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We review the properties of neutron matter in the low-density regime. In particular, we

revise its ground state energy and the superfluid neutron pairing gap and analyze their

evolution from the weak to the strong coupling regime. The calculations of the energy

and the pairing gap are performed, respectively, within the Brueckner–Hartree–Fock

(BHF) approach of nuclear matter and the Bardeen–Cooper–Schrieffer (BCS) theory

using the chiral nucleon-nucleon interaction of Entem and Machleidt at N3LO and the

Argonne V18 phenomenological potential. Results for the energy are also shown for

a simple Gaussian potential with a strength and range adjusted to reproduce the 1S0

neutron-neutron scattering length and effective range. Our results are compared with

those of quantum Monte Carlo (QMC) calculations for neutron matter and cold atoms.

The Tan contact parameter in neutron matter is also calculated, finding a reasonable

agreement with experimental data from ultra-cold atoms only at very low densities. We

find that low-density neutron matter exhibits a behavior close to that of a Fermi gas

at the unitary limit, although, this limit is actually never reached. We also review the

properties (energy, effective mass, and quasiparticle residue) of a spin-down neutron

impurity immersed in a low-density free Fermi gas of spin-up neutrons already studied

by the author in a recent work where it was shown that these properties are very close

to those of an attractive Fermi polaron in the unitary limit.

Keywords: neutron matter, unitary limit, polaron, Fermi system, equation of state

1. INTRODUCTION

Pure neutron matter [1] is an ideal infinite nuclear system whose properties are of remarkable
interest for a comprehensive understanding of neutron stars and neutron-rich nuclei. Particularly
interesting are the properties of neutron matter at low densities, since they are crucial to
understanding the physics of the inner crust of neutron stars [2], where the number density varies
from ∼ 10−3 to ∼ 0.08 fm−3, and matter consists of a mixture of very neutron-rich nuclei
(arranged in a Coulomb lattice), electrons, and a superfluid neutron gas. Low-density neutron
matter, however, is a system less trivial than one could expect at first sight. The reason is that at
low densities the neutron-neutron interaction is dominated by the 1S0 partial wave which is very
attractive and, although, it is not able to bind two neutrons, it leads to a well-known virtual state,
which makes the neutron-neutron scattering length in this channel very large, as = −18.9(4) fm
[3]. Therefore, even at very low densities, where the average distance between two neutrons (∝ k−1

F
with kF the Fermi momentum) is much larger than the effective range of the 1S0 neutron-neutron
interaction, re = 2.75(11) fm [4], neutron matter is still a strongly correlated system.

Low-density neutron matter is similar to a unitary Fermi gas, an idealized system of spin-1/2
fermions with a zero-range interaction having an infinite (negative) scattering length in which all
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its properties are simply proportional to the corresponding ones
of a non-interacting Fermi gas. The so-called unitary limit was
introduced in 1999 by Bertsch [5], when he proposed a model
of low-density neutron matter with a zero-range interaction and
a tuned to infinity scattering length. In this limit, or close to
it, all the length-scales of a system drop out, and the Fermi
momentum becomes the only relevant one. Dilute fermionic
systems with re≪k−1

F ≪|as|, like neutron matter at low densities,
exhibit universal properties close to those of a unitary Fermi
gas, regardless of the nature of the particles that constitute the
system and their mutual interactions. Universality is expected
to show in ground state properties [6], collective excitations [7–
13], and thermodynamical properties [14–18]. In particular, the
ground state energy of any fermionic system close to the unitary
limit is expected to be E = ξ EFG where ξ is the so-called
Bertsch parameter, and EFG = 3h̄2k2F/10m is the energy of the
corresponding non-interacting Fermi gas. Different theoretical
calculations predict values of ξ in the range 0.3–0.7 [6, 19–
24]. The best estimations of the value of the Bertsch parameter
come from quantum Monte Carlo (QMC) calculations which
predict ξ = 0.44(1) [25], 0.42(1) [26], and 0.40(1) [27]. More
recent QMC calculations from Carlson et al. predict, however, a
slightly lower value ξ = 0.372(0.005) [28]. Variational [29], finite
volume Green’s function Carlo [30], and Brueckner–Hartree–
Fock (BHF) [31] calculations of the equation of state (EoS) of
low-density neutron matter give ξ ≈ 0.5. Using unitary nucleon
potentials, constructed ad hoc to have an infinite 1S0 neutron-
neutron scattering length, the authors of references [32, 33]
studied the ground state energy of low-density neutron matter,
obtaining values of ξ remarkably close to the QMC predictions
over a wide range of low densities, and showing, as expected, that
low-density neutronmatter behaves as a unitary Fermi gas as long
as as → −∞.

