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This review treats the mathematical and algorithmic foundations of non-reversible Markov

chains in the context of event-chainMonte Carlo (ECMC), a continuous-time liftedMarkov

chain that employs the factorized Metropolis algorithm. It analyzes a number of model

applications and then reviews the formulation as well as the performance of ECMC in

key models in statistical physics. Finally, the review reports on an ongoing initiative to

apply ECMC to the sampling problem in molecular simulation, i.e., to real-world models

of peptides, proteins, and polymers in aqueous solution.
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1. INTRODUCTION

Markov-chain Monte Carlo (MCMC) is an essential tool for the natural sciences. It is also the
subject of a research discipline in mathematics. Ever since its invention, in 1953, MCMC [1] has
focused on reversible MCMC algorithms, those that satisfy a detailed-balance condition. These
algorithms are particularly powerful when the Monte Carlo moves (from one configuration to the
next), and they can be customized for each configuration of a given system. Such a priori choices [2]
allow for bigmoves to be accepted and for sample space to be explored rapidly. Prominent examples
for reversible methods with custom-built, large-scale moves are path-integral Monte Carlo and the
cluster algorithms for spin systems [3].

In many important problems, insightful a priori choices for moves are yet unavailable. MCMC
then often consists of a sequence of unbiased local moves, such as tiny displacements of one out of
N particles, or flips of one spin out of many. Local reversible Monte Carlo schemes are easy to set
up for these problems. The Metropolis or the heatbath (Gibbs-sampling) algorithms are popular
choices. They generally compute acceptance probabilities from the changes in the total potential
(the system’s energy) and thus mimic the behavior of physical systems in the thermodynamic
equilibrium. However, such algorithms are often too slow to be useful. Examples are the hard-disk
model [4, 5] where local reversibleMCMCmethods failed for several decades to obtain independent
samples in large systems, and the vast field of molecular simulation [6], which considers classical
models of polymers, proteins, etc., in aqueous solution. Local reversible MCMC algorithms were
for a long time without alternatives in molecular simulation, but they remained of little use because
of their lack of efficiency.

Event-chain Monte Carlo (ECMC) [7, 8] is a family of local, non-reversible MCMC algorithms
developed over the last decade. Its foundations, applications, and prospects are at the heart of
the present review. At a difference with its local reversible counterparts (that are all essentially
equivalent to each other and to the physical overdamped equilibrium dynamics), different
representatives of ECMC present a wide spread of behaviors for a given model system. Two issues
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explain this spread. First, any decision to accept or reject
a move is made on the basis of a multitude of statistically
independent decisions of parts of the systems, so-called factors
(see the Glossary). Usually, there is a choice between inequivalent
factorizations. In the Metropolis algorithm, in contrast, all
decisions to accept amove aremade on the basis of changes in the
total energy. Second, ECMC is fundamentally a non-reversible
“lifted” version of an underlying reversible algorithm. In a lifting
(a lifted Markov chain), some of the randomly sampled moves
of the original (“collapsed”) Markov chain are rearranged. Again,
there are many possible liftings and each of these can give rise to
a specific dynamic behavior. The development of ECMC is still
in its infancy. Its inherent variability may, however, bring to life
the use of local MCMC in the same way as reversible energy-
based Monte Carlo has been empowered through the a priori
probabilities.

Section 2 discusses the mathematical foundations underlying
ECMC, namely global balance, factorization, liftings, and
thinning (making statistically correct decisions with minimal
effort). Section 3 reviews exact results for various Markov chains
in the simplest setting of a path graph. Section 4 studies one-
dimensional N-body systems. Section 5 provides an overview of
findings on N-particle systems in higher than one dimension.
Section 6 reviews a recent proposal to apply ECMC to molecular
simulations. Section 7, finally, discusses prospects for event-chain
Monte Carlo and other non-reversible Markov chains in the
context of molecular simulation. The Glossary contains non-
technical introductions to the main terms used in this review.

2. MARKOV CHAINS, FACTORIZATION,

LIFTINGS, AND THINNING

The present section reviews fundamentals of ECMC. Non-
reversibility modifies the positioning of MCMC from an
analog of equilibrium physics toward the realization of a
non-equilibrium system with steady-state flows. Section 2.1
discusses transition matrices, the objects that express MCMC
algorithms in mathematical terms. The balance conditions for
the steady state of Markov chains are reviewed, as well as the
performance limits of MCMC in terms of basic characteristics of
the sample space and the transition matrix. Section 2.2 discusses
factorization, the break-up of the interaction into terms that, via
the factorizedMetropolis algorithm,make independent decisions
on the acceptance or the rejection of a proposed move. Section
2.3 reviews the current understanding of lifted Markov chains,
the mathematical concept used by ECMC to replace random
moves by deterministic ones without modifying the stationary
distribution. This remains within the framework of (memory-
less)Markov chains. Section 2.4 reviews thinning, the way used in
ECMC tomake complex decisions with minimum computations.

2.1. Transition Matrices and Balance

Conditions
For a given sample space �, a Markov chain essentially consists
in a time-independent transition matrix P and a distribution
of initial configurations. Any non-negative element Pij gives

the conditional probability for the configuration i to move to
configuration j in one time step. The transition matrix P is
stochastic—all its rows i sum up to

∑
j∈� Pij = 1. Commonly,

the probability Pij is composed of two parts Pij = AijPij, where
A is the a priori probability to propose a move (mentioned in
section 1), and Pij the so-called “filter” to accept the proposed
move. Any term Pii in the transition matrix is the probability
to move from i to i. If non-vanishing, it may result from the
probability of all proposed moves from i to other configurations
j 6= i (by the a priori probability) to be rejected (by the filter
P). In the lifted sample space �̂ that will be introduced in
subsection 2.3, ECMC is without rejections.

2.1.1. Irreducibility and Convergence—Basic

Properties of the Transition Matrix
A (finite) Markov chain is irreducible if any configuration j can
be reached from any other configuration i in a finite number of
time steps [9, section 1.3]. As the matrix Pt = (Pt)ij gives the
conditional probability to move from i to j in exactly t time steps,
an irreducible matrix has (Pt)ij > 0 ∀i, j, but the time t may
depend on i and j.

The transition matrix P connects not only configurations but
also probability distributions π {t−1} and π {t} at subsequent time
steps t − 1 and t. By extension, the matrix Pt connects the
distribution π {t} with the (user-provided) distribution of initial
configurations π {0} at time t = 0:

π
{t}
i =

∑

j∈�

π
{t−1}
j Pji ⇒ π

{t}
i =

∑

j∈�

π
{0}
j (Pt)ji ∀i ∈ �.

(1)
The initial distribution π {0} can be concentrated on a single
initial configuration. In that case, π {0} is a discrete Kronecker δ-
function for a Markov chain in a finite sample space, and a Dirac
δ-function in a continuous sample space.

An irreducible Markov chain has a unique stationary
distribution π that satisfies

πi =
∑

j∈�

πjPji ∀i ∈ �. (2)

Equation (2) allows one to define the flow Fji from j to i as the
stationary probability πj to be at jmultiplied with the conditional
probability to move from j to i:

Fji ≡ πjPji ⇒ Equation (2) ⇔ πi =

flows exiting i︷ ︸︸ ︷∑

k∈�

Fik

=

flows entering i︷ ︸︸ ︷∑

j∈�

Fji ∀i ∈ �, (3)

where the left-hand side of Equation (2) was multiplied with the
stochasticity condition

∑
k∈� Pik = 1.

Although any irreducible transition matrix has a unique π ,
this distribution is not guaranteed to be the limit π {t} for t →
∞ for all initial distributions π {0}. But even in the absence of
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convergence, ergodicity follows from irreducibility alone, and
ensemble averages

∑
i∈� O(i)πi of an observable O agree with

the time averages limt→∞ 1
t

∑t−1
s=0 O(is) (see [9, Theorem 4.16]).

Convergence toward π of an irreducible Markov chain
requires that it is aperiodic, i.e., that the return times from
a configuration i back to itself {t ≥ 1 :(Pt)ii > 0} are not
all multiples of a period larger than one. For example, if the
set of return times is {2, 4, 6, . . . }, then the period is 2, but
if it is {1000, 1001, 1002, . . . }, then it is 1. These periods do
not depend on the configuration i. For irreducible, aperiodic
transition matrices, Pt = (Pt)ij is a positive matrix for some fixed
t, and MCMC converges toward π from any starting distribution
π {0}. The existence and uniqueness of the stationary distribution
π follows from the irreducibility of the transitionmatrix, but if its
value is imposed (for example to be the Boltzmann distribution
or the diagonal density matrix [3]), then Equation (2) becomes
a necessary “global-balance” condition for the transition matrix.
For ECMC, this global-balance condition of Equation (2) must
be checked for all elements of the lifted sample space �̂.

A reversible transition matrix is one that satisfies the detailed-
balance condition

Fij =
flow from i to j︷︸︸︷

πiPij =
flow from j to i︷︸︸︷

πjPji = Fji ∀i, j ∈ �. (4)

Detailed balance implies global balance (Equation 4 yields
Equation 2 by summing over j, considering that

∑
j∈� Pij = 1),

and the flow into a configuration i coming from a configuration
j goes right back to j. In ECMC, the reality of the global-balance
condition is quite the opposite, because the entering flow Fji is
compensated by flows to other configurations than j (Fji > 0
usually implies Fij = 0). Checking the global-balance condition
is more complicated than checking detailed balance, as it requires
monitoring all the configurations j that contribute to the flow into
i, in a larger (lifted) sample space.

For a reversible Markov chain, the matrix Aij = π
1/2
i Pijπ

−1/2
j

is symmetric, as trivially follows from the detailed-balance
condition. The spectral theorem then assures that A has only real
eigenvalues and that its eigenvectors form an orthonormal basis.
The transition matrix P has the same eigenvalues as A, as well as
closely related eigenvectors:

∑

j∈�

π
1/2
i Pijπ

−1/2
j︸ ︷︷ ︸

Aij

xj = λxi ⇔

∑

j∈�

Pij

[
π
−1/2
j xj

]

︸ ︷︷ ︸
x̃j

= λ

[
π
−1/2
i xi

]

︸ ︷︷ ︸
x̃i

. (5)

The eigenvectors x̃ of P must be multiplied with
√

π to be
mutually orthogonal. They provide a basis on which any initial
probability distribution π {0} can be expanded. An irreducible
and aperiodic transition matrix P (reversible or not) has one
eigenvalue λ1 = 1, and all others satisfy |λk| < 1 ∀k 6= 1. The
unit eigenvalue λ1 corresponds to a constant right eigenvector of
P because of the stochasticity condition

∑
j∈� Pij = 1, and to the

left eigenvector π of P, because of the global-balance condition of
Equation (2).

A non-reversible transition matrix may belong to a mix of
three different classes, and this variety greatly complicates their
mathematical analysis. P may have only real eigenvalues and
real-valued eigenvectors, but without there being an associated
symmetric matrix A, as in Equation (5) (see [10, section 2.3]
for an example). A non-reversible transition matrix may also
have only real eigenvalues but with geometrical multiplicities
that not all agree with the algebraic multiplicities. Such a matrix
is not diagonalizable. Finally, P may have real and then pairs
of complex eigenvalues [10]. This generic transition matrix can
be analyzed in terms of its eigenvalue spectrum, and expanded
in terms of a basis of eigenvectors [11–13]. As non-reversible
transitionmatricesmaywell have only real eigenvalues, the size of
their imaginary parts does not by itself indicate the degree of non-
reversibility [14]. Reversibilizations of non-reversible transition
matrices have been much studied [15], but they modify the
considered transition matrix.

2.1.2. Total Variation Distance, Mixing Times
In real-world applications, irreducibility and aperiodicity of a
Markov chain can usually be established beyond doubt. The
stationary distribution π of a transition matrix constructed to
satisfy a global-balance condition is also known explicitly. The
time scale for the exponential approach of π {t} to π—that always
exists—is much more difficult to establish. In principle, the
difference between the two distributions is quantified through the
total variation distance:

||π {t} −π ||TV = max
A⊂�

|π {t}(A)−π(A)| = 1

2

∑

i∈�

|π {t}
i −πi|. (6)

The distribution π {t} depends on the initial distribution, but for
any choice of π {0}, for an irreducible and aperiodic transition
matrix, the total variation distance is smaller than an exponential
bound Cαt with α ∈ (0, 1) (see the convergence theorem
for Markov chains [9, Theorem 4.9]). At the mixing time, the
distance from the most unfavorable initial configuration,

d(t) = max
π {0}

||π {t}(π {0})− π ||TV, (7)

drops below a certain value ǫ

tmix(ǫ) = min{t : d(t) ≤ ǫ}. (8)

Usually, ǫ = 1
4 is taken, with tmix = tmix(1/4) (see [9]).

