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Quantifying Legal Entropy
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Many scholars have employed the term “entropy” in the context of law and legal systems

to roughly refer to the amount of “uncertainty” present in a given law, doctrine, or legal

system. Just a few of these scholars have attempted to formulate a quantitative definition

of legal entropy, and none have provided a precise formula usable across a variety of

legal contexts. Here, relying upon Claude Shannon’s definition of entropy in the context

of information theory, I provide a quantitative formalization of entropy in delineating,

interpreting, and applying the law. In addition to offering a precise quantification of

uncertainty and the information content of the law, the approach offered here provides

other benefits. For example, it offers a more comprehensive account of the uses and

limits of “modularity” in the law—namely, using the terminology of Henry Smith, the use of

legal “boundaries” (be they spatial or intangible) that “economize on information costs” by

“hiding” classes of information “behind” those boundaries. In general, much of the “work”

performed by the legal system is to reduce legal entropy by delineating, interpreting, and

applying the law, a process that can in principle be quantified.

Keywords: entropy, indeterminacy, legal entropy, information theory, modularity, Hohfeld, legal complexity,

legal uncertainty

INTRODUCTION

It goes without saying that the law and legal systems are uncertain to a significant degree. Several
scholars (e.g., Katz and Bommarito [1]; Friedrich et al. [2]) have attempted to determine the
uncertainty (and related complexity) of legal systems by formulating measures of the “entropy”
of words in legal texts, including statutes and other legal authorities. Although measuring the
ambiguity of words in texts can be valuable in many situations, it does not provide a comprehensive
measure of the uncertainty in interpreting legal rules, much less a “system-wide” measure of
the uncertainty of the law and legal system and subsystems more generally. Other scholars (e.g.,
Dworkin [3], Parisi [4, 5], Ruhl and Ruhl [6]) have focused their efforts on more general notions
of legal entropy and related concepts, but have done little to nothing to formalize those notions in
mathematical terms.

This article provides several important contributions to the literature by formalizing the notion
of legal entropy. First, it offers a conceptual framework to quantify the entropy of legal systems
that extends beyond legal text to capture how the law actually functions in real-world situations,
including not only legal interpretation, but also the entropy and related information costs in
formulating and applying the law. Second, although some previous works have foreshadowed
the possibility of a quantitative description of legal entropy (e.g., D’Amato [7]), the formalization
offered here provides a fully mathematical formulation as it applies to legal systems and disputes.
Third, the mathematical model proposed here offers a potential template for how legal AI systems
can measure and store information about the uncertainty of legal systems. Fourth, the model helps
to explain more fully the nature and function of important concepts in the law, including the
so-called “modularization” of the law and legal concepts, as proposed in the seminal works on the
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topic by Smith [8–10] and follow-on works by others (e.g.,
Newman [11]), as a well as the Coase Theorem [12] and the
indeterminacy of legal rules [13].

The article proceeds as follows. Part 2 provides a brief
background of the notion of entropy in physics and information
theory, particularly Shannon’s [14] formulation of information
entropy. Part 3 describes previous attempts to describe legal
entropy, including descriptive notions of legal entropy and
measures of the word entropy found in legal texts. It explains
the limitations inherent in these previous treatments. In Part 4,
relying on Shannon [14] and the theoretical work ofHohfeld [15],
it introduces a formal mathematical description of legal entropy,
as it applies to a particular legal issues and disputes as well as
across legal systems and subsystems. Specifically, Part 4 proposes
models for quantifying entropy in formulating and interpreting
the law, as well as applying the law to a set of facts. In Part
5, the article applies its formal model to important theoretical
and practical issues in the law, including legal indeterminacy,
modularity, and the Coase Theorem. In so doing, it discusses
practical problems in “measuring” legal entropy. Finally, the
article concludes with some suggestions for further research.

