the lightcone into both the timelike and the
spacelike regions.

First, inside the lightcone, the correlations are caused by the
propagation of perturbations. In the course of the propagation,
the perturbation spreads out and, therefore, weakens1 at a rate
that depends on the spacetime dimension. Hence, inside the
lightcone, the correlator decays for increasing timelike distances.

Second, the correlations outside the lightcone exist because
the vacuum is a spatially entangled state. To see why the
correlations decay away from the lightcone, i.e., here for
increasing spacelike distances, let us recall the simple case of
a quantized, massive Klein Gordon field. It can be viewed as
consisting of one degree of freedom φ̂(x, t) at each position, x.
Holding a position x fixed, its degree of freedom, φ̂(x, t), would
obey an independent quantum harmonic oscillator equation

¨̂
φ(x, t) = −m2φ̂(x, t) (5)

1It weakens, at least, initially. For finite propagation distances in curved spacetime,
there can be, for example, lensing-type and echo effects (see, e.g., [7]).
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if it were not for the existence of the Laplacian term in the Klein
Gordon equation:

¨̂
φ(x, t)− 1φ̂(x, t) = −m2φ̂(x, t) (6)

The Laplacian term couples spatially neighboring harmonic
oscillators. Therefore, the ground state of these coupled harmonic
field oscillators is an entangled state, hence the correlations.
Since the Laplacian couples only neighboring field oscillators,
these correlations decay with the spacelike distance at a rate
that is dimension dependent. In 1+3 dimensions, the decay is
polynomial for massless fields and exponential for massive fields2

(see, e.g., [8–12] for early work, [13] for more recent work, and
[14] for a recent review of the related topic of holography and
quantum information).

So far, we have established that a correlator of quantum field
fluctuations, such as the Feynman propagator, GF(x, x′), can be
used as a measure of spacetime distances, or at least of small
spacetime distances. From Equation (1), we know that knowledge
of small spacetime distances, in the form of knowledge of the
Synge function σ (x, x′) near its diagonal, is sufficient to calculate
the metric. It was shown in [15] that, knowledge of GF(x, x′) near
its diagonal suffices to calculate the metric tensor:

gµν(x) = −1

2

(

Ŵ(D/2− 1)

4πD/2

)
2

D−2

lim
x→y

∂

∂xµ

∂

∂yν

(

GF(x, y)
2

2−D

)

(7)
Here, D is the spacetime dimension3. The fact that the metric
tensor can be calculated from the Feynman propagator can
also be seen by this consideration: Knowledge of the Feynman
propagator implies knowledge of the lightcones because the
propagator diverges and changes sign on the lightcones. But
knowledge of the lightcones of a spacetime manifold determines
the metric tensor of the spacetime up to a conformal factor,
as shown in [16]. The propagator also provides the remaining
conformal factor through its finite decay near the lightcone.

For completeness, it is worth mentioning that the
reconstruction of the metric from the Feynman propagator
does not depend on the vacuum state. This is important
because different observers may identify different states as
their vacuum state. In the absence of a unique vacuum state,
Feynman propagators can differ by homogeneous solutions to
their equation of motion, such as the Klein Gordon equation
2GF = δ/

√
(g). The metric is calculated, as shown in Equation

(7), by differentiating a negative power of the Feynman
propagator, i.e., by differentiating a positive power of the wave
operator, 2. The matrix elements of 2 are independent of which
homogeneous solution one may choose to define a Feynman
propagator, i.e., a right inverse, GF of 2. Concretely, in Equation
(7), any choice of iǫ prescription for the propagator drops out
because iǫ prescriptions are in the denominator, but since the
propagator appears to a negative power, ǫ is in the numerator.
Hence, the limit ǫ → 0 can be taken before using Equation (7) to
calculate the metric.

2This is the case at least for small distances. At large distances, on curved
spacetimes, there may again occur, for example, analogs of lensing-type effects.
3The case D = 2 is special and has a different expression, see [15].