The value of ǫ is arbitrary, but smaller than 1/2 in order for
convergence in a small part of � (without exploration of its
complement) not to be counted as a success (see subsection 3.2.1
for an example). Once such a value smaller than 1

2 is reached,
exponential convergence in t/tmix sets in (see [9, Equation 4.36]).
The mixing time is thus the time to obtain a first sample
of the stationary distribution from a most unfavorable initial
configuration. It does not require the existence of a spectrum
of the transition matrix P, and it can be much larger than the
correlation time tcorr given by the absolute inverse spectral gap
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of P, if it exists (the time it takes to decorrelate samples in the
stationary regime). Related definitions of the mixing time take
into account such thermalized initial configurations [16].

2.1.3. Diameter Bounds, Bottleneck, Conductance
An elementary lower bound for the mixing time on a graph
G = (�,E) (with the elements of � as vertices, and the non-zero
elements of the transition matrix as edges) is given by the graph
diameter LG, that is, the minimal number of time steps it takes
to connect any two vertices i, j ∈ �. The mixing time, for any
ǫ < 1/2, trivially satisfies

tmix ≥
LG

2
. (9)

For the Metropolis or heatbath single-spin flip dynamics in the
Ising model with N spins (in any dimension D), mixing times
throughout the high-temperature phase are logarithmically close
to the diameter bound with the graph diameter LG = N, the
maximum number of spins that differ between i and j (see [17]).

Mixing and correlation times of a MCMC algorithm can
become very large if there is a bottleneck in the sample space
�. Two remarkable insights are that in MCMC there is but
a single such bottleneck (rather than a sequence of them),
and that the mixing time is bracketed (rather than merely
bounded from below) by functions of the conductance [18].
Also called “bottleneck ratio” [9] or “Cheeger constant” [19], the
conductance is defined as the flow across the bottleneck:

8 ≡ min
S⊂�,πS≤ 1

2

FS→S

πS
= min

S⊂�,πS≤ 1
2

∑
i∈S,j∈S πiPij

πS
, (10)

where S = �\S. Although it can usually not be computed in real-
world applications, the conductance is of importance because the
liftings which are at the heart of ECMC leave it unchanged (see
subsection 2.3).

For reversible Markov chains, the correlation time is bounded
by the conductance as [18]:

1

8
≤ tcorr ≤

8

82 . (11)

The lower bound follows from the fact that to cross from S into
S, the Markov chain must pass through the boundary of S, but
this cannot happen faster than through direct sampling within S,
i.e., with probability πi/πS for i on the boundary of S. The upper
bound was proven in [20, Lemma 3.3]. For arbitrary MCMC, one
has the relation

1

48
≤ tset ≤

20

82 , (12)

where tset is the “set time,” the maximum over all sets S of the
expected time to hit a set S from a configuration sampled from
π , multiplied with the stationary distribution π(S). In addition,
the mixing time, defined with the help of a stopping rule [18],
satisfies:

const

8
< tmix <

const′

82 log
1

πmin
, (13)

where the constants are different for reversible and for non-
reversible Markov chains, and πmin is the smallest weight of
all configurations.

The above inequalities strictly apply only to finite Markov
chains, where the smallest weight πmin of all configurations is
well-defined. A continuous system may have to be discretized in
order to allow a discussion in its terms. Also, in the application
to ECMC, which is event-driven, mixing and correlation times
may not reflect computational effort, which roughly corresponds
to the number of events, rather than of time steps. Nevertheless,
the conductance yields the considerable diffusive-to-ballistic
speedup that may be reached by a non-reversible lifting (see [18])
if the collapsed Markov chain is itself close to the ∼ 1/82 upper
bound of Equations (11) and (13).

2.2. Factorization
In generic MCMC, each proposed move is accepted or rejected
based on the change in total potential that it entails. For hard
spheres, a move in the Metropolis algorithm [3, Chapter 2] can
also be pictured as being accepted “by consensus” over all pairs of
spheres (none of which may present an overlap) or else rejected
“by veto” of at least one pair of spheres (the pair which presents
an overlap). The “potential landscape” and the “consensus–veto”
interpretations are here equivalent as the pair potential of two
overlapping hard spheres is infinite, and therefore also the total
potential as soon as there is one such pair.

The factorized Metropolis filter [8, 21] generalizes the
“consensus–veto” picture to an arbitrary systemwhose stationary
distribution breaks up into a set M of factors M = (IM ,TM).
Here, IM is an index set and TM a type (or label), such as
“Coulomb,” “Lennard-Jones,” “Harmonic” (see [21, section 2A]).
The total potential U of a configuration c then writes as the
sum over factor potentials UM that only depend on the factor
configurations cM :

U({r1, . . . , rN}︸ ︷︷ ︸
c

) =
∑

M∈M
UM({ri : i ∈ IM}︸ ︷︷ ︸

cM

), (14)

and the stationary distribution appears as a product over
exponentials of factor potentials:

π(c) = exp
[
−βU(c)

]
=

∏

M∈M
πM(cM)

=
∏

M∈M
exp

[
−βUM(cM)

]
, (15)

where β is the inverse temperature. Energy-based MCMC
considers the left-hand side of Equation (14) and molecular
dynamics its derivatives (the forces on particles). All
factorizations M are then equivalent. In contrast, ECMC
concentrates on the right-hand side of Equation (14), and
different factorizations now produce distinct algorithms.
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2.2.1. Factorized Metropolis Algorithm,

Continuous-Time Limit
The Metropolis filter [1] is a standard approach for accepting a
proposed move from configuration c to configuration c′:

P
Met(c → c′) = min

[
1,

πc′

πc

]
= min

[
1, exp (−β1U)

]

= min


1,

∏

M∈M
exp (−β1UM)


 , (16)

where 1UM = UM(c′M) − UM(cM). The factorized Metropolis
filter [8] plays a crucial role in ECMC. It inverts the order of
product and minimization, and it factorizes as its name indicates:

P
Fact(c → c′) =

∏

M∈M
min

[
1, exp (−β1UM)

]
. (17)

The factorized Metropolis filter satisfies detailed balance for
any symmetric a priori probability of proposed moves. This
is because, for a single factor, PFact reduces to PMet (which
obeys detailed balance for a symmetric a priori probability [3])
and because the Boltzmann weight of Equation (15) and the
factorized filter of Equation (17) factorize along the same
lines. The detailed-balance property is required for proving the
correctness of ECMC (see [21, Equation 27]), although ECMC is
never actually run in reversible mode.

TheMetropolis filterPMet of Equation (16) is implemented by
sampling a Boolean random variable:

XMet(c → c′) =
{
“True” if ran(0, 1) < PMet(c → c′)

“False” else,
(18)

where “True” means that the move c → c′ is accepted. In
contrast, the factorized Metropolis filter appears as a conjunction
of Boolean random variables:

XFact(c → c′) =
∧

M∈M
XM(cM → c′M). (19)

The left-hand side of Equation (19) is “True” if and only if all the
independently sampled Booleans XM on the right-hand side are
“True,” each with probability min

[
1, exp (−β1UM)

]
. The above

conjunction thus generalizes the consensus–veto picture from
hard spheres to general interactions, where it is inequivalent to
the energy-based filters.

In the continuous-time limit, for continuously varying
potentials, the acceptance probability of a factorM becomes:

min
[
1, exp (−β1UM)

]

= exp
(
−β 1U+

M

) 1UM→dUM−−−−−−−→ 1− β dU+
M , (20)

where

x+ = max(0, x) ∀x ∈ R (21)

is the unit ramp function. The acceptance probability of the
factorized Metropolis filter then becomes

P
Fact(c → c′) = 1− β

∑

M∈M

[
dUM(cM → c′M)

]+
, (22)

and the total rejection probability for the move turns into a sum
over factors:

1− P
Fact(c → c′) = β

∑

M∈M

[
dUM(cM → c′M)

]+
. (23)

In ECMC, the infinitesimal limit is used to break possible ties,
so that a veto can always be attributed to a unique factor M and
then transformed into a lifting move. The MCMC trajectory in
between vetoes appears deterministic, and the entire trajectory
as piecewise deterministic [22, 23] (see also [24]). In the event-
driven formulation of ECMC, rather than to check consensus for
each move c → c′, factors sample candidate events (candidate
vetoes), looking ahead on the deterministic trajectory. The
earliest candidate event is then realized as an event [25].

2.2.2. Stochastic Potential Switching
Whenever the factorized Metropolis filter signals a consensus,
all interactions appear as effectively turned off, while a veto
makes interactions appear hard-sphere like. These impressions
are confirmed by a mapping of the factorized Metropolis filter
onto a hamiltonian that stochastically switches factor potentials,
in our case between zero (no interaction) and infinity (hard-
sphere interactions).

Stochastic potential switching [26] replaces a Markov chain
for a given potential U (or, equivalently a stationary distribution)
through a chain with the same stationary distribution for another
potential Ũ, sometimes compensated by a pseudo-potential U.
The possible application to factor potentials was pointed out in
the original paper. The factor potential UM (see [26, section V])
for a move c → c′ is then switched to ŨM with probability

SM(c†) = exp
{
β

[
UM(c†)− ŨM(c†)− 1U∗

M(c, c′)
]}

, (24)

with c† = c. The switching affects both configurations, but
is done with probability SM(c) (see [26]). The constant 1U∗

M
is chosen so that SM < 1 for both c and c′, for example as
1U∗

M = max
[
UM(c),UM(c′)

]
+ ǫ with ǫ & 0. If the potential

is not switched, the move c → c′ is subject to a pseudo-potential

UM(c†) = UM(c†)− β−1 log[1− SM(c†)] (25)

for both configurations c† ∈ {c, c′}. ECMC considers “zero-
switching” toward Ũ(c) = Ũ(c′) = 0. If UM(c′) < UM(c), the
zero-switching probability is∼ 1− βǫ → 1 for ǫ → 0.

If UM(c′) > UM(c), the zero-switching probability is smaller
than 1. If the potential is not switched so that the pseudo-
potential U is used at c and c′, then UM(c) remains finite while
UM(c′) ∼ − log (βǫ) /β → ∞ for ǫ → 0. In that limit, the
pseudo-potential barrier U(c′) − U(c) diverges toward the hard-
sphere limit. For UM(c′) > UM(c) with (

[
UM(c′)− UM(c)

]
→
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dUM > 0, the zero-switching probability approaches ∼ 1 −
βdUM and, together with the case UM(c′) < UM(c), this yields

SM(c) → 1− β
[
dUM(c → c′)

]+
, (26)

with the unit ramp function of Equation (21). In the infinitesimal
limit UM(c′)− UM(c) → dUM ∀M ∈ M, at most one factor fails
to zero-switch. The factorized Metropolis filter of Equation (22)
follows naturally.

2.2.3. Potential Invariants, Factor Fields
Invariants in physical systems originate in conservation laws
and topological or geometrical characteristics, among others.
PotentialsV that are invariant under ECMC time evolution play a
special role if they can be expressed as a sum over factor potentials
VM . The total system potential then writes as Ũ = U + V with
constant V =

∑
M∈M VM , which results in

Ũ =
∑

M∈M
ŨM =

∑

M∈M
(UM + VM) . (27)

Although V is constant, the factor terms VM can vary between
configurations. In energy-based MCMC and in molecular
dynamics, such constant terms play no role. Subsection 4.3.3
reviews linear factor invariants that drastically reduce mixing
times and dynamical critical exponents in one-dimensional
particle systems.

2.3. Lifting
Generic MCMC proposes moves that at each time are randomly
sampled from a time-independent set. Under certain conditions,
the moves from this set can be proposed in a less-random order
without changing the stationary distribution. This is, roughly,
what is meant by “lifting.” Lifting formulates the resulting
algorithm as a random process without memory, i.e., a Markov
chain. Sections 3 and 4 will later review examples of MCMC,
including ECMC, where lifting reduces the scaling of mixing and
autocorrelation times with system size.