ENTROPY IN PHYSICS AND
INFORMATION THEORY

The concept of entropy in physics traces to the work of Clausius
[16] in the mid-nineteenth century to describe a property of the
transfer of heat, 1Q, from a heat source at a certain temperature,
T, to an idealized engine in a so-called reversible process.1 In
this situation, according to Clausius, the entropy of the system
increases by 1Q/T. Similarly, entropy decreases by such an
amount when an idealized engine loses heat 1Q to a heat sink at
temperature T. In other words, as heat enters a thermodynamic
system, entropy increases—particularly, if the system is cold, less
if the system is already hot.

In the 1870s, Boltzmann [17] offered a molecular (i.e.,
microscopic) description of Clausius’s notion of entropy.
Specifically, Boltzmann [17] postulated that Clausius’s
macroscopic description of entropy could be explained in
relation to microscopic states. Because heat at a macroscopic
level is essentially a “disordered” collection of microscopic
particles, the exact behavior or which is unknown at the
macroscopic level, the entropy of the system can be viewed
roughly as a measure of macroscopic disorder. As a cold system
becomes hotter, its ordered, stable microscopic state of particles
in fixed positions yields to a frenzy of quickly moving particles.
Although in a classical system, the position and momentum
of microscopic particles is measurable in principle, merely
measuring the temperature and other macroscopic properties of
a system would be insufficient to determine the precise position
and momentum of each and every particle. As more heat enters
a system, the more difficult it becomes to use macroscopic

1The discussion in this section is designed to offer a concise and simplified
qualitative background of the notion of entropy in physics and information theory
in order to set the stage for the following discussion of legal entropy, and thus
should not be viewed as a precise technical account.

measures to determine the position and momentum of each
particle that the system comprises. This increasing uncertainty
results because the microscopic particles could be in a greater
number of potential states (i.e., of position and momentum) in
an increasingly hotter system than an increasingly colder system,
where particles are relatively motionless. If a system is already
hot, introducing a bit more heat increases the uncertainty of the
microscopic states much less than if the system begins cold.

Boltzmann [17] was able to formulate amicroscopic definition
of entropy along these lines, S = kb ln W, that explained
Clausius’s macroscopic definition. According to Boltzmann’s
Equation, the entropy S of an ideal gas is simply the natural
logarithm (introduced for mathematical convenience) of the
number of microstates, W, of the system corresponding to
the gas’s macrostate multiplied by a constant kb (Boltzmann’s
constant).2 In other words, the number of different position and
momentum arrangements the microscopic particles may occupy
for a givenmacroscopic state effectively explains the macroscopic
entropy of the system.

Boltzmann [18] and later Gibbs [19] generalized his equation
to take into account that certain microstates are more or less
probable than others. In this case, weighting is necessary to
take account of the variable probability of certain microstates
that correspond to a given macrostate. In this case, using a
well-known mathematical approximation, the so-called Gibbs
entropy becomes:

S = − kB
∑

pi ln pi (1)

Roughly speaking, the Gibbs entropy reflects a weighted
average of the number of microstates corresponding to a given
macrostate, where pi is the probability for a certain microstate to
occur. In this regard, note that ln pi (for pi < 1) is negative and
decreases as pi approaches zero. Thus, a state i with a seemingly
small probability of occurrence may significantly contribute to
overall entropy.

The Gibbs entropy is in effect a special case of a more
general phenomena in which some “macroscopic” state of a
generalized system, call it M, may be instantiated by W different
“microscopic” states of the generalized system (Jaynes [20]). For
instance, the “macroscopic” state of having 10 cents in one’s
hand can be instantiated by four “microscopic” states: (1) 10
pennies; (2) a nickel and 5 pennies; (3) two nickels; or (4) one
dime. In other words, knowing the “macroscopic” state (here, the
total monetary value) generally will be insufficient to specify the
“microscopic” state (here, the precise coins used to achieve the
total monetary value).