Our conclusion so far is that a classical spacetime, i.e., a
Lorentzian manifold, can be viewed as a pair (M,GF), where
GF is a Feynman propagator of a scalar field. A key difference
between describing a spacetime using a pair (M, σ ) or a pair
(M,GF) is that, in the former case, the traditional measurement
of a geodesic distance requires the use of rods and clocks along
the geodesic. In contrast, in the latter case, we replace rods and
clocks, which are non-canonical human artifacts, by the naturally
occurring fluctuations of a quantum field. The correlations in the
quantum fluctuations of a field are sufficiently modulated by the
underlying curvature of spacetime to enable the reconstruction
of the metric of the spacetime. Similarly, it should be possible
to use spinorial and tensorial Feynman propagators, after scalar
contractions, to determine the metric.

In practice, the measurement of a field correlator, such as a
Feynman propagator, would require, in principle, the detection
and counting of quantum field fluctuations, a difficult notion.
With present technology, quantum fluctuations of the vacuum of
the electromagnetic field can be measured with some accuracy
in table-top quantum homodyne detectors [17, 18]. Quantum
optical measurements of the correlations of spacelike or timelike
separated electromagnetic quantum vacuum fluctuations may
become feasible in table-top experiments. In principle, with
sufficient accuracy, such types of experiments could pick up
gravity-caused modulations of the functional form of a Feynman
propagator. From the Feynman propagator, themetric could then
be calculated. In principle, therefore, such experiments, if mobile
and sufficiently accurate, could be used to map the curvature of
spacetime. In a more indirect sense, particle accelerators, such
as the LHC, can be interpreted as devices that test Feynman
rules and to determine the functional form of Feynman rules,
including the Feynman propagators. With sufficient accuracy, a
mobile particle accelerator could, therefore, also be used to map
the curvature of a spacetime by determining a gravity-modulated
Feynman propagator.

To conclude, we arrived at the finding that, instead of using
rods and clocks to map the curvature of a spacetime manifold, as
Einstein envisaged, we could map the curvature of a spacetime
manifold by measuring GF(x, x′) close to its diagonal, i.e., by
measuring the local correlations of quantum field fluctuations.
This is because the Feynman propagator GF(x, x′) can then
be used to recover the traditional metric-based description of
a spacetime through Equation (7). Intuitively, this is possible
because the strength of the correlations of the quantum field
fluctuations that is encoded in the propagator is a proxy for the
covariant distance, the correlations being the stronger the smaller
the covariant distance.

4. REPLACING THE NOTION OF DISTANCE

BY THE NOTION OF CORRELATION

So far, we replaced one set of tools to map a spacetime’s curvature
with another set of tools to map a spacetime’s curvature, namely
by replacing rods and clocks with the correlator of quantum
field fluctuations. We, thereby, assumed that there exists an
underlying Lorentzian spacetime to be mapped. We now return
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to the main objective, which is to challenge the validity of the
picture of a spacetime-stage that hosts matter-actors.

To this end, we begin by asking what if the reasonable
assumption is true that, in nature, there is no spacetime in the
exact sense of a Lorentzian manifold? In this case, what we
described above as the reconstruction of a spacetime from a
Feynman propagator can only be approximate.

This suggests exploring the possibility that the primary
structure of nature is not that of a Lorentzian spacetime-stage
with matter-actors in the form of quantum fields but that the
primary structure of nature consists of abstract correlators.While
the abstract correlators would describe all regimes of nature, only
in some regime, which may be called the “low energy” regime,
the abstract correlators could be approximately represented in the
sense that they could be viewed, at least approximately, as arising
from quantum field fluctuations on a curved spacetime, as shown
in [19].

If the abstract 2-point and multi-point correlation functions
are the primary structure, nature would be information-theoretic
in nature. The notions of a spacetime and matter would then
be secondary in the sense that these notions only emerge in
the low energy regime as convenient notions for describing the
structure of the approximate mathematical representations of the
abstract correlators in terms of Quantum Field Theories (QFTs)
on a spacetime.