Mathematically, a lifting 5̂ of a Markov chain 5 (with its
opposite being a “collapsing”) consists in a mapping f from a
“lifted” sample space �̂ to the “collapsed” one, �, such that
each collapsed configuration v ∈ � splits into lifted copies i ∈
f−1(v). There are two requirements [18, section 3]. First, the total
stationary probability of all lifted copies must equal the stationary
probability of the collapsed configuration:

πv = π̂
[
f−1(v)

]
=

∑

i∈f−1(v)

π̂i. (28)

Second, in any lifted transition matrix P̂ on �̂, the sum
of the flows between the lifted copies of two collapsed
configurations u, v ∈ � must equal the flow between the
collapsed configurations:

πvPvu︸ ︷︷ ︸
collapsed flow

=
∑

i∈f−1(v),j∈f−1(u)

lifted flow︷︸︸︷
π̂iP̂ij . (29)

There are usually many inequivalent choices for P̂ for a given
lifted sample space �̂. A move between two lifted copies of the
same collapsed configuration is called a lifting move.

Event-Chain Monte Carlo considers a more restricted class
of lifted sample spaces that can be written as �̂ = � × L,
with L a set of lifting variables. The lifted copies i of a collapsed
configuration v then write as i = (v, σ ) with σ ∈ L, and each
collapsed configuration has the same number of lifted copies.
Moves that only modify σ are called lifting moves, and lifting
moves that are not required by the global-balance condition are
called resamplings. The lifting variables usually have no bearing
on the stationary distribution:

π̂(u, σ )

π(u)
= π̂(v, σ )

π(v)
∀ u, v ∈ �; ∀ σ ∈ L. (30)

A lifted Markov chain cannot have a larger conductance than
its collapsed counterpart because the weights and the flows in
Equations (28) and (29) remain unchanged, and therefore also
the bottlenecks in Equation (10). Also, from Equation (29),
the reversibility of the lifting 5̂ implies reversibility of the
collapsed chains 5. In this case, lifting can only lead to marginal
speedups [18]. Conversely, a non-reversible collapsed Markov
chain necessarily goes with a non-reversible lifting. Within the
bounds of Equation (12) and the corresponding expression for
mixing times, a lifting 5̂ may be closer to the ∼ 1/8 lower
“ballistic” mixing-time limit, if its collapsed Markov chain 5 is
near the∼ 1/82 upper “diffusive” limit.

2.3.1. Particle Lifting
The earliest example of non-reversible MCMC for N-particle
systems involves performing single-particle moves as sweeps
through indices rather than in random order. This was proposed
in 1953, in the founding publication of MCMC, which states
“. . .we move each of the particles in succession . . . ” [1, p.22].
Particle liftings all have a sample space �̂ = � × N where
� = {x = (x1, . . . , xN)} is the space of the N-particle positions
and N = {1, . . . ,N} denotes the particle indices. The specific
particle-sweep transition matrix P̂, for lifted configurations (x, i)
with the active particle i ∈ N and with stationary distribution
π̂(x, k) = π(x)/N, satisfies

P̂(x,k),(x′,l) = NPx,x′δ(x1, x
′
1), . . . , δ(xk−1, x

′
k−1)δ(xk+1, x

′
k+1)

, . . . , δ(xN , x
′
N)δk+1,l, (31)

where periodicity in the indices is understood. In this expression,
the final δ-function implements the sweep (particle l = k + 1
moves after particle k), while the other δ-functions isolate a
move of k in the collapsed transition matrix P. The multiplicative
factor N on the right-hand side of Equation (31) compensates
for the a priori probability of choosing the active particle k,
which is 1

N in the collapsed Markov chain and 1 in its lifting.
A particle-sweep lifting 5̂ satisfies the global-balance condition
if the collapsed Markov chain 5 is reversible, a conclusion
that can be generalized considerably. However, if 5 is non-
reversible, the corresponding particle-sweep 5̂ can be incorrect
(see subsection 4.2.2 for an example).
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In particle systems with central potentials, particle-sweep
liftings lead to slight speedups [27–29]. Likewise, in the Ising
model and related systems, the analogous spin sweeps (updating
spin i + 1 after spin i, etc.) again appear marginally faster
than the random sampling of spin indices [30]. Particle sweeps
appear as a minimal variant of reversible Markov chains, yet their
deliberative choice of the active particle, common to all particle
liftings, is a harbinger of ECMC.

2.3.2. Displacement Lifting
In a local reversible Markov chain 5, say, for an N-particle
system, the displacements are randomly sampled from a set D
(and usually applied to a particle that is itself chosen randomly).
Displacement liftings of a Markov chain 5 with sample space �

all live in a lifted sample space �̂ = �×Dq, whereDq is either the
displacement set D itself (for discrete systems) or some quotient
set ofD, describing, for example, the directions of displacements.
Again, there can be different lifted sample spaces �̂ for any
collapsed Markov chain 5 and many inequivalent displacement
liftings 5̂ for a given �̂ and collapsed transition matrix.

Displacement liftings of the Metropolis algorithm on a path
graph Pn with D = {−1,+1} (corresponding to forward or
backward hops) are reviewed in subsection 3.1.1 (see [31]).
Among the many lifted transition matrices P̂, those that preserve
the once chosen element of D for O(n) time steps are the
most efficient. Displacement lifting applies in more than one
dimensions, for example, for systems of dipole particles [32],
whose dynamics is profoundly modified with respect to that of
its collapsed counterpart, and also in ECMC, where the same
infinitesimal displacement is repeated many times for the same
particle.

2.3.3. Event-Chain Monte Carlo
Event-Chain Monte Carlo [7, 8] combines particle and
displacement liftings. For a given sample space � (describing,
for example, all N-particle coordinates), the lifted sample space
is �̂ECMC = � × N × Dq. The lifted “transport” transition
matrices correspond to the same particle (or spin) using the
same infinitesimal element of D an infinite number of times.
The persistent ECMC trajectories are piecewise deterministic.
In between lifting moves, they appear non-interacting (compare
with subsection 2.2.1). Resampling, implemented in a separate
transition matrix, ensures irreducibility and aperiodicity of the
lifted Markov chain and speeds up mixing.

In ECMC, factorization and the consensus principle of the
factorized Metropolis algorithm ensure that a single factor
triggers the veto that terminates the effectively non-interacting
trajectory (as discussed in subsection 2.2.2). This factor is solely
responsible for the ensuing lifting move c → c′. The triggering
factor has at least one active particle in its in-state c. The out-
state c′ can be chosen to have exactly the same number of active
elements. In homogeneous particle systems (and in similarly
invariant spin systems), the lifting move does not require a
change of displacement vector and concerns only the particle
sector of the lifting set L. For a two-particle factor, the lifting-
move scheme is deterministic, and the active and the passive
particle interchange their roles. For a three-particle factor, the

active particle may have to be sampled from a unique probability
distribution, so that the lifting-move scheme is stochastic but
uniquely determined [33]. For larger factors, the next active
particle may be sampled following many different stochastic
lifting-move schemes that can have inequivalent dynamics [33]
(see also [21, section II.B]).

2.4. Thinning
Thinning [34, 35] denotes a strategy where an event in a
complicated time-dependent random process (here, the decision
to veto a move) is first provisionally established on the basis
of an approximate “fatter” but simpler process, before being
thinned (confirmed or invalidated) in a second step. Closely
related to the rejection method in sampling [3], thinning doubly
enables all but the simplest ECMC applications. First, it is
used when the factor event rates β

[
dUM

]+
of Equation (23)

cannot be integrated easily along active-particle trajectories,
while appropriate bounding potentials allow integration. Second,
thinning underlies the cell-veto algorithm [36], which ascertains
consensus and identifies vetoes among ∼ N factors (the number
of particles) with an O(1) effort. The random process based
on the unthinned bounding potential is time-independent and
pre-computed, and it can be sampled very efficiently.

Thinning thus uses approximate bounding potentials for the
bulk of the decision-making in ECMC while, in the end, allowing
the sampling to remain approximation-free. This contrasts with
molecular dynamics, whose numerical imperfections—possible
violations of energy, momentum, and phase-space conservation
under time-discretization—cannot be fully repaired (see [37]).
ECMC also eliminates the rounding errors for the total potential
that cannot be avoided in molecular dynamics for long-range
Coulomb interactions.

2.4.1. Thinning and Bounding Potentials
Thinning is unnecessary for hard spheres and for potentials with
simple analytic expressions that can be integrated analytically. In
other cases, it may be useful to compare a factor event rate to a
(piecewise) upper bound, as

[
βdUM

]+ ≤ qmax
M . In the case where,

for simplicity, the active particle k moves along the x direction,
the bounding factor event rate allows one to write

[
βdUM

]+ = β
∂U+

M

∂xk
dxk = qmax

M dx︸ ︷︷ ︸
constant-rate

∂U+
M/∂xk

qmax
M︸ ︷︷ ︸

confirmation

. (32)

The factor M triggers the veto with the factor event rate
on the left-hand side of this equation, which varies with
the configuration. On the right-hand side, this is expressed
as a product of independent probabilities corresponding to a
conjunction of random variables, the first of which corresponds
to a constant-rate Poisson process and the second to a
simple rejection rate. The second factor must be checked
only when the first one is “True.” Thinning thus greatly
simplifies ECMC when the mere evaluations of UM and of its
derivatives are time-consuming. The JeLLyFysh application of
subsection 6.2 implements thinning for potentials in a variety of
settings (see [38]).
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2.4.2. Thinning and the Cell-Veto Algorithm, Walker’s

Algorithm
The cell-veto algorithm [36] (see also [39]) permanently tiles two
or three-dimensional (3D) sample space (with periodic boundary
conditions) into cells with pre-computed cell bounds for the
factor event rates of any long-ranged factor that touches a pair of
these cells. In this way, for example, a long-range Coulomb event
rate for a pair of distant atoms (or molecules) can be bounded by
the cell event rate of the pair of cells containing these atoms. For
an active atom in a given cell, the total event rate due to other
far away atoms can also be bounded by the sum over all the cell-
event rates. Identifying the vetoing atom (factor) then requires
to provisionally sample a cell among all those contributing to
the total cell-event rate. This problem can be solved in O(1)
using Walker’s algorithm [35, 40]. After identification of the cell,
the confirmation step involves at most a single factor. The cell-
veto algorithm is heavily used in the JeLLyFysh application (see
subsection 6.2). In essence, it, thus, establishes consensus and
identifies a veto among ∼ N factors in O(1) in a way that installs
neither cutoffs nor discretizations.

3. SINGLE PARTICLES ON A PATH GRAPH

The present section reviews liftings of the Metropolis algorithm
for a single particle on a path graph Pn = (�n,En), with
a sample space �n = {1, . . . , n}, and a set of edges En =
{(1, 2), . . . , (n − 1, n)} that indicate the non-zero elements of
the transition matrix. The path graph Pn, thus, forms a one-
dimensional n-site lattice without periodic boundary conditions.
The stationary distribution is {π1, . . . ,πn}. Two virtual vertices
0 and n + 1 and virtual edges (0, 1) and (n, n + 1), with π0 =
πn+1 = 0, avoid the separate discussion of the boundaries. The
Metropolis algorithm on Pn (with the virtual additions, but an
unchanged sample space) proposes a move from vertex i ∈ �n

to j = i ± 1 with probability 1
2 each. This move is accepted

with the Metropolis filter min(1,πj/πi) so that the flow is Fij =
1
2 min

(
πi,πj

)
. If rejected, the particle remains at i. The flows:

satisfy detailed balance, and the total flow into each configuration
i (including from i itself) satisfies the global-balance condition of
Equation (2), as already follows from detailed balance.

The displacement-lifted Markov chains in this section, with
�̂n = �n × {−1,+1}, split the Metropolis moves i → i± 1 into
two copies (the virtual vertices and edges are also split). The lifted
transition matrix is a product of a transport transition matrix
P̂trans and a resampling transition matrix P̂res. P̂trans describes
moves from lifted configuration (i, σ ) to (i + σ , σ ) that are
proposed with probability 1 and accepted with the Metropolis
filter min(1,πi+σ /πi) given that π̂(k,σ ) = 1

2πk ∀k. Crucially, in
the transport transition matrix, if the transport move (i, σ ) →

(i+σ , σ ) is rejected, the lifting move (i, σ ) → (i,−σ ) takes place
instead. P̂trans satisfies the global-balance condition for each lifted
configuration, as can be checked by inspection:

transport :

[the flow into (i, σ ) equals 1
2πi = π̂(i,σ )].

In the resampling transition matrix, the lifting variable in the
configuration (i, σ ) is simply switched to (i,−σ ) with a small
probability ǫ. P̂res satisfies detailed balance, and the resampling
flows are:

resampling :

The lifted transitionmatrix P̂ = P̂transP̂res satisfies global balance.
P̂res guarantees aperiodicity of P̂ for any choice of π .