Unitary Fermi gases have been experimentally realized with
ultra-cold trapped alkali atoms (with 6Li and 40K being the most
commonly used ones), where the effective range of the interaction
is re ∼ 10−4k−1

F , and the scattering length as can be tuned
from negative to positive values with the help of magnetic fields,
becoming infinity at the so-called Feshbach resonance [34]. These
experiments provide constraints on the properties of unitary
Fermi gases and, therefore, indirectly also on those of low-
density neutron matter. Previous experimental measurements of
the Berstch parameter with ultra-cold atomic gases reported the
values 0.51(4) [14], 0.36(15) [35], 0.46(5) [36], 0.46+0.05

−0.12 [37], and
0.39(2) to 0.435(15) [38]. The most precise experimental value
of ξ until now is 0.376(4) measured in 2012 by Ku et al. [39].
The possibility of varying in these experiments the interaction
between the atomic species from a weak to a strong coupling
regime in a controlled way, has additionally allowed the study
of the whole crossover from Bardeen–Cooper–Schrieffer (BCS)
pairing with weakly attractive (as < 0) Cooper pairs to the Bose–
Einstein condensation (BEC) of bound dimers (as > 0) [40–
42]. As it was mentioned before, although the neutron-neutron
interaction is very attractive in the 1S0 channel, it is unable to
lead to the formation of a bound dineutron state and, hence,
a BEC phase does not exist in neutron matter. Nonetheless,
by varying the density, dilute neutron matter can go from the

strong coupling regime close to the unitary limit to the weakly
coupled BCS one. The importance in low-density neutron matter
of BCS-BEC crossover-like physics was pointed out by Matsuo
in reference [43], where he studied the behavior of the strong
spatial dineutron correlation, finding that the density region n ≈
(10−4 − 0.5)n0 (where n0 ≈ 0.16 fm−3 is the nuclear saturation
density) corresponds to the domain of the BCS-BEC crossover.
It is known from a general argument (see e.g., references [44–
46]), which applies to any dilute fermionic system, that the pair
correlations of fermions interacting with a large scattering length
differ from what is considered in the conventional BCS theory.
Corrections due to pair correlations in the normal phase of
neutron matter have been considered by several authors [47–
52] using the Nozières–Schmitt–Rink approach [46], which is
the simplest one that interpolates correctly between the BCS and
BCE limits. BCS-BEC crossover effects and the existence, above
the critical temperature Tc for the transition to the superfluid
state, of a pseudo-gap in neutron matter have been also recently
studied within the in-medium T-matrix formalism by Durel and
Urban in reference [53]. At the BCS-BEC transition point, i.e., at
the unitary limit, the superfluid pairing gap 1 is expected to be
proportional to the free Fermi energy, EF = h̄2k2F/2m. Ultra-cold
atoms experiments with imbalance Fermi gases of 6Li found1 =
(0.45±0.05)EF [54–56], in contrast with conventional superfluids
or superconductors where the pairing gap is very weak, of the
order of ∼ 0.1% of the Fermi energy. QMC calculations of the
neutron 1S0 pairing gap by Gezerlis and Carlson [57] found a
maximum value of 1 of ∼ 0.3EF at the Fermi momentum kF ∼
0.27 fm−1 (n ∼ 7× 10−4 fm−3). This maximum value of the gap
corresponds to a strong coupling situation [(kFas)−1 ∼ −0.2]
close to that found in a unitary Fermi gas.