The greater the uncertainty in microscopic configuration, the
greater the entropy. In other words (and using log base 2 to
capture the number of bits of entropy), S = k log2 W. Setting
k = 1 for simplicity, and reducing W in the same manner as

2Because the log (AB) = log A + log B, by defining the entropy in terms of
a logarithm (such as the natural logarithm), it becomes simpler to calculate
entropy as the number of microstates increases, particularly when two systems are
combined.
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the Gibbs entropy, one arrives at the formula for Shannon [14]
entropy in bits:

S = −
∑

pi log2 pi (2)

If we suppose that each of the four microstates in our example are
equally likely, the Shannon entropy of 10 cents is−4 x 0.25× log2
(0.25) = 2 bits of information.3 This is sensible since there are
only four choices, which we can label 00, 01, 10, or 11. This more
generalized notion of entropy as the uncertainty over a range of
informational microstates, as reflected in the Shannon entropy,
will play a central role in quantifying legal entropy herein.

PREVIOUS TREATMENTS OF ENTROPY IN
LEGAL SYSTEMS

Many scholars have applied the concept of entropy to legal
systems. All of these treatments can be classified into two
categories: (1) metaphorical uses of the concept of entropy;
and (2) uses of formal mathematical and physical definitions to
measure the “entropy” of legal texts.

Although the first category of scholarship (metaphor) can
often be useful in thinking about the disorder, complexity,
and uncertainty present in legal systems, it fails to offer any
formal quantification of legal entropy. For instance, in a well-
known article, Parisi [4] contends that real property is subject
to a fundamental law of entropy that leads to increasing
fragmentation of property interests, but fails to quantify the
notion. Lewis [22] applies thermodynamic principles, including
entropy, to the explain corporate reorganizations but, like other
treatments, does not extend his notions beyond the level of
metaphor. Ferrara and Gagliotti [23] purport to develop a
conceptual “mathematical” approach to the law, including a
notion that has “somewhat to do with the concept” of entropy
in information theory, but their scheme is devoid of formal
definition and thus reduces to metaphor. Ultimately, all previous
treatments of the broad of concept of legal entropy (see also Berg
[24], Edgar [25], Fromer [26], King [27], Moran [28], Stephan
[29], as examples) fail to quantify the notion.4

Perhaps the treatment that comes closest to any quantification
of legal entropy is that of D’Amato [7], who recognizes that

3Another way to conceptualize Shannon entropy is in terms of “surprise,” which
typically is defined as the unlikelihood of an event occurring, i.e., 1/p [21]. Since
the log (1/p)= –log p, we can rewrite Shannon entropy as proportional to the sum
over states of pi log2 (1/pi). Thus, information entropy is driven by a combination
of the logarithm of the level of surprise (i.e., improbability) of a given microstate
and the probability of the microstate occurring, summed across all microstates.
4Loevinger [30] cites Shannon and Weaver [31] and offers an “equation,” which
is best characterized as tongue-and-cheek. Namely, Loevinger [30] states: “The
second law of sociodynamics is the law of the conservation of entropy. Entropy, in
social as in physical phenomena, is ameasure of disorder, uncertainty or confusion.
The law of the conservation of entropy in sociodynamics states that the amount of
entropy concerning any social problem remains constant regardless of the number
of agencies or entities to which it is referred while the time required for decision
or action on the problem increases in geometrical proportion to the number of
agencies or entities whose concurrence is required. This law can be expressed as
T = NC2, where “W” is the time required for decision or action and ‘NC’ is the
number of agencies or entities whose concurrence is required.”