The speedups that can be achieved by lifting on the path graph
Pn depend on the choice of π and on the resampling rate ǫ.
Bounded stationary distributions are reviewed in subsection 3.1
and unbounded ones in subsection 3.2. All Markov chains on Pn
naturally share a diameter bound n, which is independent of π

and that (up to a constant) is the same for the lifted chains.

3.1. Bounded One-Dimensional

Distributions
In real-world applications of MCMC, many aspects of the
stationary distribution π remain unknown. Even the estimation
of the maximum-weight (minimum-energy) configuration
argmaxi∈�πi is often a non-trivial computational problem
that may itself be treated by simulated annealing, a variant of
MCMC [3, 41]. Also, crucial characteristics as the conductance
are usually unknown, and the mixing time can at best be inferred
from the running simulation. Simplified models, as a particle
on a path graph, offer more control. The present subsection
reviews MCMC on a path graph for stationary distributions for
which (maxi∈�n πi)/(minj∈�n πj) remains finite for n → ∞.
The conductance bound then scales as 8 ∼ 1

n as n → ∞, and
reversible local MCMCmixes inO(n2) time steps.

3.1.1. Constant Stationary Distribution,

Transport-Limited MCMC
For the constant stationary distribution π = { 1n , . . . ,

1
n } on Pn

(see [31]), the collapsed Markov chain 5 moves with probability
1
2 to the left and to the right. Rejections take place only at
the boundaries i = 1 and i = n and assure aperiodicity. 5

performs a diffusive random walk. Its O(n2) mixing time is close
to the upper mixing-time bound of Equation (13). As tmix is
on larger time scales than the lower conductance bound, 5 is
limited by transport.
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In the lifted sample space �̂n = �n × {−1,+1}, the transport
transition matrix P̂trans describes a deterministic rotation on the
lifted graph which has the topology of a ring with 2n vertices.
P̂trans is not aperiodic as its period is 2n (see subsection 2.1.1).
Resampling with rate ǫ = 1

n with P̂res leads to a mixing time

of the combined transition matrix P̂transP̂res as tmix = O(n)
(see [31]).

The resampling, that is, the application of P̂res, need not
take place after each transport step, with a small probability ǫ.
One may also resample after a given number ℓ of transport
moves, where ℓ may itself have a probability distribution.
Such resamplings can also be formulated as Markov chains. In
ECMC, resamplings are often required to ensure irreducibility
whereas, on the path graph, they merely render the Markov
chain aperiodic.

3.1.2. Square-Wave Stationary Distribution
On the path graph Pn with the square-wave stationary
distribution π2k−1 = 2

3n , π2k = 4
3n ∀k ∈ {1, . . . , n/2} (for

even n), the conductance 8 = 2
3n for n → ∞ is of the same

order of magnitude as for the flat distribution. Its bottleneck (the
vertex where the conductance is realized) is again at i = n

2 .
The Metropolis algorithm proposes moves from vertex i with
probabilities 1

2 to i ± 1 but rejects them with probability 1
2 if i

is odd (see Equation 16). Its mixing time is O(n2), on the same
order as in subsection 3.1.1. The displacement-lifted Metropolis
algorithm generates lifting moves with probability 1

2 on odd-
numbered vertices, and the persistence of the lifting variable is
lost on finite time scales. In consequence, the displacement lifting
is inefficient for the square-wave stationary distribution, with the
mixing time still as tmix = O(n2). More elaborate liftings using
height-type lifting variables that decompose π̂ into a constant
“lane” and another one that only lives on even sites and recover
O(n) mixing [42].

The success of displacement lifting on the path graph thus
crucially depends on the details of the stationary distribution.
ECMC in real-world applications is likewise simpler for
homogeneous systems with a global translational invariance (or
with a similar invariance for spin systems). Remarkably, however,
ECMC can apply the same rules to any continuous interparticle
potential in homogeneous spaces. It achieves considerable
speedups similar to what the lifting of subsection 3.1.1 achieves
for the flat stationary distribution on the path graph.

3.2. Unbounded One-Dimensional

Stationary Distributions
For unbounded ratios of the stationary distribution
(maxij(πi/πj) → ∞ for n → ∞) the conductance as well
as the benefits that can be reaped through lifting vary strongly.
Exact results for a V-shaped distribution and for the Curie–Weiss
model are reviewed.

3.2.1. V-Shaped Stationary Distribution,

Conductance-Limited MCMC
The V-shaped stationary distribution on the path graph Pn of
even length n is given by πi = const| n+1

2 − i| ∀i ∈ {1, . . . , n},
where const = 4

n2
(see [43]). The stationary distribution π thus

decreases linearly from i = 1 to the bottleneck i = n
2 , with

π( n2 ) = π( n2 + 1) = const
2 ∼ n−2 and then increases linearly

from i = n
2 + 1 to i = n. The Metropolis algorithm again

proposes a move from vertex i to i ± 1 with probabilities 1
2 and

then accepts them with the filter of Equation (16). The virtual
end vertices ensure the correct treatment of boundary conditions.
The conductance equals 8 = 2

n2
, for the minimal subset S =

{1, . . . , n2 } (see Equation 10). The Metropolis algorithm mixes in
S on an O(n2) diffusive timescale, but requires O(n2 log n) time
steps to mix in �n (see [43]). However, even a direct sampling in
S, that is, perfect equilibration, samples the boundary vertex n/2
between S and S only on a πi/πS ∼ n−2 inverse time scale. For
the V-shaped distribution, the benefit of lifting is, thus, at best
marginal [from O(n2 log n) to O(n2)], as the collapsed Markov
chain is already conductance-limited, up to a logarithmic factor.

The optimal speedup for the V-shaped distribution is indeed
realized with �̂n = �n × {−1,+1}, and the transition matrices
P̂trans and P̂res. The lifted Markov chain reaches a total variation
distance of 1

2 and mixes in S on an O(n) timescale. A total

variation distance of ǫ < 1
2 , and mixing in �̂ is reached inO(n2)

time steps only [43]. This illustrates that ǫ < 1
2 is required in the

definition of Equation (7).

3.2.2. Curie–Weiss Model, Mixing Times vs.

Correlation Times
The Curie–Weiss model (or mean-field Ising model [44]) for N
spins si = ±1 has the particularity that its total potential

U = − J

2N

∑

i,j

sisj = − J

2N
M2, (36)

with J > 0, only depends on the magnetization
∑

i si = M. The
mapping i = (M+N)/2+1, n = N+1, places it on the path graph
Pn. The heatbath algorithm (where a single spin is updated) can
be interpreted as the updating of the global magnetization state.
The model was studied in a number of papers [22, 45–47].

The conductance bound of Equation (10) for the Curie–Weiss
model derives from a bottleneck at i = n/2 where U = 0.
In the paramagnetic phase, one has 8 = O(n−1/2), and at
the critical point βJ = 1, 8 = O(n−3/4) (see [45]). The
corresponding conductance bounds are smaller than n because
the magnetization is strongly concentrated around M = 0 (i.e.,
i = n/2), in the paramagnetic phase. In the ferromagnetic
phase, βJ > 1, the magnetizations are concentrated around the
positive and negative magnetizations (i & 1 and i . n) and
in consequence 8−1 grows exponentially with n, and so do all
mixing times.

The reversible Metropolis algorithm mixes in O(n log n) time
steps for T > Tc (see [45]). This saturates the upper bound of
Equation (13). At the critical point T = Tc, the mixing time
is O(n3/2). As is evident from the small conductance bound,
the Metropolis algorithm is again limited by a slow diffusive
transport and not by a bottleneck in the potential landscape.

The displacement lifting of the Metropolis algorithm
improves mixing times both for T > Tc and for T = Tc to
the optimal O(n) scaling allowed by the diameter bound. The
correlation time can be shorter than O(n) because of the strong
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concentration of the probability density on a narrow range
of magnetizations [22, 46, 47], while the mixing time on the
path graph is always subject to the ∼ n diameter bound. By
contrast, in the paramagnetic phase J > 1, the conductance
bound is exponential in n, and all mixing times are limited by the
bottleneck at i = n

2 , that is, the zero-magnetization state.

4. N PARTICLES IN ONE DIMENSION

The present section reviews MCMC for N hard-sphere particles
on a one-dimensional graph with periodic boundary conditions
[the path graph Pn with an added edge (n, 1)], and on continuous
intervals of length L with and without periodic boundary
conditions. In all cases, moves respect the fixed order of particles
(x1 < x2, . . . ,< xN−1 < xN , possibly with periodic boundary
conditions in positions and particle indices). With periodic
boundary conditions, uniform rotations of configurations are
ignored, as they mix very slowly [48]. The hard-sphere MCMC
dynamics is essentially independent of the density for the discrete
cases (see [49, Equation 2.18]) as well as in the continuum
(see [28] and [29, Figure 1]). Most of the hard-sphere results
are numerically found to generalize to a class of continuous
potentials (see [28, Supplementary Item 5]).

Subsection 4.1 reviews exact mixing and correlation-time
results for reversible Markov chains and subsection 4.2 those for
non-reversible ones, including the connection with the totally
asymmetric simple exclusion process (TASEP). Subsection 4.3
discusses particle-lifted Markov chains, like the PL-TASEP, the
lifted-forward Metropolis algorithm as well as ECMC, for which
rigorous mixing times were obtained. In many cases, non-
reversible liftings including ECMC mix on smaller time scales
than their collapsed Markov chains.

4.1. Reversible MCMC in One-Dimensional

N-Particle Systems
Although local hard-sphere MCMC was introduced many
decades ago [1], its mixing times were obtained rigorously only in
recent years, and that too only in one dimension. In the discrete
case, the symmetric simple exclusion process (SSEP), the mixing
times (and not only their scalings) are known rigorously.

4.1.1. Reversible Discrete One-Dimensional MCMC
The SSEP implements the local hard-sphere Metropolis
algorithm in the discrete sample space �SSEP = {x1 < x2 <

, . . . ,< xN} with xi ∈ {1, . . . , n} (periodic boundary conditions
understood for positions and indices). All legal hard-sphere
configurations c = (x1, . . . , xN) have the same weight πc = π∗,
and the displacement set is D = {−1,+1}. At each time step t, a
random element of D is applied to a randomly sampled particle
i, for a proposed move from c toward one of the 2N neighboring
configurations that may, however, not all be legal:

c−i = (x1, . . . , xi − 1, . . . , xN)
(−1 move from c⇔+1 move toward c)

c+i = (x1, . . . , xi + 1, . . . , xN)
(+1 move from c⇔−1 move toward c).

(37)

If the sampled configuration is legal, the move is accepted.
Otherwise, it is rejected and c remains the configuration for
time step t + 1. The algorithm trivially satisfies detailed balance.
Global balance follows from a detailed balance for the SSEP,
but the validity of Equations (2) and (3) may also be checked
explicitly.1 The total flow into c, which must equal πc, arrives
from the configuration c itself and again from the 2N neighboring
configurations of Equation (37) (see [28]): If the configuration
c−i is legal, it contributes forward accepted flow A

+
i = 1

2Nπ∗,
and A

+
i = 0 otherwise. If, on the contrary, c−i is illegal, there

is backward rejected flow R
−
i = 1

2Nπ∗ from c to c through the
rejected backward move c → c−i . Therefore,A

+
i +R

−
i = 1

2Nπ∗,
and likewiseA−

i +R
+
i = 1

2Nπ∗. The total flow into configuration
c is:

N∑

i=1

(A+
i +R

−
i︸ ︷︷ ︸

1
2N π∗

+A
−
i +R

−
i︸ ︷︷ ︸

1
2N π∗

) = π∗ ≡ πc, (38)

so that global balance is satisfied.
The mixing time of the SSEP from the most unfavorable

initial distribution π {0} (the compact configuration) is known
to scale as O(N3 logN), whereas the mixing time from
an equilibrium configuration scales only as O(N3), i.e., as
the correlation time [49]. These behaviors are recovered by
numerical simulation.

4.1.2. Continuous One-Dimensional Reversible

MCMC
In the one-dimensional continuum, the scaling for the mixing
times of reversible local hard-sphere MCMC has been obtained
rigorously for the heatbath algorithm only. In this dynamics, at
each time step, the position of a randomly sampled sphere i is
updated to a uniform random value in between spheres i− 1 and
i+1. The heatbath algorithmmixes inO(N3 logN) moves [50] on
an interval with fixed boundary conditions. The mixing time for
the same model with periodic boundary conditions is between
O(N3) and O(N3 logN) [48]. Numerical simulations suggest
O(N3 logN) mixing on the continuous interval with periodic
boundary conditions both for the heatbath and for theMetropolis
algorithm [28].