Experiments with population-imbalanced ultra-cold atomic
gases, have allowed also to study the properties of polarized
unitary gases and quantum impurities leading, particularly, to
the experimental realization of attractive and repulsive Fermi
and Bose polarons, quasiparticles arising from the dressing of an
impurity strongly coupled to a bath of particles of fermionic or
bosonic nature. In the unitary limit, the energy of a Fermi polaron
shows also a universal behavior, being Epol = ηEF [58] with η ≈
−0.6 [59–62]. A few years ago, Forbes et al. [63] extended the idea
of the polaron to a system of strongly interacting neutrons and
studied the energy of the neutron polaron with the QMCmethod.
Similarly, Roggero et al. [64] used also this method to analyze
the energy of a proton impurity in low-density neutron matter
finding that, for a wide range of densities, the behavior of the
proton impurity is similar to that of a polaron in a fully polarized
unitary Fermi gas. Using the BHF approach, very recently, in
reference [65] the author of the present work have analyzed
the energy, effective mass and quasiparticle residue of a spin-
down neutron impurity in a low-density free Fermi gas of spin-
up neutrons, showing that these properties are in remarkable
agreement with those of the attractive Fermi polaron in the
unitary limit realized in ultra-cold atomic gases experiments.

In this work, we review the properties of neutron matter
in the low-density regime. Particularly, we revise its ground
state energy and the superfluid neutron pairing gap and analyze
their evolution from the weak to the strong coupling regime.
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We use the well-known BHF approach and the BCS theory to
calculate, respectively, the ground state energy and the pairing
gap, employing as bare nucleon-nucleon (NN) interactions the
chiral one of Entem and Machleidt at N3LO with a 500 MeV cut-
off (hereafter, referred to simply as EM500) [66] and the Argonne
V18 (AV18) phenomenological potential [67]. The ground state
energy is also calculated for a simple Gaussian potential with
a strength and range adjusted to reproduce the 1S0 neutron-
neutron scattering length and effective range. Our results are
compared with those of QMC calculations for neutron matter
and cold atoms. Finally, we also review the properties of a spin-
down neutron impurity immersed in a low-density free Fermi gas
of spin-up neutrons.

Themanuscript is organized in the following way. The ground
state energy of low-density neutron matter and the superfluid
neutron pairing gap are presented, respectively, in sections 2 and
3, whereas, the properties of a spin-down neutron impurity in
a low-density free Fermi gas of spin-up neutrons are shown in
section 4. Finally, a brief summary and the main conclusions of
this work are given in section 5.

2. GROUND STATE ENERGY

We start this section by showing in Figure 1 the ground state
energy (in units of EFG) of low-density neutron matter and
cold atoms as a function of the dimensionless parameter −kFas.
We note that, although the neutron matter results depend only
on the Fermi momentum because the value of as is fixed, we
use the product kFas as an independent variable to facilitate
the comparison with the cold atom results which are usually
presented as a function of it. Full circles and squares display
the results for neutron matter of our BHF calculation performed
using the EM500 interaction (full circles) and the AV18 potential
(full squares). BHF results are also presented here for a simple
Gaussian NN potential (stars)

V(r) = V0 e
−(r/r0)2 (1)

with a strength V0 = −31.02215 MeV and a range r0 = 1.8 fm
adjusted to reproduce the 1S0 neutron-neutron scattering length
and effective range. Only contributions from the 1S0 partial wave,
which is the dominant one in the low-density region considered,
are included in these calculations. Contributions from three-
nucleon forces are expected to be irrelevant at these densities
and, therefore, are neglected in our calculations [70–72]. Full
triangles and diamonds correspond, respectively, to the QMC
results for neutron matter (full triangles) and cold atoms (full
diamonds) obtained by Gezerlis and Carlson in reference [27].
The QMC results of neutron matter shown here include, as our
BHF calculation, contributions only from the 1S0 partial wave
and were obtained also with the AV18 potential. Figure 1 effect
of P-wave interactions on the ground state energy, we show in
the inset of the figure, as an example, the result obtained for the
BHF calculation with the AV18 potential when the 3P0,3 P1, and
3P2 partial waves are included, and compare it with the energy
obtained when only the 1S0 channel is considered. We find that
the energy of neutron matter increases by ∼ 7% at −kFas = 10,