entropy is at a maximum when the outcome of a legal dispute
is equally likely for each part, further remarking that “[i]n
order to use entropy in law directly, the legal scientist would
have to embed the collection of predictions we call law into
an abstract space that exhibited the variations in the level
of uncertainty of the predictions.” Yet, immediately following
this insight, D’Amato [7] states that “Since law cannot be
completely transcribed into words, it cannot be transcribed
into symbols and spaces either.” D’Amato’s [7] statement is
deficient in two important respects. First, to the extent one is
concerned about the probabilities of outcomes in legal disputes,
as is D’Amato [7], although it may be practically difficult to
“transcribe” disputes into probability spaces, it is not impossible.
Indeed, attorneys regularly the estimates the odds of winning
and losing cases. Moreover, recent developments in legal artificial
intelligence have vastly expanded the promise of more automated
approaches to predicting legal outcomes (e.g., Katz et al. [32];
Branting et al. [33]). Second, aside from practical interest, it
may be theoretically illuminating to devise mathematical models
of the operation of the law. In this regard, such theoretical
modeling is in turn arguably critical to practical advances in legal
artificial intelligence.

The second category of articles relies on measures of entropy
from computational linguistics and related fields, typically
derived from Shannon [14, 34], to measure the uncertainty or
ambiguity that is present in the text of statutes, regulations, and
legal documents. For instance, Katz and Bommarito [1] measure
legal complexity based on linguistic entropy present in U.S.
federal statutes. In a similar vein, Friedrich et al. [2] examine the
word and document entropy of opinions from the U.S. Supreme
Court and the German Bundegerichtshof in order tomeasure and
compare the textual ambiguity present in the courts’ opinions.5

Although these text-based endeavors are important
contributions to the literature, especially by formalizing
previous metaphorical treatments, they are limited to what
I term the “interpretive entropy” of legal systems—namely,
the entropy and associated information costs involved in
interpreting the law prior to its application to a particular set of
facts. Moreover, because this scholarship tends to focus on the
language of statutes and regulations, it measures only a portion
of the interpretive entropy, because interpretation also involves
the consultation of authoritative legal opinions, administrative
interpretations, legislative and regulatory history, the text of
other statutes and regulations, and not infrequently, general facts
about the world (e.g., social norms, scientific facts, etc.).6

5Other studies use legal documents as inputs and measure entropy unrelated to
legal entropy. For instance, Zhang et al. [35] extend the application of Shannon
entropy from text to patent indicators, including citation counts, number of
patent families, and similar indicators, to measure the importance of particular
patents in technological innovation. Although such approaches may be useful
for determining the economic “information” content and, hence, the economic
importance signified by a particular legal document, they do not measure legal
entropy, that is, the uncertainty or ambiguity of a legal document or broader legal
relation within the legal system.
6As D’Amato [7] insightfully remarks, “For example, a statute that seemed tomean
one thing may be construed by a court to mean something different. Although
the court will usually say that it is clarifying the statute, it does not always do so.
It may create an exception, an exemption, a privilege; it might construe the rule
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The present article adds to the literature by formalizing
the metaphorical treatments in the first category. Like the
articles examining the entropy of legal texts, it relies on formal
mathematical and physical definitions, but it extends beyond
the mere words of laws to provide more general, quantitative
definitions of legal entropy.7

FORMALIZING LEGAL ENTROPY

This section relies on the work of Shannon [14], Hohfeld [15],
and others to introduce a basic mathematical formalization of
the entropy involved in the formulation, interpretation, and
application of a law to a given set of facts involving a single
legal actor, as well as system-wide entropy across multiple laws
and facts concerning many legal actors. In so doing, it begins
to overcome the theoretical limitations of the prior literature
described earlier.

The Entropy of Legal Systems
As noted, although formal measures of the ambiguity of words in
legal documents through measures of word entropy is useful to
analyze and parse legal texts, it does not measure the entire extent
of interpretive entropy, much less the entropy of legal systems
more generally. Rather, one would like to quantify the ambiguity
across the entire range of the formulation, interpretation, and
application of particular laws to particular behavior.