4.2. Non-reversible MCMC in

One-Dimensional N-Particle Systems
Non-reversible MCMC in one-dimensional particle systems has
a long history in physics and mathematics in the study of the
totally asymmetric simple exclusion process (TASEP) [51], which
can be interpreted as a displacement lifting of the SSEP. For
that model, faster mixing-time scaling than for the SSEP was
proven recently. The “particle-lifted” TASEP (PL-TASEP) [28]
(with particle lifting on top of the TASEP’s displacement lifting)
is a lattice version of ECMC. With its chains of particles moving
forward and a suitable choice for resampling, it can mix on even
faster time scales than the TASEP. Extensions of the hard-sphere

1This prepares for the analysis of the lifted Markov chains of subsection 4.2.
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case to nearest-neighbor, monotonous potentials with a no-
hopping condition were discussed [28, Supplementary Item 5].

4.2.1. Discrete Non-reversible MCMC in One

Dimension—TASEP, Particle-Lifted TASEP
The TASEP can be interpreted as a displacement lifting of the
SSEP (see subsection 4.1.1) with a displacement-lifted sample
space �̂TASEP = �SSEP × D, with D = {−1,+1}. Its lifted
transport transition matrix randomly proposes a move of sphere
i in direction σ , from (c, σ ) toward (cσi , σ ). This move is accepted
if cσi is legal. Otherwise, the system remains at (c, σ ) [without
performing a lifting move toward (c,−σ )]. A resampling
transition matrix could perform such a lifting move on a
random particle i. Because of the periodic boundary conditions,
the TASEP, for its collapsed configurations, is irreducible and
aperiodic even for a vanishing resampling rate ǫ between the
elements of D. One may thus neglect resamplings and retain
only one of the elements of D, say, the +1. The TASEP then
simply consists in the+1 half of the SSEP. The effective halving of
the lifted sample space for small ǫ carries over, in homogeneous
spaces, to higher-dimensional diffusion processes and to ECMC.

The global-balance condition may be checked through the
flows into a lifted configuration (c, σ ), using the notations
of Equation (37).2 For the TASEP, the configuration c =
(x1, . . . , xN) can evolve into the configurations c+i , as mentioned
above. The flows into c now arrive from c itself and possibly
from N neighboring configurations c−i of Equation (37). If the
configuration c+i−1 is legal, then c−i contributes accepted flow
A

+
i = 1

Nπ∗ toward c, andA
+
i = 0 otherwise. If, on the contrary,

c+i−1 is illegal, then there is forward rejected flow R
+
i−1 = 1

Nπ∗

from c to c through the rejected forward move c → c+i−1 and
R

+
i−1 = 0 otherwise. Therefore,A+

i +R
+
i−1 = 1

N c
∗, and the total

flow into configuration c is [28]:

N∑

i=1

(A+
i +R

+
i−1︸ ︷︷ ︸

1
N π∗

) = π∗ ≡ πc, (39)

so that global balance is satisfied (periodic boundary
conditions understood).

The TASEP is proven to mix in O(N5/2) time steps [52], a
factor of N1/2 logN faster than its collapsed Markov chain, the
SSEP. The equilibrium correlation time (the inverse gap of the
transition matrix that, in this case, can be diagonalized) has the
same O(N5/2) scaling [12, 13]. Numerical simulations (with an
operational definition of mixing times [28, Supplementary Item
S2]) recover this behavior.

The SSEP allows for particle lifting with respect to the indices
N = {1, . . . ,N}, with the lifted sample space �̂PL-SSEP = �SSEP×
N. Transitionmatrices, for example, the particle-sweep transition
matrices of subsection 2.3.1 then constitute valid liftings of the
SSEP, as the latter is a reversibleMarkov chain with single-particle

2The lifting index σ for configurations (c, σ ) is dropped for the TASEP, as only the
+1 element ofD is considered.

moves. In contrast, the PL-TASEP, with a lifted sample space

�̂PL-TASEP = �̂TASEP ×N = �SSEP × {−1,+1} ×N, (40)

is subtle. The particle-sweep transition matrix (with forward
moves, and the sample space of Equation 40) violates the global-
balance condition because, in essence, A+

i and R
+
i−1 add up to a

constant in Equation (39), while A
+
i et R+

i do not. This is not
in contradiction with subsection 2.3.1 as the collapsed Markov
chain of the particle-sweep (the TASEP) is non-reversible. The
PL-TASEP [28], lives in the doubly lifted sample space of
Equation (40). Its transport transition matrix advances the lifted
configuration (c, σ , i) toward (c+i , σ , i) (see Equation 37) if c+i is
legal. Otherwise, the configuration at time t + 1 is (c, σ , i + 1)
(where periodic boundary conditions are understood, sphere
i + 1 blocks sphere i). In essence, the PL-TASEP thus consists
in repeatedly advancing the same sphere. When such a forward
move is rejected, a particle-lifting move results in the sphere
causing the rejection to become the new moving sphere.

The transport transition matrix of the PL-TASEP satisfies
global balance, and can again be checked by computing the
flows into a particle-lifted configuration (c, σ , i). The flows into
(c, σ , i) arrive either from (c, σ , i− 1), if c−i is illegal, or else from
(c−i , σ , i), if c

−
i is legal. The two flows sum up to a constant. The

transport transitionmatrix of the PL-TASEP is deterministic, and
particle resamplings (c, σ , i) → (c, σ , k) with random choices
of k ∈ N are required for irreducibility and aperiodicity [28].
Displacement resamplings (c, σ , i) → (c,−σ , i) are not required,
and the lifted sample space can again be halved.

With appropriate resamplings, the PL-TASEP mixes on an
O(N2 logN) time scale, much faster than its (doubly) collapsed
reversible Markov chain, the SSEP [which features O(N2 logN)
mixing], and even considerably faster than its particle-collapsed
non-reversible Markov chain, the TASEP [withO(N5/2)].

4.2.2. Continuous Non-reversible MCMC in One

Dimension: Forward, Lifted Forward
The discrete liftings of the SSEP, of subsection 4.2.1, can
be generalized to continuous-space liftings of the Metropolis
algorithm (with a non-hopping condition) with its collapsed
sample space �Met = {x1 < x2, . . . ,< xN} with xi ∈ [0, L]
(periodic boundary conditions understood for positions and
indices).3 The displacements ±δ with δ > 0 are proposed from
a symmetric distribution that may stretch out to infinity, so
that D = R. The two possible directions in the quotient set
Dq = {−1, 1} are used for the displacement lifting. Displacement
liftings with respect to the elements ofD rather thanDq have not
been studied.

The global-balance condition can again be verified for
the Metropolis algorithm separately for each δ > 0, with
configurations c−i (δ) and c+i (δ) defined as

c−i (δ) = (x1, . . . , xi − δ, . . . , xN) (−δ move from c)
c+i (δ) = (x1, . . . , xi + δ, . . . , xN) (+δ move from c),

(41)

3 In one dimension, configurations and Metropolis algorithm are independent
of density.
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generalizing the 2N neighboring configurations c−i and c+i of
Equation (37).

The forward Metropolis (“Forward”) algorithm is a
displacement lifting of the Metropolis algorithm, with a
sample space

�̂Forw = �Met ×Dq (Dq ≡ {−1, 1}). (42)

Its lifted transport transition matrix randomly advances sphere i
in direction σ by a random step δ on the scale of the mean inter-
particle spacing. This advances the configuration from (c, σ ) to
(cσi (δ), σ ) if the latter is legal. Otherwise the system remains
at (c, σ ) [without performing a lifting move toward (c,−σ )].
The effective halving of the sample space (to only “forward”
moves) carries over from the TASEP. The Forward algorithm is
irreducible and aperiodic for appropriate choices of the step-size
distribution, and it requires no resampling.

The particle-lifted Forward (PL-Forward) algorithm has a
sample space

�̂PL-Forw = �Forw ×N = �Met ×Dq ×N. (43)

The particle-sweep lifting of the Forward algorithm is again
incorrect, as for the TASEP. The transport transitionmatrix of the
PL-Forward algorithm is the continuous-space variant of the PL-
TASEP. The same sphere i advances, with random displacements
at each time step, until it is blocked by the succeeding sphere i+1
(periodic boundary conditions understood). In that latter case, a
lifting move (c, σ , i) → (c, σ , i+ 1) takes place.

The Forward algorithm is numerically found to mix in
O(N5/2) time steps, down from O(N3 logN) for its collapsed
Markov chain (the rigorous results [52] for the TASEP have
not been generalized). This reduction is achieved without
resampling. The PL-Forward algorithm also mixes in O(N5/2)
time steps, and resampling reduces the mixing-time scaling to
O(N2 logN), as for the PL-TASEP.

4.3. Event-Chain Monte Carlo in

One-Dimensional N-Particle Systems
For hard spheres on a one-dimensional line with periodic
boundary conditions, ECMC lives in the particle-lifted sample
space of the PL-Forward algorithm, itself being a displacement
lifting of the Metropolis algorithm (see subsection 4.2.2).
It realizes its continuous-time limit, with an infinitesimal
expectation of δt and a rescaling of time t such that finite times
correspond to finite net displacements, usually with a “velocity”
equal to one. ECMC is thus a lifting of the Metropolis algorithm
with infinitesimal time steps. With the sample-space halving
discussed previously, the ECMC lifted transport transitionmatrix
advances the “active” sphere i by infinitesimal δt (with all other
spheres stationary) until it collides with the succeeding sphere
i + 1 (periodic boundary conditions in N understood), at which
time sphere i + 1 becomes the sole active sphere. The transport
transition matrix of one-dimensional hard-sphere ECMC is thus
equivalent to molecular dynamics (the solution of Newton’s
equations) for an initial condition with a single non-zero velocity
+1, and it is purely deterministic.

Particle resamplings assure irreducibility and aperiodicity of
the ECMC. It is convenient to have these resamplings take place
after each (eponymous) “event chain,” of length ℓ =

∑
δt , where

ℓ can itself have a probability distribution. Such resampling
generalize the transitionmatrix P̂res of subsection 3.1. For specific
distributions of ℓ, ECMC relaxation can be described exactly.
Non-trivial relabelings and factor-field variants illustrate in this
exactly solvable case that ECMC is a family of algorithms with
different scalings of the mixing times. These times are now to be
counted in the number of “events” (i.e., in lifting moves), rather
than in the number of infinitesimal moves δt . Very generally,
ECMC is implemented with a computational effort of O(1) per
event, and without any discretization in time.

4.3.1. Event-Chain Monte Carlo Stopping Rule,

Coupon-Collector Problem
For one-dimensional hard-sphere ECMC, the transport
transition matrix is deterministic, and particle resamplings are
crucial. The ECMC dynamics of N hard spheres of diameter d
on a periodic line of length L is equivalent to the dynamics of
N point particles on a reduced line of length Lfree = L − Nd.
In consequence, one event chain of chain length ℓ effectively
advances the sphere that initiates the event chain by ℓ (up
to relabeling of spheres). If ℓ is sampled from any uniform
distribution in [const, const + Lfree], the initial sphere of the
event chain is placed (up to a relabeling) at a random position on
the ring. ECMC thus obtains a perfect sample when each sphere
has once initiated an event chain, allowing the definition of a
stopping rule. The solution of themathematical coupon-collector
problem shows that it takes O(N logN) random samples of N
possible event-chain starting spheres to touch each of them at
least once. In consequence, the number of event chains required
for mixing scales as O

(
N logN

)
, and the total number of events

asO(N2 logN) (see [29, 53].