FIGURE 1 | Ground state energy (in units of EFG) of low-density neutron

matter as a function of the dimensionless parameter −kFas. Results are shown

for our BHF calculation (full circles, full squares and stars) and the QMC one

(full triangles) of reference [27]. The energy of cold atoms (full diamonds),

obtained also by the authors of reference [27], is shown for comparison. The

continuous line displays the Lee–Yang limit (see Equation 3) for −kFas ≪ 1

[68]. The arrow indicates the most precise experimental value ξ = 0.376(4)

[39] of the Bertsch parameter measured with ultra-cold atomic gases at the

unitary limit. The dotted line shows the density functional proposed by Lacroix

(see Equation 4) in reference [69]. The inset shows, as illustration, the effect on

the ground state energy of the inclusion of the 3P0,
3 P1, and

3P2 partial waves

in the case of the BHF calculation with the AV18 potential.

while this increase is only about (2 − 3)% at −kFas = 5, and
that the effect of the P-waves is completely negligible at lower
densities. Similar results were found by Gezerlis and Carlson
in reference [57] using the Argonne V4 potential [73] (see
Figure 3 of reference [57]). For the cold atom case, Gezerlis and
Carlson considered an hyperbolic cosinus interaction potential of
the form

v(r) = −v0
2h̄2

m

µ2

cosh2(µr)
, (2)

where the strength v0 was adjusted to obtained values of −kFas
from 1 to 10, and µ was taken such that the effective range of the
potential was much smaller than the interatomic distance.

Coming back to the figure, the arrow indicates the most
precise experimental value, ξ = 0.376(4) [39], of the Bertsch
parameter measured with ultra-cold atomic gases at the unitary
limit (i.e., for −kFas → ∞), whereas the continuous line shows
the well-known extreme low-density limit (−kFas≪1) of Lee and
Yang [68]

E

EFG
= 1+

10

9π
kFas +

4

21π2
(11− 2ln2)(kFas)

2 . (3)
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In the Figure 1, for comparison, we also show the recent density
functional proposed by Lacroix in reference [69],

E

EFG
= 1+

10

9π

kFas

1− 10
9π kFas/[1− ξ (kFre)]

(4)

with

ξ (kFre) = 1−
(1− ξ0)2

1− ξ0 + kFreηe
(5)

where the two parameters ξ0 and ηe of this functional are fixed
to reproduce both the universal properties of a unitary Fermi gas,
and the Lee–Yang limit at extremely low densities. In particular,
we show the Lacroix’s functional for ξ0 = 0.37 assuming that
re = 0, therefore, being the r.h.s. of Equation (5) simply reduced
to ξ0, which makes the value of ηe irrelevant in this case.

We note first that, for neutron matter, our BHF calculation
gives results very similar for the three NN interactions employed.
Furthermore, we notice also that our results are in quite good
agreement with the QMC ones over the whole range of values
of the dimensionless parameter−kFas considered. This indicates
that not only the details of the NN interaction (e.g., the value
of the cut-off in the case of the chiral forces) are irrelevant for
neutronmatter a very low densities but also those of the approach
employed to solve the many-body problem seem to be quite
unimportant (see, e.g., Figure 4 of reference [57], where it is
shown that results for neutron matter obtained with different
methods agree within 20% in the range 0 < −kFas < 20). It
can be also seen in the Figure 1 that our BHF results as well
as the QMC ones extrapolate properly to the Lee–Yang limit
at extremely low densities, and that all them are reasonably
well-reproduced by the Lacroix’s functional of Equation (4) for
−kFas ≤ 2.