In the low energy regime, it would be the Feynman rules (to
tree level) and, ultimately, the full sums of Feynman graphs of the
standard model of particle physics on curved spacetime, which
would serve as a good approximate mathematical representation
of the abstract correlators. At high energies, the abstract
correlators would not possess a representation that makes them
appear to arise from the quantum fluctuations of fields on a
background Lorentzian spacetime. Not only would there be no
notion of spacetime but also no notion of matter belonging to
definite species of fields that could live on a spacetime. Instead,
the abstract correlators would need to be thought of as mere
structures that may be best described information theoretically.
In this study, we cannot answer the question of what determines
the structure of the abstract correlators, as this question is as
hard as asking what determines the dimension of spacetime, the
structure of the standard model field content and interactions,
and what lies beyond.

Let us now return to the aim of challenging the widely-
held picture of a spacetime-stage and matter-actors, in order
to perhaps get a glimpse of a possible new picture that
could lie beyond. To this end, let us consider how, in this
new picture, the derived notions of a spacetime stage and
matter actors would be seen as breaking down toward the
Planck scale, from the perspective of an experimenter who
approaches the Planck scale from low energies: correlators, such
as a propagators, should become less and less knowable at
high energies and small distances. For example, to measure a
correlator, such as a Feynman propagator, with some accuracy
requires, in principle, a large number of measurements since
statistics needs to be accumulated to obtain a reliable value
for a correlator. Repeated measurements can be spaced out in
small regions of spacetime, but, as these regions are chosen

smaller (speaking in the conventional picture), interactions
increase, significant renormalization is needed, and eventually
a natural ultraviolet cutoff may arise, limiting the knowability
of the statistics of the quantum fluctuations. If so, from the
perspective of the traditional picture of a spacetime-stage with
matter-actors, the Planck scale would not be a regime of exotic
phenomena or of wild quantum fluctuations of spacetime and
matter. Instead, the Planck scale might appear as a regime of
poor statistics. The statistics of the correlators, or Feynman
propagators, would be too poor to even approximately4 assign
a classical metric. From the information-theoretic perspective
of the abstract correlators, this phenomenon of inaccessibility
of information in the ultraviolet may appear, for example, as
a bandlimitation for matter fields, which in turn induces a
corresponding “bandlimitation” on the knowability, by means
of matter-based measurements, of spacetime curvature (see, e.g.,
[20–28]).

5. IDENTIFYING THE GEOMETRIC

DEGREES OF FREEDOM

We have arrived at a picture in which correlators, such as a
Feynman propagator, are primary, with a metric spacetime and
quantum fields emerging as derived, approximate concepts that
provide a useful language for the “low energy” regime. Let us for
now focus on this low energy regime, defined as the regime where
both the metric-based and the correlator-based descriptions
are valid.

In this low energy regime, we can now identify a problem
that persists when transitioning from the metric-based picture
to the new abstract correlator-based picture: the problem is
that a correlator, such as a Feynman propagator, GF(x, y), is
still a function of arbitrary parameters, much like the metric.
The propagator is, therefore, encoding its geometric information
highly redundantly. This is because, much like the metric, the
affine connection and the Synge function, the functional form
of a propagator changes under diffeomorphisms. This leaves us
with the task to mod out the diffeomorphism group if we wish
to isolate the geometric degrees of freedom, i.e., to identify the
Lorentzian structure.

For a first attempt at extracting the diffeomorphism invariant
information contained in a Feynman propagator, let us start by
recalling that, functional analytically, the Feynman propagator is
a right inverse

WGF = δ (8)

of its wave operator,W, such as

W : = √
g(2+m2). (9)

The wave operator is a self-adjoint operator which, as we
discussed above with Equation (7), inherits all geometric

4Crudely, the notion of a classical spacetime arising approximately, in some
regime, from abstract correlators could be compared to the notion of a
classical path arising approximately, in some regime, from a quantum particle’s
wave function.
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information from the propagator. As a self-adjoint operator,
the wave operator possesses a real spectrum, spec(W), and this
spectrum at first sight appears to be what we are looking for,
namely a set of invariants under the diffeomorphism group. We
arrive at Lorentzian spectral geometry (see, e.g., [29–32]), the
discipline that asks: to what extent does the spectrum of a wave
operator determine a Lorentzian manifold?