4.3.2. Event-Chain Monte Carlo With Local Relabeling
The logarithm in the mixing-time scalingO

(
N2 logN

)
of ECMC

originates in the coupon-collector probability to repeatedly
sample the same starting sphere for different event chains. Naive
particle sweeps, however, break the global-balance condition. A
correct modified lifted transition incorporates local relabelings
as follows: It advances the active sphere i (with all other spheres
stationary) until it collides with a sphere j, at which time i and j
exchange their labels. The newly relabeled sphere i continues as
the sole active sphere. When the event chain terminates (after a
continuous time interval ℓ), a new event chain starts with sphere
i+1 as active sphere [29]. With the sweep through active spheres,
the coupon-collector-related logarithmic slowdown is avoided so
that the choice of random chain lengths ℓ = ran[const, const +
Lfree], remains as the only random element in the algorithm.
It produces a perfect sample after N chains and O(N2) events
rather than theO(N2 logN) events of regular ECMC. ECMCwith
local relabeling again illustrates that reducing the randomness
of moves can speed up mixing, in other words, bring about
faster overall randomization. In higher-dimensional hard-sphere
systems, the relabeling appears to speed up the approach to
equilibrium by only a constant factor [53].
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4.3.3. Factor-Field ECMC in One Dimension
The factorized Metropolis filter separates the total potential into
independent terms (the factors). Large variations in one factor
potential then remain uncompensated by those in other factors,
as would be the case for the total potential (for energy-based
filters). As a consequence, ECMC may possess event rates that
are too high for efficient mixing. This potential shortcoming
of standard ECMC was remarked at low temperature in one-
dimensional N-particle systems [54] (see also [29, Figure 2]).
It is overcome in one-dimensional particle systems through
the addition of invariants and their subsequent breakup into
factor fields. Such terms may decrease the event rate. Moreover,
they can profoundly modify the characteristics of the event-
chain dynamics and decrease mixing-time and correlation-
time exponents.

For N particles on a one-dimensional interval of length L, the
quantity

∑
i(xi+1 − xi) (with periodic boundary conditions in

L and in N) is an invariant. A linear function f (x) = ax can
transform it into a sum of factor fields:

f

[∑

i

(xi+1 − xi)

]

︸ ︷︷ ︸
invariant

=
∑

i

f (xi+1 − xi)︸ ︷︷ ︸
factor field

(44)

The factor field of Equation (44) may be added and its linear
parameter a adjusted to any pair-factor potential. Attractive
factor fields may thus be added to hard-sphere factors or to
Lennard-Jones factors [55]. With the linear factor adjusted to
compensate the virial pressure, O(N3/2) autocorrelation times
[rather than O(N2) without factor fields] and O(N2) mixing
times [rather thanO(N2 logN)] are found. One particular feature
of event-chain dynamics at the optimal value of the factor field is
that the chains have zero linear drift, and therefore also vanishing
virial pressure [8, 55].

5. STATISTICAL-MECHANICS MODELS IN

MORE THAN ONE DIMENSION

The present section reviews ECMC for statistical-physics models
in more than one dimension. At a difference with the lifted
Markov chains considered in section 4, the displacement of
an active particle impacts several factors, and the next veto
arises from one of them (an active particle may, for example,
collide with one out of several other particles and form separate
factors with each of them). Subsection 5.1 reviews mathematical
and algorithmic aspects of the two-dimensional (2D) hard-
disk model, the first application of ECMC [5, 7, 56] where
vetoes are determined deterministically. Hard-disk ECMC is
contrasted with related algorithms that were applied to this
system. Subsection 5.2 reviews ECMC for the harmonic model of
a solid, but which is also the low-temperature effective model for
continuous-spin systems, as the XY or the Heisenberg models.
In these spin systems, as in the harmonic model, ECMC can
be thoroughly analyzed. Subsection 5.3 reviews the interplay
between spin waves and topological excitations for local Markov

chains including ECMC, whose behavior there is much better
understood than for particle systems.

5.1. Two-Dimensional Hard Disks
Hard-sphere ECMC can be analyzed without reference to
the factorized Metropolis algorithm, as is necessary for more
general interactions. Most studies have concentrated on the 2D
case, the hard-disk model, whose phase behavior was clarified
using ECMC [5, 57] after decades of uncertainty (The original
Fortran90 implementation used in [5] is publicly available [58]).
Strictly speaking, hard-disk ECMC is not generally irreducible in
the NVT ensemble of fixed volume and number of disks, because
of the existence of locally stable configurations at arbitrarily small
density in the thermodynamic limit [59]. Such configurations
can be formally excluded, and irreducibility established, in the
NPT ensemble of constant pressure, although the locally stable
configurations are too rare to play a role for a large number
of disks N. Hard-disk ECMC is found to be very fast, but
elementary questions as, for example, the scaling of correlation
times with system size are still without even a clear empirical
answer in the ordered phases. The simplifications related to the
existence of a constraint graph of possible lifting moves have
enabled a successful implementation of hard-disk multithreaded
ECMC [58].

5.1.1. Characterization of Hard-Disk ECMC
Hard-disk ECMC lives in a lifted sample space

�̂ECMC = �Met ×Dq ×N, (45)

where �Met is the sample space of the Metropolis algorithm
(the configuration space of N hard disks, say, in a square
box with periodic boundary conditions), Dq is the quotient set
of the displacements (see subsection 2.3.2), and N the set of
particle indices. For the “straight” ECMC [7] used in all large-
scale simulations, Dq = {(±1, 0), (0,±1)}. The halving of the
homogeneous lifted sample space (see subsection 4.2.1) again
allows one to restrict displacements to the positive x and the
positive y directions, but this applies to homogeneous hard-disk
systems only. The lifted transport transition matrix of straight
hard-sphere ECMC advances the active disk i until it collides with
another disk j, at which time a particle-lifting move takes place,
and j becomes the active disk. This effectively one-dimensional
process is equivalent to the one described in subsection 4.3.
Particle and displacement resamplings assure irreducibility of
straight ECMC (with the above-mentioned caveat related to
locally stable configurations). Placed at the beginning of each
event chain, they may select the chain’s random starting disk
and overall direction. The correctness of straight ECMC follows
from the continuum limit of a hard-disk lattice version as well
as from a mapping onto molecular dynamics with 2D sphere
positions but with one-dimensional sphere velocities (see [58,
Lemma 1]). A variant of straight ECMC with a larger quotient
space Dq and a transition matrix that slowly changes directions
was found to bring no improvements for hard disks [60], while it
has drastic effects for hard-sphere objects with internal degrees of
freedom [32].
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The “reflected” ECMC is also compatible with the necessary
conservation of phase-space volume [7]. Its quotient set is Dq =
{êφ :φ ∈ [0, 2π)}, where êφ is the 2D unit vector in direction
φ. The lifted transport transition matrix of reflected ECMC only
differs in the particle-lifting moves at a collision between a disk i
and disk j. To define the outgoing direction, the incoming one
is reflected with respect to the line (hyperplane) of incidence
(see [56, Figure 2.8]). Reflected ECMC is irreducible without
resamplings. Resampling also seem to have little influence on
convergence times. In hard-disk applications, however, straight
ECMC is generally faster [7, Figure 6]. Variants of the reflected
ECMC algorithm, such as the “obtuse reflected” and the
Newtonian ECMC [61], appear to be very fast in 3D hard spheres.

In hard-disk and hard-sphere systems, the computation of
the pressure is notoriously complicated, as the virial cannot be
extracted from a finite number of equiprobable configurations.
Instead, it is obtained from an extrapolation of the pair-
correlation function to contact [56, section 3.3.4]. In ECMC,
the infinite number of highly correlated samples between any
two lifting moves allows for an estimator of the virial pressure
from the expectations of basic geometrical properties of the
ECMC trajectory [8, 57, 62]. This estimator generalizes from hard
spheres to arbitrary potentials.

In (straight) ECMC of monodisperse disk, any particle-lifting
move (at a collision) can only go from a disk i to a set of at most
three other disks, that remains fixed between direction liftings.4

An oriented constraint graph, with at most three outgoing arrows
for every disk, encodes these relations [63]. The constraint-graph
formulation of hard-sphere ECMC exposes its close connection
with the harmonic model where subsection 5.2, where the
neighbor relations are fixed permanently.

In 2D hard-diskMCMC algorithm, the total variation distance
or spectral gaps cannot be estimated or evaluated, and theoretical
bounds cannot be used [64]. Rigorous mixing-time scaling
exponents are available for low density, but only for a non-
local version of the Metropolis algorithm [65]. The analysis of
all recent computations builds on the hypothesis that for 2D
disks the autocorrelation function of the global orientational
order parameter is the slowest relaxation process in this system.
Practical computations generally adopt a square box with
periodic boundary conditions, where the expectation of the
above autocorrelation function vanishes because of symmetry,
simplifying the interpretation of time series [5, 7].

5.1.2. Hard-Disk ECMC and Other Algorithms
In general ECMC, the continuous-time limit serves only to
associate each veto in the factorized Metropolis algorithm with
a unique factor. In the simpler setting of hard-disk ECMC, the
continuous-time limit makes that an active disk i only collides
with a single other disk j, so that the lifting move i → j is well-
defined and compatible with global balance. For two hard disks
in a box with periodic boundary conditions, ECMC needs only
a single factor, so that the continuous-time limit is not needed.

4This generalizes from the TASEP and the Forward algorithm of subsection 4.1,
where the order between spheres remains unchanged because of the no-hopping
condition so that lifting moves are always from sphere i to sphere 1+1.

ECMC satisfies the global balance with finite displacements
D = {(±δx, 0), (0,±δy)}. Because of homogeneity, a given event
chain, say, with a fixed displacement (δx, 0) then maps to the
displacement-lifted transport transition matrix P̂trans on a path
graph (see subsection 3.1.1), with the displacement of one hard
disk corresponding to the “+1” sector on the path graph, and the
displacement of the other corresponding to the “−1” sector.

For any N and any spatial dimension D, the transport
transition matrix of straight hard-sphere ECMC is equivalent
to modified molecular dynamics with D-dimensional positions,
yet one-dimensional velocities. This corresponds to hard spheres
on one-dimensional constraining “rails” that remain fixed
in between direction liftings. The ECMC events correspond
to molecular-dynamics collisions, which conserve energy and
momenta for a phase-space configuration with only a single
non-zero velocity.

A discrete-time precursor algorithm of hard-disk ECMC [66,
section 5] also moves chains of disks. For each chain, it samples a
random initial disk and a random direction êφ of displacement
(such that êφ and its inverse êφ+π are equally likely), and a
total number nc of disks to be displaced. A chain move is
then constructed (not unlike ECMC) by displacing nc − 1 disks
(starting with the initial one) along the direction of displacement
until they hit their successor disks. The (final) disk nc is placed
randomly between its initial position and its (hypothetical) event
position with a successor disk. In order to satisfy detailed balance,
this algorithm requires a Metropolis rejection step for the entire
chain by the ratio of the intervals available for the first and for the
final disks. One chain of the precursor algorithm resembles the
transport stage of ECMC between particle resamplings, although
it can neither be interpreted as a continuous-time Markov chain
nor as a lifting. The convergence properties of this algorithm have
not been analyzed.

5.1.3. Parallel Hard-Disk ECMC
The hard-disk model was successfully simulated in parallel using
domain decomposition, overcoming some of the problems of
such a scheme in molecular dynamics [67]. Within ECMC [63,
68], domain decomposition leads to residual interactions that
destroy space homogeneity and therefore the convenient halving
of the sample space. Convergence is then slower. Within a four-
color checkerboard scheme, a cell of any one color touches only
differently colored cells [57, 69]. At any time, disks in cells of
one given color can thus be updated in parallel. Irreducibility
is assured by frequently translating the four-color checkerboard
by a random vector. With the collapsed Metropolis algorithm as
a sampling algorithm inside cells, this algorithm overcomes its
considerable speed handicap (roughly, two orders of magnitude
in single-processor mode), through massive parallelization on
GPUs. Massively parallel MCMC has been tested to high
precision against ECMC and against event-driven molecular
dynamics for the pressure and the orientational and positional
order parameters [57]. Related work was performed with ECMC
replacing the Metropolis algorithm inside each cell [68].

Hard-disk ECMC remains valid for more than one active
particle [58], and it then resembles event-driven molecular
dynamics, albeit with a much smaller number of moving
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particles. In single-processor mode, both identify the earliest one
of a number of candidate events, the one that will be realized
as an event and lead to a lifting move (for ECMC) or to a
collision (for molecular dynamics). In both approaches, the event
then generates new candidate events, while some of the old ones
continue to exist and yet others disappear.

Modern event-driven molecular dynamics codes optimize the
management of a very large number of such candidate events [70,
71]. In event-driven molecular dynamics, an extensive number
∝ N of candidate events are present at any given moment.
The possible scheduling conflicts among this large number
of candidate events has long stymied attempts to parallelize
the algorithm and to handle several events independently
from each other [72–76]. In ECMC, one may freely choose
the number of active particles and keep it fixed throughout
a simulation. If this number is .

√
N, the mathematical

birthday problem shows that the candidate events are usually
disjoint for any two active particles, cutting down on the degree
of interference. A framework of local times has lead to a
multithreaded implementation for hard-disk ECMC in which
scheduling conflicts appear with small finite probability for ∼√
N active disks in the N → ∞ limit for finite run times [58].