In the unitary limit, QMC results of the ratio E/EFG, in the
case of cold atoms, approach the value 0.37 (see reference [28]),
in very good agreement with the most precise experimental
measurement of the Berstch parameter [39]. As we already said,
neutron matter never reaches strictly the unitary limit, although
is close to it. In particular, Baldo andMaieron [31], on the basis of
the Brueckner–Bethe–Goldstonemany-body theory, showed that
in the range of densities corresponding to the Fermi momenta
0.4 < kF < 0.8 fm−1 the energy of neutron matter turns to
be very close to one half of EFG. A similar result was found
also in the variational and finite volume Green’s function Monte
Carlo calculations of references [29, 30]. As seen in the figure,
our BHF results show an almost constant value of the ratio
E/EFG in the range 6.61 < −kFas < 9.45 (0.35 < kF < 0.5
fm−1). Making a linear fit of our results in this range, we obtain,
respectively, the values E/EFG = 0.561, 0.563, and 0.566 for
the EM500 interaction, the AV18 potential, and the Gaussian
potential, in agreement with the results these works [29–31]. The
linear dependence of the neutron matter energy with EFG, found
in our BHF calculation in this Fermi momentum range, can be
understand from an argument pointed out by Carlson et al. in
reference [30] that we briefly review here.

The interaction energy is proportional to the density (∝ k3F)
times the volume integral of the G-matrix, which is related to the

FIGURE 2 | Tan contact parameter as a function of (kFas)
−1 in units of the

Fermi momentum. Results for neutron matter from our BHF calculation

obtained with the EM500 interaction (full circles) and the AV18 potential (full

squares) are compared with data from experiments with ultra-cold fermionic

gases of 40K (open circles, triangles, and squares) [74] and 6Li (open

diamonds, stars and open down triangle) [75–77]. The inset shows the fit of

our BHF results for the ground state energy of neutron matter with the

Lacroix’s functional of Equation (4) (dashed lines).

bare interaction V through the well-known Brueckner equation,
written schematically as

Gφ = Vψ , (6)

where φ and ψ are the unperturbed and perturbed two-
neutron wave functions. At low densities, all the relevant relative
momenta are small and, therefore, one has φ = 1 and, in vacuum,
beyond the effective range of the interaction, ψ = 1 − as/re. In
addition, since for neutron matter one has −as/re > 1, one can
approximate ψ simply by −as/re, and, therefore, G ≈ −asV/re.
It is easy to see then that in the range 6.61 < −kFas < 9.45, the
G-matrix is proportional to (kFre)−1. Consequently, its volume
integral becomes, in this range, proportional to k−1

F and the
interaction energy proportional to k2F , as it is the case of the
energy of the non-interacting Fermi gas. From now on, BHF
results will be presented only for the EM500 interaction and the
AV18 potential.

To finish this section, we show in Figure 2 our results for the
Tan contact parameter [78–80] of neutron matter as a function
of (kFas)−1. The contact parameter of an infinite spin saturated
system is given by

C =
1

n

4πma2s
(h̄c)2

dε

das
, (7)

Frontiers in Physics | www.frontiersin.org 4 May 2021 | Volume 9 | Article 660622

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Vidaña Low-Density Neutron Matter and the Unitary Limit

FIGURE 3 | Superfluid 1S0 pairing gap (in units of EF ) of low-density neutron

matter as a function of the dimensionless parameter −kFas. BCS results

obtained with the EM500 interaction and the AV18 potential are shown

together with the QMC ones (full triangles) of reference [27]. The superfluid

pairing gap for cold atoms (full diamonds), calculated also by the authors of

reference [27], is shown for comparison. The dotted and dot-dashed lines at

very low values of −kFas display, respectively, the BCS result in the weak

coupling limit and the Gorkov and Melik-Barkhudarov (GMB) [83] finite

polarization correction. The arrow indicates the value of 1/EF at the unitarity

limit extracted from ultra-cold Fermi atoms experiments with imbalance

mixtures of 6Li [54–56].