For instance, the tax laws are notorious for being uncertain
in delineation, interpretation, and application (Osofsky [37]).
Regarding application, just small variations in the underlying
facts relating to a particular tax provision can lead to large
changes in the likelihood that the applicable legal actor is
obligated to pay taxes or not. Similarly, patent infringement
disputes are often difficult to predict, and like tax issues,
are sensitive to small variations in the underlying law and
facts (Sichelman [38]). Moreover, even if one can quantify the
“entropy” of a particular application of law to facts involving a
single legal actor, is it possible to quantify the entropy of a legal
system and its subsystems encompassing many laws and many
legal actors?

Thus, it becomes incumbent to conceptualize the different
domains of entropy that arise in legal systems. Delineative
entropy involves the ambiguity and related information costs
in formulating the law in the first instance, typically into
written symbols, in a constitution, statutes, regulations, judicial
decisions, and the like. As noted earlier, interpretive entropy
concerns the ambiguity in interpreting the written symbols
in legal documents, including not only constitutions, statutes,

narrowly to avoid constitutional problems, or broadly to give effect to an unnoticed
legislative intent buried in the legislative history. The court’s decision becomes a
part of the meaning of the rule, so that the rule now becomes more complex—
it is a statute plus a judicial decision. The more complex rule may invite further
adjudication and more inventive subsequent constructions by courts.”
7Lee et al. [36] propose a statistical mechanics-basedmodel of voting within groups
using a maximum entropy model, applying it to the U.S. Supreme Court. This
approach is more in the vein of political science than law per se and, as such, is
somewhat orthogonal to the discussion here, but it could be useful in quantifying
applicative entropy for disputes to be resolved by a group of adjudicators (e.g.,
on appeal).

and regulations, but also judicial decisions. Such an endeavor
is not merely textual in nature, but will often involve relying
upon institutional and social norms, which themselves can be
uncertain. Finally, applicative entropy is roughly the uncertainty
involved in applying an interpreted law to a given set of facts.8

Each type of legal entropy is considered in turn, along with a
proposed formal quantification of each.9

Delineative Entropy
Formulating the law involves many different types of transaction
costs. For instance, legislators must be paid to meet, investigate,
negotiate, deliberate, and so forth. Similar transaction costs are
borne by regulatory agencies and judges in formulating the law.
Political scientists and economists have regularly modeled the
delineation of law, including related transaction costs, in terms
of public choice, game theoretic, and related models (e.g., Benson
and Engen [42], Crump [43]). Yet, some of these transaction costs
involve information costs that potentially relate to reducing the
legal entropy involved in formulating the law, and scholars have
yet to provide quantitative measures of such.10

What information costs reduce entropy? According to
Shannon [14], the entropy of a system is precisely the number
of informational bits needed to encode the microstates of
the system. When the microstates themselves are unknown,
such encoding involves an information cost in determining
the precise informational bits of the microstates. As explained
more fully in Part 5, actors within the legal system—such
as lawyers, lawmakers, judges, law enforcement and others—
regularly perform work by incurring information costs to encode
microstates—typically, in order to reduce legal entropy by
selecting one of the microstates, or at least by reducing the
uncertainty in which microstate will be selected. In general,
all information costs that genuinely generate new “legal”
information about the microstates of some legal system or
subsystem will reduce that system’s or subsystem’s legal entropy
(see Part 5). Delineating the law involves many activities that
generate new legal information and, in turn, reduce legal entropy.
Here, I examine just a portion of those activities. A fuller account
of delineative entropy would systematically review each and every
one of them.

To begin with, lawmakers must determine which actions,
roughly speaking, of legal actors not subject to law should be
subject to law and, at conversely, which actions currently subject