5.2. Harmonic Model
The harmonic model [77] describes spin-wave excitations for
N spins on a lattice, with a total potential U = 1

2

∑
〈i,j〉(φi −

φj)2 between neighbors 〈i, j〉, with non-periodic angles φi ∈ R,
which approximate the small elongations |φ − φj| ≪ 1 in the
XY model with its total potential U = −

∑
〈i,j〉 cos

(
φi − φj

)
.

Spin waves are the dominant excitations in the XY model at
low temperatures, notably in two dimensions [78]. The harmonic
model also provides the quintessence of phonon excitations in
particle systems, for small displacements from perfect lattice
positions. In the harmonic particle model, each particle interacts
with a fixed set of neighbors so that disclinations, dislocations,
and stacking faults cannot develop.

Besides its role of isolating phonon and spin-wave excitations
of many systems, the harmonic model is of importance for hard-
sphere ECMC whose sequence of constraint graphs [58, 63],
between displacement resamplings, effectively defines a sequence
of models with fixed neighborhoods.

5.2.1. Physics of the Harmonic Model
The harmonic model is exactly solved [77]. It has a single phase
for all finite temperatures, but the nature of this phase depends on
the spatial dimension D. The differences in angle for two spins at
positions distant by r for the harmonic spin model (and similarly
the difference in elongations with respect to the lattice positions
for the harmonic particle model) in equilibrium are given by:

〈
(1φ)2

〉
︸ ︷︷ ︸
spin harm.

∼
〈
(1r)2

〉
︸ ︷︷ ︸
part. harm.

∝





r for dimension D = 1

log r for D = 2

const for D ≥ 3.

(46)

For a system of size L, the mismatch of two typical spins or
particles is thus of the order of O(

√
L) in one dimension, grows

as the square root of the logarithm of L in two dimensions,
and remains constant in three dimensions and higher. The
harmonic particle model, in two dimensions, features long-
range orientational order but only power-law decay of positional
order [79]. Only in more than two dimensions does it have
long-range orientational and positional order.

5.2.2. ECMC Algorithm for the Harmonic Model
For the harmonic spin model, the ECMC takes place in a particle
and displacement-lifted sample space �harm × Dq × N where
�harm = {φi ∈ R : ∀i} is the sample space of N generalized
angles (although only differences of angles are important), where
the periodicity of angles is abandoned. Dq = {−1, 1} is again the
quotient set of (infinitesimal) displacements. The homogeneity
in φi again allows the lifted sample space to be halved and
the positive direction of displacement to be retained only.
ECMC monotonically increases each of the φi, at a difference of
Metropolis MCMC, which must allow for changes of the angles
in both directions. In event-driven harmonic-model ECMC, for
a finite number of neighbors per spin, the displacement per
event of each active spin is finite. It can be expected that the
total displacement of each spin or particle corresponding to the
1φ or 1r in Equation (46) decorrelates the system. It thus
follows that from one independent sample to the next one each
particle or spinmust be displacedO(

√
L) times in one dimension,

O(
√
log L) times in two dimensions, and a constant number of

times in more than two dimensions. Reversible local MCMC, in
contrast, requires ∝ L2 displacements per spin (or particle) for
all dimensions. This translates into ECMC correlation times of
O(N3/2), O(N

√
log N) and O(N) single events, in dimensions

D = 1, 2, and 3. Numerical simulations are in excellent
agreement with these expectations [80, Figure 7].

5.3. Event-Chain Monte Carlo for

Continuous Spin Models
Event-Chain Monte Carlo readily applies to XY and Heisenberg-
type spin models because their spin–spin pair potentials on
neighboring sites i and j write as U(φi − φj) with continuous
spin angles φi and φj. The particle and direction-lifted sample
space for these models is analogous to that of the harmonic
model, but with angular variables φ ∈ [0, 2π) (the spins of the
Heisenberg model must be projected onto a plane in spin space).
The homogeneity of the potential with respect to the absolute
spin angles again allows the halving of lifted sample space. The
particle and direction-lifted transition matrix rotates a given spin
i in one direction until the factorized Metropolis algorithm calls
for a veto by a neighbor j of i followed by a lifting move from i
to j. The spin j then starts to rotate in the same sense, with the
cumulative rotation corresponding to the MCMC time.

In the XY model, the 2D fixed-length continuous spins live
on a D-dimensional spatial lattice. The pair potential Uij =
− cos

(
φi − φj

)
favors the alignment of neighboring spins i and

j, and in ECMC, the activity (i.e., the rotation) passes from one
spin to one of its neighbors. XY-model ECMC is irreducible
without any resamplings. Its sequence of active spins realizes an
anomalous 2D diffusion process [81]. ECMC on the Heisenberg
model, where spins are 3D, can be reduced to this case, with
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resamplings through rotations in 2D sub-planes in spin space.
In both models, ECMC lowers the scaling of relaxation times
with respect to local reversible MCMC. Although more efficient
algorithms are available [82–84] for these particular models, the
comparison of ECMC with reversible MCMC illustrates what
can be achieved through non-reversible local Markov chains in
real-world applications.

In the 2D XY model, ECMC autocorrelation functions can be
fully explained in terms of spin waves and topological excitations.
The 2D hard-disk system similarly features phonons and two
types of topological excitations, but the precise relaxation
dynamics of MCMC algorithms has yet to be clarified (for a
synopsis, see [56, Chapter 1]).

5.3.1. Spin Waves and Topological Excitations in the

2D XY Model
Although it possesses no long-range spin order at finite
temperatures, the 2D XY model famously undergoes a phase
transition [82, 85] between a low-temperature phase rigorously
described by spin waves with bound vortex–antivortex pairs [77,
78], and a high-temperature phase where these topological
excitations are free.

In the low-temperature phase, vortices pair up with
antivortices. The maximum dmax of all vortex–antivortex pair
separations in a system of size L × L follows a Fréchet
distribution [80],

P
(
dmax

)
= α

s

(
dmax

s

)−1−α

exp

[
−

(
dmax

s

)−α
]
, (47)

with a size-dependent scale s = L2/αs0 and a size-independent
exponent α that depends on the inverse temperature β .
Throughout the low-temperature phase, dmax ∼ L2/α , with
α > 2 increases slower than the system size L for non-zero
temperatures. Only in the zero-temperature limit does dmax

remain constant as the system size increases (α → ∞ for T →
0). It is extensive as the transition point is approached (dmax ∼ L,
that is, α → 2 for T → Tc).

5.3.2. Relaxation Time Scales in Spin Models
In spin models, MCMC simulations must relax spin waves
and topological excitations. In the two-dimensional XY model
of length L, reversible energy-based MCMC can be expected
to diffusively relax spin waves on an O(L2) time scale at all
temperatures [80] and topological excitations on an O(d2max)
time scale, so that the overall correlation time scales as O(L2)
from both contributions. ECMC relaxes spin waves on a much
faster time scale that, from the analogy with the harmonic model,
can be thought to be O(log L), leading to very fast (system-
size-independent) initial decay of spin–spin autocorrelations.
The diffusive relaxation of topological excitations by ECMC
on the O(dmax) = O(L4/α) time scale is dominant at
large times throughout the low-temperature phase, with the
two contributions leading to a two-timescale decay of spin
autocorrelations [86, 87]. The above arguments are borne out by
numerical computations [80] with the α of Equation (47) as the
single non-trivial parameter.

6. ECMC AND MOLECULAR SIMULATION

In molecular simulation of classical atomic models with explicit
solvents, sampling plays a complementary role [88] to the study
of explicit time dependence. However, the complexity of total
potentials only allows for Markov chains with local moves.
Intricate a priori probabilities or cluster MCMC algorithms [89,
90] have not met with success. The Metropolis or the heatbath
algorithms are energy-based. The required evaluation of the
Coulomb potential then leads to a prohibitive time consumption
for MCMC. In the field, molecular dynamics codes are therefore
used exclusively. Great effort has been directed toward the
computation of the forces (the derivatives of the total potential),
which remains onerous and not entirely approximation-free.
Molecular dynamics invariably implements the Newtonian
relaxation dynamics. Molecular-dynamics codes developed over
the last three decades (e.g., [91]) have found scores of real-world
applications from biology to medicine, physics, and chemistry.
Molecular dynamics is thus highly successful, but it leaves little
algorithmic freedom.

ECMC may represent a new starting point for the use of
MCMC for real-world applications in molecular simulation
and other fields. First, to sample the Boltzmann distribution
π ∝ exp (−βU) without approximations, the potential U (and
in particular the Coulomb potential) need not be evaluated.
Second, different factorizations and liftings constitute families of
inequivalent Markov chains with different scalings of the mixing
times. Subsection 6.1 reviews the theoretical aspects of ECMC
in the context of molecular simulation while subsection 6.2
provides an overview of the “JeLLyFysh” Python application,5 an
open-source ECMC implementation for molecular simulation.

6.1. Theoretical Aspects of ECMC for

All-Atom Models
Three main challenges stand out for the application of ECMC
to molecular simulation. First is the choice of the statistically
independent factors, which determines total event rates, as well as
mixing and correlation times (see subsection 6.1.1). The second
challenge for ECMC, reviewed in subsection 6.1.2, is the handling
of the Coulomb potential. The statistical independence of factors
obviates the need for evaluating the total potential. However, the
factor potential and its derivatives (which yields the event rates)
must be provided. One such factor may consist of a single pair of
charges together with all their periodic images (“merged-image”
Coulomb factor) or else of one pair of specific periodic image
charges (“separate-image” Coulomb factor). Both choices are
practical, with the latter featuring an infinite number of factors
already for a two-charge system in a periodic box [21, 36]. A
single merged-image or separate-image Coulomb dipole factor
may collect all the electrostatic potentials between all atoms of
two molecules. At large separation, the event rate of a dipole
factor decreases on a faster scale than for a collection of atomic
pair factors. Finally, the choice of the lifting variables L in
�̂ = � × L, as well as the lifted transition matrices appear

5The name echoes creatures which, like objects studied in molecular simulation,
mostly contain water, with some other elements, including proteins.
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as main fixtures in a largely uncharted territory. As reviewed
in subsection 6.1.3, a lifting move6 is uniquely determined only
for factors with few elements. For larger factors, the lifting
move must itself be sampled from a probability distribution, or
even from a choice of many distributions, so-called lifting-move
schemes [33]. Different lifting-move schemes can lead to radically
different MCMC trajectories for an identical choice of lifted
sample spaces and factors [21]. The influence of the choice of
lifting variables (for example, the choice of directions, individual
moves, etc.) on the mixing properties remains poorly understood
(see subsection 6.1.3).

6.1.1. Factors, Coulomb Factors
The Coulomb problem illustrates the algorithmic inequivalence
of different factorizations. With Coulomb pair factors between
each individual pair of charges distant by r (both for merged-
image or separate-image formulations) the pair-factor potential
is ∼ 1/r, and the pair-factor event rate ∼ 1/r2. In a 3D box
of side L, at fixed density, so that N ∝ L3, a typical event
rate between two charges is ∼ 1/L2 and the total event rate for
Coulomb pair factors is O(N/L2) = O(N1/3)[36] (see also [21,
Equation 89]). With this rate, one event corresponds to a single
particle moving forward byO(1/N1/3). To advance N charges by
a constant displacement (for example, 1 Å), Coulomb pair factors
require a computing effort of O(N4/3). This is clearly borne out
by numerical simulations (see [36] for details).

For a Coulomb dipole factor made up of all the atoms in
two charge-neutral molecules with finite dipole moments, the
active particle in one of the molecules effectively interacts with a
dipole in the other molecule. At a distance r between molecules,
this gives a factor potential ∼ 1/r2 and a factor event rate
∼ 1/r3. Integrated over 3D space in a box of sides L, the total
event rate scales asO(logN). Advancing N charges by a constant
distance requires in this case O(N logN) events, as was observed
in N-body simulations [21, Figure 13].

In real-world applications, such as the SPC/Fw water
model [92], the interparticle potential contains, beyond the
Coulomb term, bond-fluctuation, bending, and Lennard-Jones
contributions. For large N, the O(N logN) Coulomb event rate
dominates the local contributions, as was observed in simulations
(see [21, Figure 15]). In ECMC, it can be expected that the
Coulomb dipole factors have mixing and correlation times that
are a factor ofN1/3/ logN smaller than those for Coulomb atomic
factors, although this has not been verified explicitly.