where n = k3F/3π
2 and ε = nE are, respectively, the density and

the energy density of the system. For computational reasons, to
calculate C, we have first fitted our BHF results for the ground
state energy E of neutron matter by using the Lacroix’s functional
of Equation (4) taking re = 2.75 fm. A good fit of our results
for the energy is obtained using the parameters ξ0 = 0.326
and η0 = 0.15 in the case of the EM500 interaction, and
ξ0 = 0.326 and η = 0.165 for the AV18 potential. The results
of the fit are shown by the dashed lines in the inset of the
figure. Our result for the contact parameter in neutron matter is
compared with the experimental data from measurements with
ultra-cold fermionic atoms of the momentum distribution (open
circles), photoemission spectroscopy (open triangles), and radio
frequency spectroscopy (open squares) of a gas of 40K [74], and
the static structure factor (open diamonds, stars, and open down
triangle) of a gas of 6Li [75–77]. A reasonable good agreement
between our results for neutron matter and the experimental
data from ultra-cold atoms is found only in the very low-density
regime [(kFas)−1 < −1], being the differences very large in the
range −0.15 < (kFas)−1 < −0.10, near the unitarity limit. The
reason for these large differences is probably the fact that low-
density neutron matter, as it has been already said, actually never
reaches the unitary limit.

3. SUPERFLUID PAIRING GAP

We consider now the superfluid pairing gap of neutron matter
at low densities, which is an important quantity to understand
the properties of neutron-rich nuclei [81] and neutron star
cooling [82]. In particular, we have performed a mean-field BCS
calculation of the 1S0 pairing gap using the EM500 interaction
and the AV18 potential. The results of this calculation are
shown (in units of EF) as a function of the dimensionless
parameter −kFas in Figure 3, together with those of the QMC
ones obtained by Gezerlis and Carlson (full triangles) [27] using
also the AV18 potential. The superfluid pairing gap for cold
atoms (full diamonds) [27], calculated also by these two authors
with the hyperbolic cosinus interaction of Equation (2), is shown
for comparison. The dotted and dot-dashed lines at very low
values of the parameter−kFas show, respectively, the well-known
analytic BCS result in the weak coupling limit

10
BCS(kF) =

8

e2
h̄2k2F
2m

exp

(

π

2kFas

)

, (8)

where e is the Euler’s number, and the Gorkov and Melik–
Barkhudarov (GMB) [83] finite polarization correction,

10(kF) =
1

(4e)1/3
8

e2
h̄2k2F
2m

exp

(

π

2kFas

)

, (9)

due to the inclusion of induced interactions that reduce the gap
even at weak coupling. As it is seen, QMC results for both neutron
matter and cold atoms extrapolate properly to the GMB result
whereas our BCS calculation, as expected, does it toward the BCS
weak coupling limit.

We already said in the introduction that close to the unitary
limit the superfluid pairing gap is expected to be1 = δEF , where
the proportionality constant δ was found ∼ 0.45 in ultra-cold
Fermi atoms experiments with imbalance mixtures of 6Li [54–
56]. This value is indicated in the Figure 3 with an arrow. At
the unitary limit, the QMC result for cold atoms of Gezerlis and
Carlson is 0.50(3)EF , in good agreement with these experiments.
For neutron matter, the QMC calculation predicts, as we also
mentioned in the Introduction, a maximum value of the pairing
gap of ∼ 0.3EF at −kFas ∼ 5, which is ∼ 65% of the value of
the BCS result found by the same authors in reference [27]. Our
BCS calculation predicts a maximum value of 1 of ∼ 0.50EF
at −kFas = 4.4 and of ∼ 0.53EF at −kFas ∼ 4.1 when using
the EM500 interaction or the AV18 potential, respectively. It is
interesting to note that while for the ground state energy both
NN interactions give very similar results, this is not the case for
the pairing gap for which their predictions are slightly different.
The maximum values of the gap found in both QMC and BCS
calculations correspond to a strong coupling situation where the
behavior of neutron matter, with a Fermi momentum of ∼0.27
fm−1 in the QMC case or ∼0.21–0.23 fm−1 in the BCS one, can
be considered close to that of a unitary Fermi gas. The reader
should note, however, that although the maximum value of the
gap obtained with our BCS calculation seems to be in agreement
with experimental data from ultra-cold atoms experiments, this
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FIGURE 4 | Energy of a ↓ neutron impurity with zero momentum as a function of the Fermi momentum (A) and of the Fermi energy (B) of the free gas of ↑ neutrons.