In fact, spec(W) is not a large enough set of invariants
to identify the Lorentzian manifold. There are two basic
reasons. The first reason is that the spectra of the typically
hyperbolic wave operators tend to be continuous and therefore
particularly information poor. The spectra of hyperbolic wave
operators can be made discrete with suitable infrared cutoffs.
This necessitates choices of boundaries and boundary conditions.
These, however, are strongly affecting the resulting spectra and,
thereby, obscuring the extraction of geometric information from
the spectra. The second reason for why spec(W) is not a large
enough set of invariants to identify a Lorentzian manifold, even
if suitably discretized via an IR cutoff, is more fundamental. The
reason is that spec(W) is a set of invariants under the action of
the entire unitary group in the function space, which is a larger
group than the diffeomorphism group since it also contains, for
example, Fourier transforms. This means that spec(W) can be,
and generally is, smaller than the set of invariants under only the
diffeomorphism group.

As an aside, let us briefly discuss an approach [24, 33] to
overcoming this problem by introducing the tool of infinitesimal
spectral geometry. Conventional spectral geometry aims to solve
the highly non-linear problem of determining to what extent the
spectrum of an operator on a manifold determines the metric
of the manifold. Infinitesimal spectral geometry aims to solve
the simpler linear problem of determining to what extent an
infinitesimal change of the spectrum of an operator on amanifold
determines the corresponding infinitesimal change in the metric
of the manifold. Infinitesimal changes are then iterated to obtain
finite changes of the curvature of the manifold from finite
changes of the spectrum, as far as well defined. This approach
yields a new perspective for why the set of geometric invariants
spec(W) is generally incomplete: Only in two dimensions is the
metric essentially scalar. In higher dimensions, perturbations of
themetric are truly tensorial and, therefore, cannot be covariantly
expanded in the eigenbasis of a scalar wave operator. This
suggests, as a remedy, to work with the spectra, not of scalar
wave operators but, of wave operators of covariant symmetric
2-tensors, since this will guarantee that any small change in the
spacetime metric can be covariantly expanded in the eigenbasis
of the wave operator. To this end, Feynman propagators of spin-
2 particles that are composites could be used, as gravitons are the
only expected non-composite spin-2 particles.

We now propose a new approach to extracting the geometric,
diffeomeorphism invariant information from the abstract
correlators. To this end, let us retrace the steps below Equation
(9). We started with the knowledge that the Feynman propagator
GF and its wave operator W contain the complete information
about the metric if given in the position representation. Due to
diffeomorphism invariance, they do so in a highly redundant
way. We, therefore, considered the spectrum of the wave

operator, since it consists of diffeomorphism invariants that
carry geometric information, though not the complete set of
geometric information. In other words, we observed that, while
the wave operator contains all geometric information when given
in a position basis, it does not contain the complete geometric
information when given in its eigenbasis, i.e., when we only know
its spectrum.

This tells us that knowing the wave operator in its eigenbasis
(i.e., knowing nothing but its spectrum) and, in addition, also
knowing a unitary transformation from that eigenbasis to a
position basis is sufficient to calculate the metric. This is because
we can then transform the Feynman propagator or wave operator
from the eigenbasis of the wave operator into a position basis and,
from there, arrive at the metric using Equation (7).

The question is, therefore, if we can find such a unitary
transformation on the basis of knowing only the abstract
correlators. The answer is yes. To see this, recall that, so far, we
have only utilized the information contained in the abstract 2-
point correlators, i.e., in the Feynman propagators. The abstract
n-point correlators for n > 2, which we have not yet used,
happen to contain exactly the information that is needed to
calculate unitaries that map from the eigenbasis of the wave
operator of a propagator to a position bases. The reason is that
these multi-point correlators describe the vertices of interactions
and these vertices are local. This means that, from the abstract
correlators in an arbitrary basis, we can always calculate unitary
transformations to position bases, namely by diagonalizing these
vertices (as operators from a n-fold tensor product of the space of
fields into itself, with n depending on the valence of the vertex).
Only in the position basis are the vertices of the Feynman rules
of a local quantum field theory diagonal, i.e., only in a position
representation are the vertices proportional to products of Dirac
deltas. For example, the 3-vertex of λφ4 theory is usually given in
the momentum basis, but it can be expressed in any basis of the
space of fields, for example, in a Bargmann Fock basis [19]. In a
position basis, and only in a position basis, is the vertex diagonal
in the sense that it takes the form