6.1.2. Computation of Coulomb Event Rates
The evaluation of the Coulomb potential and of its derivatives
is the main computational bottleneck for molecular simulation.
Molecular dynamics simultaneously requires the derivatives
of the full Coulomb potential for all particles at each time
step. The dominant Ewald-sum-based solution of this problem
consists in discretizing charges onto a fine spatial lattice and
in solving Poisson’s equation using fast Fourier transformation.

6As the lifting move (i, σ ) → (i,−σ ) for a rejected transport move (i, σ ) →
(i+ σ , σ ) on the path graph of section 3.

The complexity of this algorithm is O(N logN) with a pre-
factor that increases with the numerical precision (see [6]
and [21, section 1A]) The difficulty in evaluating the difference of
the Coulomb potential also frustrates energy-based local-move
MCMC: Updating a single particle costs at least O(N1/2) with
known algorithms [93], so that a sweep of local moves costs a
prohibitiveO(N3/2).

Event-Chain Monte Carlo only computes the veto among
the O(N) Coulomb factors as well as the ensuing lifting move.
A naive implementation of the factorized Metropolis algorithm
samples all candidate events (one for each Coulomb factor
involving the active particle) to determine the earliest one. The
thinning implemented in the cell-veto algorithm reduces the
complexity of this computation from O(N) to O(1), because
in a first step, the position-dependent Coulomb factor event
rates are “thickened” into time-independent, pre-computed rates,
from with a provisional event is computed using the Walker’s
algorithm. Specific computations are required only in a second
step, to confirm the provisional veto.

The separate-image and the merged-image formulations of
ECMC both lead to conditionally converging sums that can
be regularized in a way that is compatible with traditional
approaches. In the separated-image formulation of the Coulomb
problem, counter-line-charges [36] and their generalizations, for
example, the counter-volume-charges [21, Figure 5], regularize
each individual image charge. Likewise, in the merged-
image formulation, the sum over all images with associated
compensating line charges is equivalent to the standard tin-foil
boundary condition [94] for a single pair of Coulomb charges in
a finite periodic box (see [21, section III]).

6.1.3. Event-Chain Monte Carlo Liftings and

Lifting-Move Schemes for Molecular Simulation
As emphasized throughout this review, the factorized Metropolis
algorithm attributes each MCMC rejection to a single factor and
transforms it, in ECMC, into a lifting move. For a pair factor,
this lifting move is usually determined uniquely (the active and
the target particles exchange roles). For a three-particle factor,
the probability distribution for the new active particle is uniquely
determined, whereas for larger factors, there is a choice among
probability distributions, so-called “lifting-move schemes.” For
Coulomb dipole factors of two water molecules, each such factor
contains six particles, and lifting-move schemes can differ in
their inside-flow (active particles on the same molecule for the
in-state as for the out-state) and in their outside-flow. This is
exemplified in the “inside-first” and the “outside-first” lifting-
move schemes [21].

For a factor in which the two molecules are separated by a
distance r, the intra-molecular lifting-move rate scales as 1/r3

for the inside-first lifting scheme whereas the lifting-move rate
toward the other molecule scales as 1/r4. Integrated over the
whole simulation box of length L, the (unnormalized) probability
that a lifting move remains within one molecule scales as log L,
whereas the probability that a lifting move goes from one
molecule to another remains constant. For large L, the lifting
moves thus remain inside the original molecule with probability
1. For the outside-first lifting-move scheme, in contrast, both
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the intra-molecule and the inter-molecule rates are ∼ 1/r3 as a
function of the distance between molecules, and the probabilities
for lifting moves to stay inside one molecule or to connect
different molecules both scale as∼ log L for large L [21, Table 1].

6.2. JeLLyFysh Application for ECMC
The open-source “JeLLyFysh” application [38] is the first
general-purpose open-source implementation of ECMC. The
configuration files of its Version 1.0 realize proof-of-concept of
ECMC for interacting particle systems including the treatment
of the Coulomb interaction. They also showcase different
factorizations and lifting-move schemes as well as thinning
strategies through bounding potentials and through the cell-veto
algorithm. The application strives to provide a platform for future
method development, for benchmarking and for production
code. The architecture of the application (using the mediator
design pattern) mirrors the mathematical structure of ECMC. Its
event-driven nature is far removed from the time-driven setup of
present-day molecular dynamics codes.

6.2.1. Mediators, Activators, and Event Handlers
The “JeLLyFysh” architecture is entirely based on the concept
of events. A mediator [95] serves as a central hub for all other
elements of the code. After each event, the mediator accesses the
active particles (in fact, the “active global state”) and then fetches
from another element, the activator, so-called event handlers that
each treat one factor (depending on the active particle but also
on the previous event). For each event handlers (i.e., roughly,
for each factor), the mediator then accesses the in-state for each
factor, which allows the event handler to compute a candidate
event time. All candidate event times are compared in an element
of the program called a scheduler. For the shortest time in this
scheduler, the corresponding event handler then computes the
lifting event in the form of an event out-state. If confirmed, the
out-state is committed to the state of the system. Output may also
be generated (see [38, Figure 5]).

Besides the events (in other words, the lifting moves) required
by the global-balance condition, the JeLLyFysh application
implements a number of pseudo-events, that handle data and cell
management, resamplings, and even for the start and the end of
the program. The application makes full use of the fundamental
modularity of ECMC. For example, each event handler, for a
factor M, only receives the factor in-state cM in Equation (14) in
order to contribute a candidate event. It computes the out-state
ofM only if this factor actually triggers the veto, that is, generates
the lifting move.

6.2.2. Configuration Files, Performance Tests
The configuration files of JeLLyFysh Version 1.0 construct runs
for two charged pointmasses, for interacting charged dipoles, and
for two interacting SPC/Fw water molecules, each with a large
choice of factors, and high-precision comparison with reversible
MCMC. Four different configuration files treat two interacting
SPC/Fw water molecules, with their harmonic oxygen–hydrogen
bond interaction on one molecule, a three-body bending
potential, a Lennard-Jones oxygen–oxygen potential as well as
a Coulomb potential between atoms on different molecules [21,

Figure 12]. The configuration files illustrate the possibilities
offered to choose between atomic and molecular factors, and to
implement event-handlers that invert potentials to obtain direct
event rates, to use bounding potentials, or even to invoke the cell-
veto algorithm. Correlation functions are shown to agree in the
0.1% range.

Performance tests of ECMC for large systems of SPC/Fwwater
molecules will be the object of the next version of the JeLLyFysh
application. It will feature substantially rewritten code, and many
of the Python modules will be making use of a faster compiled
language. Benchmarks will be provided against single-processor
LAMMPS code.

7. PROSPECTS

This review has addressed the mathematical and algorithmic
foundations of non-reversible Markov chains including ECMC
and analyzed a number of exactly solved test cases. It has
also discussed first applications of ECMC to key models in
statistical physics as well as an ongoing initiative to apply it in
the field of molecular simulation. It is now time to summarize
the principal characteristics of ECMC, to formulate the main
working assumptions driving its development, and to attempt to
anticipate its major challenges.

Event-Chain Monte Carlo reinterprets three key aspects of
standard MCMC. First, as in all non-reversible Markov chains,
the detailed-balance condition is replaced by global balance.
The condition of vanishing flows, synonymous to the notion
of “equilibrium,” is thus replaced by a steady-state condition,
with the hope of accelerating transport throughout sample space.
Second, the energy-driven Metropolis algorithm is replaced
by the factorized Metropolis algorithm: as long as a certain
consensus condition is satisfied by all factors, the ECMC
dynamics is that of a non-interacting system. Third, each of the
trademark rejections of the Metropolis algorithm is replaced by
a veto of a single factor that puts an end to the consensus and
generates a lifting move.

The ongoing development of ECMC for molecular simulation
and related fields builds on two assumptions. The first
assumption is that Newtonian dynamics, while being physically
realistic, is not the fastest possible relaxation algorithm toward
the stationary distribution. The three-decade-long investment in
molecular-dynamics codes may thus leave room for successful
alternative approaches. The second assumption is that the
elaborate a priori choices, as in the cluster algorithms, cannot
be adapted to real-world applications in molecular simulation
and related fields, given their intricacy. This leaves one with
local-move Markov chains but, as argued throughout this review,
they must be non-reversible in order to be fast. The family of
ECMC algorithms provides a framework for non-reversible local
MCMC. It opens up numerous opportunities, from the choice of
factors and liftings to the new approach to the Coulomb problem
that avoids the computation of the potential and its derivatives.

Event-Chain Monte Carlo enlarges the possibilities of the
MCMC algorithm and has already found successful specific
applications in statistical physics, as well as in polymer
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science [96, 97] (see also the related review [98]). As a
general method for molecular simulation, ECMC however
faces two critical short-term challenges. The first concerns
the benchmarks against molecular dynamics for standard real-
world systems, that will be the object of an upcoming version
of the JeLLyFysh application. The second challenge concerns
the parallelization of ECMC. A road-map for multithreaded
ECMC exists at present only for hard-sphere systems. The
development of genuine parallel event-driven ECMC for generic
potentials constitutes an open research subject. More generally,
the mathematical understanding of the mixing and relaxation
dynamics of reversible and non-reversible local MCMC remains
rudimentary for generic N-particle models in more than one
dimension. A better mathematical grasp of such systems, beyond
straightforward benchmarks, appears as a prerequisite for the
development of faster algorithms for applications in physics and
other sciences.
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GLOSSARY

• Markov chain: A sequence of random variables
(X0,X1,X2, . . . ), where X0 represents the initial distribution
and Xt+1 depends on Xt through the transition matrix P. All
random variables take values in a sample space �.

• Lifting 5̂ (equivalently: lifted Markov chain 5̂): Markov
chain with sample space �̂ and transition matrix P̂, associated
to the collapsed Markov chain 5 with � and P such that any
collapsed configuration u ∈ � is split into lifted copies i ∈
�̂. The total transition probabilities between all lifted copies
of two collapsed configurations in � equal the transition
probability between the collapsed configurations.

• Lifting variable: An element of L for a lifted sample space that
can be written as �̂ = � × L.

• Lifting move: A move in �̂ between lifted copies of the same
collapsed configuration in �. In ECMC, lifting moves that are
required by the global-balance condition are called events.

• Resampling: A lifting move that is not required
by the global-balance condition. It may assure
irreducibility, aperiodicity, or simply speed
up mixing.

• Consensus: Situation when, in the factorized Metropolis filter,
all factors independently accept a proposed move, so that it
can be accepted. Formally, the factorized Metropolis filter is
written as XFact =

∧
M∈M XM . It is “True” if and only if all

factor Booleans XM are “True.”
• Veto: Breach of consensus in the factorized Metropolis

algorithm. If, on the right-hand side of XFact =
∧

M∈M XM , a
singleXM is “False,” thenXFact is “False” also, and the proposed
move is rejected.

• Factorized Metropolis filter: Boolean random variable XFact,
with probability PFact =

∏
M∈M[min(1,πc′M

/πcM )], to accept
a proposed move c → c′. The weight of c is πc =∏

M∈M πcM . Crucially, P
Fact need not be evaluated, because

of the consensus principle.
• Metropolis filter: Boolean random variable XMet, with

probability PMet = min{1,πc′/πc}, to accept a proposed move
c → c′. Together with the symmetric a priori probability

Acc′ = Ac′c for proposing the move, this constitutes the
Metropolis algorithm.

• Factor M: Particle indices (“factor index set”) and a keyword
(“factor type”) that identify a part of the total weight. In a
configuration c, a factor has factor configuration cM and factor
weight πcM with

∏
M πcM = cM . A Coulomb factor (factor

type = “Coulomb”) may collect all the electrostatic interaction
between the atoms of two molecules, with or without all their
periodic images.

• TASEP (Totally asymmetric simple exclusion process):
Random process for one-dimensional N-particle lattice
systems, with particles only moving in one direction. The
TASEP can be interpreted as a displacement lifting of the
SSEP. The particle lifting of the TASEP (called PL-TASEP) is
a lattice version of ECMC for one-dimensional hard spheres.

• SSEP (Symmetric simple exclusion process): Local Metropolis
algorithm with nearest-neighbor moves for one-dimensional
hard spheres on a lattice.

• Walker’s algorithm: O(1) method to sample i from a
discrete probability distribution {π1, . . . ,πN}. In the cell-

veto algorithm, Walker’s algorithm reduces the sampling
complexity of one Coulomb-event computation fromO(N) to
O(1).
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