The results obtained with the EM500 interaction (full circles) and the AV18 potential (full squares) are compared with those obtained when using the values of the

proportionality constant η derived in the QMC calculation of reference [60] (solid line) and experimentally in references [61, 62] (dashed and dotted lines).

is not the case because the BCS is just a mean-field calculation
which does not include the effects of medium polarization that
are very important even in the low-density regime and reduce
the value of the gap. Therefore, in the case of our BCS calculation,
our previous statement regarding the vicinity of neutron matter
to the unitary limit should be considered only qualitatively.

4. NEUTRON POLARON

In this final section, we review the recent analysis of the energy,
effective mass, and quasiparticle residue of a spin-down (↓)
neutron impurity immersed in a low-density free Fermi gas of
spin-up (↑) neutrons, made by the author of the present work
in reference [65] using the BHF approach, where he showed that
the ↓ neutron impurity behaves basically as an attractive Fermi
polaron in a unitary gas.

The energy of the ↓ neutron impurity with zero momentum is
shown in Figure 4 as a function of the Fermi momentum (panel
A) and of the Fermi energy (panel B) of the free gas of ↑ neutrons
for the EM500 interaction (full circles) and the AV18 potential
(full squares). Note that both interactions predict essentially the
same results. Note in addition that the linear behavior shown by
the energy of a Fermi polaron in the unitary limit, Epol = ηEF
[58], is clearly seen also in the case of the energy the ↓ neutron
impurity, where a value of the proportionality constant η =
−0.63 (η = −0.64) is found using the EM500 interaction (AV18
potential). These numbers are in very good agreement with the
results of state-of-the-art QMC calculations η = −0.61565(4)
[60] and the values η = −0.58(5) [61] and η = −0.64(7)
[62] extracted from experiments with spin-polarized 6Li atoms
with resonant interactions. Our result shows that a ↓ neutron
impurity in a low-density free Fermi gas of ↑ neutrons presents
a behavior similar to that of an attractive Fermi polaron in

the unitary limit, being irrelevant the details of the interaction
between the impurity and the free Fermi gas. To further confirm
this behavior, in the next section, we analyze also the effective
mass and the quasiparticle residue of a ↓ neutron impurity with
zero momentum.

The effective mass of a ↓ neutron impurity with zero
momentum, m∗

↓, can be extracted by assuming that its energy

is quadratic for low values of its momentum Ek↓, and fitting
this parabolic energy to the energy calculated within the BHF
approach. The quasiparticle residue is defined as

Z↓ =

(

1−
∂U↓(Ek↓ = E0,E′↓)

∂E′↓

)−1

E′↓=U↓(Ek↓=E0)

(10)

whereU↓(Ek↓,E′↓) is the off-shell BHF↓ neutron potential. It gives
a measurement of the importance of the correlations. The more
important the correlations are, the smaller is its value. Results
for both quantities are shown in panels A and B of Figure 5 as
a function of the Fermi momentum of the ↑ neutron free Fermi
gas for the EM500 interaction (full circles) and the AV18 potential
(full squares). Note that also in this case both interactions predict
almost the same results, indicating once more the irrelevance of
the interaction details in the low-density regime. As it can be
seen in the figure, initially m∗

↓ (Z↓) increases (decreases), then it

reaches a maximum (minimum) at kF ∼ 0.2 fm−1 and finally, it
decreases (increases) at higher densities. We notice that for kF ∼
0.2 fm−1, where m∗