V(w, x, y, z) = −iλδ(w− x)δ(y− z)δ(w− z) (10)

which expresses the locality of the interaction.
In conclusion, we have, therefore, arrived at a new method

to obtain the metric from correlation functions, namely, from
knowledge of a propagator and a vertex of a QFT. Crucially,
the new method can be used if the propagator and vertex are
given in any arbitrary basis in the function space or also if
they are given basis independently. Given the propagator and
vertex, the method consists in determining a basis in which the
vertex is diagonal (a position basis, therefore), then transforming
the propagator into that basis and finally deriving the metric
from the propagator. Unlike infinitesimal spectral geometry, the
new method, therefore, works straightforwardly for spacetimes
of any dimension and signature. As for the assumption of
the diagonalizability of the vertex, the vertices of all physical
theories are local and therefore diagonalizable (i.e., possess
representations as products of Dirac deltas), at least in the low
energy regime, which is where we are deriving a metric from the
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correlators. The dissolution of the notion of a spacetimemanifold
as one approaches the Planck scale can then manifest itself
mathematically as the non-diagonalizability of the vertex, i.e., in
the appearance of non-diagonal terms in the vertex correlators in
any basis.

We remark that it can now be seen from a new perspective
how, for example at the Planck scale, abstract n-point correlators
can fail to possess a representation in terms of a quantum field
theory whose interactions are local and which lives on a classical
curved spacetime. This happens in regimes where the n-point
correlators no longer admit even an approximate diagonalization.

The new approach to extracting the geometric information
from n-point correlators can be viewed as a generalization of
spectral geometry: conventional spectral geometry studies to
what extent the shape of a manifold can be inferred from
the spectrum of a wave operator of a free field that lives on
the manifold. The new approach is to consider not free but
interacting fields on the manifold, or even just one field that is
self-interacting, e.g., though a φ̂4 interaction. This yields non-
trivial n-point correlators for n ≥ 2. Independently of the
basis in which these Feynman rules are given, they contain
the basis-independent information of (a) the spectrum of the
propagator and (b) the changes of basis from the eigenbasis of
the propagators to the position bases, defined as those bases
in which the vertices are diagonal, i.e., local. Together, these
two sets of basis independent and, therefore, diffeomorphism
independent information form a complete set of invariants to
describe a metric manifold.

It should be interesting to see if, in acoustic spectral geometry,
this translates into the ability to hear the shape of a thin curved
vibrating object if drumming it weakly as well as strongly enough
to invoke non-linear oscillations.

6. OUTLOOK

There are, of course, open questions regarding the picture in
which abstract correlators are primary, with the conventional
picture of a spacetime stage that hosts matter actors only
emerging in certain regimes as useful but approximate
representations of the abstract correlators. For example,
one may ask whether there are new prospects for deriving the
dimensionality of spacetime and, regarding dimensionality, what
the relationship to holography could be. In this context, it is
worth considering the fact that any first quantized or suitably UV
and IR regularized second quantized theory formulated in one
number of spatial dimensions can be unitarily mapped into an
equivalent first or second quantized theory in any other chosen
number of spatial dimensions. The reason is that the Hilbert
spaces of first quantized theories with a finite number of degrees
of freedom are separable, i.e., they possess countable Hilbert
bases. Quantum field theories, after suitable UV and IR cutoffs,
also possess only a finite number of degrees of freedom and
their Hilbert spaces are, therefore, also separable. All separable
infinite-dimensional Hilbert spaces, however, are unitarily
equivalent. (We are assuming here that the regularizations are
not so drastic that they reduce the dimension of the Hilbert

spaces to finite numbers since finite-dimensional Hilbert spaces
are unitarily equivalent only if their finite dimensions match.)