8In this regard, contracts also may be considered as a form of “private lawmaking”
[39], subject to delineative, interpretative, and applicative entropy. In other
instances, lawmay be formulated in unwritten ways, such as through oral tradition
or even social symbols (e.g., Weyrach and Bell [40]), again, subject to all forms of
legal entropy.
9Another type of legal entropy is enforcement entropy, which stems from the
uncertainty in the enforcement of a given law. I abstract away from enforcement
entropy in this treatment for simplicity, but the same types of approaches
discussed herein would apply to enforcement entropy (see generally Lederman and
Sichelman [41]).
10Dinga et al. [44] provide a conceptual model of “social entropy,” briefly
addressing legislation, but do not quantify social entropy in any manner. Although
there is a substantial literature regarding “entropy economics” and “economic
complexity,” that literature does not address the legal domain (see, e.g., Golan [45],
Gold and Smith [46], Hausmann et al. [47]).
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to law should not be subject to law (or should be subject to
amended laws). Ex ante, there will be uncertainty in which
categories of human behavior should be subject to law, not
subject to law, or subject to legal amendment. Ultimately, this
boils down to whether a category of human behavior should be
subject to a general change in state with respect to the law.

Astute observers, perhaps aided by legal artificial intelligence,
could estimate the probability that some given area of human
behavior, especially those relating to newly arising technologies,
should be subject to a change in legal state. Suppose it is first
day of Nakamoto’s [48] now-famous article on bitcoin, and just
a few observers know about it. Eventually, information spreads—
including from information costs incurred generally unrelated to
legal entropy—and lawmakers learn about it but want to know
more. At this time, whether activities related to cryptocurrency
will be regulated is highly uncertain, probably close to 50%.
The lawmakers expend information costs, including formal
hearings with experts, to learn more about the economic and
social ramifications of bitcoin and whether it should be subject
to law.

After much expenditure, legal observers estimate
that the probability is 80% that it will be subject to
regulation in the near-term within some legal jurisdiction.
At each stage during the investigative and deliberative
process, one can in theory construct a “near-term”
Shannon entropy related to whether some category of
human behavior will be subject to law, call it “deontic”
entropy,11 which will be one form of overall delineative
entropy.12

Specifically, for a “single” human behavior (e.g., whether
cryptocurrency usage will be regulated), one can calculate the
near-term Shannon deontic entropy by summing across the
probability that the category will be subject to law. So, assuming
80%, we arrive at

S = −
∑

pi log2 pi = −[(0.8) log2 (0.8)+ (0.2) log2 (0.2)]

= 0.72 bits

Such entropy may appear at first blush low, but one must
sum across all categories of human behavior to determine the
total deontic entropy. Indeed, the level of abstraction at which
we categorize human behavior will have a substantial effect
on the total deontic entropy. For instance, within the category
of cryptocurrency usage, there may be hundreds of distinct
behaviors, of which may be subject to law. Thus, conditional
on the category being subject to law, one may want to know
the probabilities and associated entropy with specific behaviors

11Deontic logic concerns the logic of normative concepts, including obligations
(see generally Hilpinen [49]).
12Alternatively, one might imagine a hypothetical in which lawmakers investigate
whether some behavior previously subject to legal restrictions should no longer
be subject to them—for instance, the use of a previously illegal drug—resulting
in similar deontic probabilities. More generally, deontic entropy concerns the
uncertainty regarding whether some set of human behavior should be subject
to a change in the law, from no regulation to regulation, from regulation to no
regulation, or some intermediate set of changes.

within the category being subject to law, and for some areas
of human behavior, even more fine-grained analyses. Here, in
theory, one can use the formal notion of conditional entropy—
described further below—to quantify the amount of entropy at
every level of abstraction.

Of course, in practice, perfectly quantifying the entropy of
hundreds of distinct behaviors at multiple levels of abstraction
will be impossible. But contrary to D’Amato’s [7] pessimistic
suggestion that we give up on the endeavor entirely, as noted
earlier, conceptualizing how we should formulate various types
of legal entropy, even if practically difficult, serves important
purposes. First, it provides an ideal model and, thus, a
proper roadmap as to how one should build out a practical
approach to modeling entropy. For instance, with respect to
cryptocurrency, one may build out a rough model of various
behaviors and categories potentially subject to law to generate
a rough quantification of deontic entropy. Increasingly, these
processes may be aided by legal artificial intelligence and related
mechanisms. Second, building out these models may help us
to understand law, from a theoretical perspective, in a more
coherent and precise fashion. Indeed, the history of science is rife
with models that are initially rough and thus difficult to solve,
model, or explain, but later become subject to rigorous modeling
and application. Notable examples are the development of the
atomic theory of matter [50], the theory of evolution [51], and
the theory of gravitation [52].