↓ and Z↓ present their respective maximum

and minimum, the average interparticle spacing n−1/3 (with n =
k3F/6π

2 the density of the↑ neutron free Fermi gas) is of the order
of the 1S0 neutron-neutron scattering length, i.e., n1/3|as| ∼ 1.
We can venture to say that kF ∼ 0.2 fm−1 establishes the border
between a less correlated and a more correlated regime of the
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FIGURE 5 | Effective mass (A) and quasiparticle residue (B) of a ↓ neutron

impurity with zero momentum as a function of the Fermi momentum of the free

gas of ↑ neutrons. Results are shown for the EM500 interaction (full circles)

and the AV18 potential (full squares).

system. In fact, note that the values of Z↓ are in general larger
in the kF region from 0 to 0.2 fm−1 than for kF & 0.2 fm−1,
indicating that in this region of very low-densities correlations
are less important, and that the ↓ neutron impurity propagates
more freely in the ↑ neutron gas. We also notice that for Fermi
momenta above ∼ 0.2 fm−1, the 1S0 neutron-neutron scattering
length is larger that the average interparticle spacing with values
of the dimensionless quantity n1/3|as| ranging from 1 at kF =
0.21 fm−1 to 2.37 at kF = 0.5 fm−1. Although in the unitary limit
it is strictly fulfilled the condition n1/3|as| ≫ 1, these numbers
indicate once more that low-density neutron matter is close to
it, at least for Fermi momenta in the range from ∼ 0.2 fm−1 to

∼ 0.5 fm−1. Averaging the effective mass and the quasiparticle
residue over the Fermi momentum in the range between 0.2 and
0.5 fm−1 we find, respectively, the mean valuesm∗

↓ = 1.18m and
Z↓ = 0.78 using the EM500 interaction, and m∗

↓ = 1.19m and
Z↓ = 0.79, in the case of the AV18 potential. The results for
both quantities compare remarkably well with those of the full-
many body analysis of Combescot and Giraud [84] who found
m∗

↓ = 1.197m, and those of the diagrammatic Monte Carlo
method employed by Vlietinck et al. [85] who obtained a value
of 0.759 for the quasiparticle residue. These results confirm once
more the Fermi polaron behavior exhibited by the ↓ neutron
impurity in a low-density free Fermi gas of ↓ neutrons.

5. SUMMARY AND CONCLUSIONS

In this work, we have reviewed the properties of neutronmatter at
low-densities. In particular, using the well-known BHF approach
of nuclear matter and the BCS theory we have calculated,
respectively, the ground state energy and the superfluid neutron
pairing gap. Results have been obtained for two NN interactions,
the chiral one of Entem and Machleidt at N3LO with a 500
MeV cut-off and the Argonne V18 phenomenological potential.
Results for the ground state energy have been also obtained for
a simple Gaussian potential with a strength and range adjusted
to reproduce the 1S0 neutron-neutron scattering length and
effective range. The results have been compared with those of
QMC calculations for neutron matter and cold atoms. We have
found that the energy of neutron matter with Fermi momenta in
the range 0.35 < kF < 0.5 fm−1 is about one half of the energy
of a non-interacting Fermi gas, in agreement with previous
BHF, variational and finite volume Green’s function Monte Carlo
calculations of low-density neutron matter. This result indicates
that in this range of low densities neutron matter is close to
the unitary limit although, actually, it never reaches it. We have
determined also the Tan contact parameter in neutron matter
finding that only at very low densities there is a reasonable good
agreement between our results and experimental data form ultra-
cold atoms. We have found that out BCS calculation predicts
a maximum value of the pairing gap of ∼ 0.5EF for a Fermi
momentum of ∼ 0.2 fm−1. However, although this value is
close to that found at the unitary limit in experiments ultra-cold
Fermi gases, this does not mean that there is a good agreement
between our calculation and experimental data because the BCS
calculation does not take into account medium polarization
effects which very important even at low densities and reduce the
value of the gap. Finally, we have reviewed the properties (energy,
effective mass, and quasiparticle reside) of a ↓ neutron impurity
in a low-density free Fermi gas of ↑ neutrons. Our results have
shown that this impurity presents properties close to those of an
attractive Fermi polaron in the unitary limit.
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