For example, using Cantor’s diagonal counting, the countable
eigenbasis of a 1-dimensional harmonic oscillator can be
unitarily mapped into the also countable Hilbert basis of a
2-dimensional harmonic oscillator, or, e.g., into the countable
eigenbasis of a hydrogen atom in a three dimensional box. Of
course, what is local in one theory will generally not be local
in the unitarily equivalent theory. Similarly, the equivalence
of a regularized second quantized theory in one number of
spatial dimensions to a regularized second quantized (or first
quantized!) theory in an arbitrary different number of spatial
dimensions is guaranteed, i.e., it is not special per se. What can
make such an equivalence special is if the two equivalent theories
in question are each of interest in their own right.

From the perspective of the picture where abstract correlators
are primary, the determination in which regime the correlators
can be represented as arising, approximately, as the correlations
of quantum fluctuations of fields on a spacetime tells us in
effect what dimension of spacetime and what matter content
the given abstract correlators describe in some regime. In order
to investigate these questions, a technical challenge will be to
develop functional analytic methods to describe Feynman rules,
for example, those of a scalar φ̂4 theory, basis independently,
for example, in terms of the spectra of wave operators and the
unitaries that map the eigenbasis of a wave operators into bases in
which the vertices are (essentially) diagonal. This analysis should
help identify those functional analytic properties of the vertices,
i.e., of the n-point correlators, that determine the regime in which
they can be viewed as at least approximately diagonalizable.
Knowing those functional analytic properties could help explore
possible structures that determine the abstract correlators.

Presumably, the natural language to study such questions
about the abstract correlators is information theory. For example,
as we briefly discussed, the presence of a natural ultraviolet
cutoff could manifest itself in the abstract correlators as a
form of bandlimitation, in which case generalized Shannon
sampling theory [21–28, 34], which is related to minimum length
uncertainty principles [19, 35, 36], could provide useful tools.

Among the many open questions is also how to interpret
widely-separated entangled systems in the conventional picture.
In the new picture, where spacetime distance is, by definition,
inferred from correlations, such systems would appear to be
“close” by definition, i.e., they may be considered “close” without
needing an appeal, for example, to conventional wormholes [37].

From the new perspective where abstract correlators are
primary, it should also be interesting to explore possible links to
candidate quantum gravity theories, as shown in e.g., [38, 39] and
also in [40] which is based on the Synge function and quantum
indefinite causal structures, as shown in e.g., [41], as well as to
studies that aim to link the structure of the standard model to
algebraic structures and discrete spacetime models e.g., [42, 43].
Of relevance here could also be the in-depth investigations into
the relationship between the possible dynamics of matter and the
correspondingly possible dynamics of gravity, as shown in [44].
It will be interesting as well to explore possible connections to
the physics and formalisms of quantum reference frames and

Frontiers in Physics | www.frontiersin.org 6 May 2021 | Volume 9 | Article 655857

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kempf Replacing Distance by Correlation

related studies of notions of distance via correlations between
observables [45–47].

Finally, the perspective where abstract correlators are primary
is philosophically close to various approaches, such as relational
quantum mechanics, [48] and, in particular, the approach stated
in [49]. The approach in [49] is not concerned with quantum
field theory or curved spacetime. However, its central observation
could be of interest to the approach proposed here: In [49],
Mermin showed that the set of correlators among any chosen
complete set of subsystems of a system provides a complete
tomography of the state of the system, hence the motivation
there to consider correlators as primary. It should be interesting
to explore how or to what extent this result can be applied to
quantum field theories, although limitations to localizability, as
e.g., described by Malament’s theorem, make the consideration
of localized subsystems difficult in quantum field theory, even
in the low energy regime. Worth mentioning are also attempts
at describing nature information theoretically based on the idea
of zeroth, first, and second quantizing the notion of a binary
alternative [50, 51].
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