Once lawmakers determine that a given category of human
behavior should be subject to law, the question becomes how
to specifically draft statutes, regulations, or judicial decisions,
particularly at a conceptual level, but even at a textual level, that
instantiate the aims of the lawmakers. Specifically, if one begins
with a concept (or set of concepts) that lawmakers or judges
seek to instantiate into written law (or some other more concrete
expression), there will exist multiple ways of instantiating the
concept into written law.

Often, this involves the particularization of a more general
concept (e.g., “Though shall not kill”) into a main rule that
specifies the conditions under which the law is violated (e.g., “The
killing of another person with malice aforethought,” etc., etc.) and
sets of exceptions (e.g., except in self-defense, legitimately as a
soldier in war, etc.). In other situations, it involves aggregating
multiple concepts (e.g., the types of prohibited interferences
of third parties against a landowner’s permitted uses) into
a single rule (e.g., the law against trespass). Quantifying the
amount of uncertainty in how to specify the law, generally in
text, is useful to understand how delineative entropy and the
associated information costs in reducing that entropy play a role
in formulating the law—particularly to illustrate how that process
differs across different legal domains (e.g., torts vs. real property).
In general, one can term this form of delineative entropy as
“specificative” entropy.

Suppose there is a single, general concept of interest (e.g.,
“Thou shall not kill”) and astute observers have determined that
there are roughly 50 different ways in which the lawmakers
could conceptually instantiate the law. These 50 different ways
may represent the various degrees of crimes (e.g., 1st vs. 2nd
degree murder, voluntary and involuntary homicide), mens rea
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requirements (e.g., malice aforethought, intent, recklessness,
and gross negligence), available defenses (e.g., self-defense and
duress), and other potentially relevant aspects of the crime (e.g.,
transferred intent). In general, there may be a large number of
permutations of how to instantiate a single concept, either as a
single criminal rule, or a large set of related criminal rules.

The line between deontic entropy and specificative entropy
is not bright. Although arriving at the applicable concept
(e.g., “Thou shall not kill”) is squarely in the deontic entropy
box, determining the permutations of instantiations under
consideration (e.g., 50 forms) and the viability of each of those
instantiations can be related both to deontic and specificative
entropy. Once the likelihood of each instantiation is estimated,
we can calculate the residual specificative entropy, again using
Shannon entropy:

S = −
∑

pi log2 pi (3)

For instance, returning to the bitcoin example, suppose that
lawmakers are debating three different bills to regulate bitcoin
and other cryptocurrencies. Experts estimate that the first bill has
a 50% chance of passage, the second bill a 30% chance, and the
third bill, a 20% chance, all subject to the earlier 20% chance that
no bill passes.

In this case, we can first calculate the specificative entropy as:

S = −
∑

pi log2 pi = −[0.5 log2 (0.5)+ (0.3) log2 (0.3)

+ 0.2 log2(0.2)] = 2.006 bits

Note that the total delineative entropy will be a form of
conditional entropy, on which the specificative entropy is
conditional upon the deontic entropy, for if a given category of
human behavior is not going to be subject to regulation, then
lawmakers need not expend any effort to regulate it. In this
bitcoin example, there is only an 80% chance that any bill will
pass, which resulted in a deontic entropy of 0.72 bits. How should
one combine the deontic and specificative entropy into an overall
delineative entropy value?

Because the specificative entropy is conditional on the deontic
entropy, one cannot simply add them together. Rather, the chain
rule for conditional information entropy [53] applies:

H (X, Y) = H (X) +H (Y|X) (4)

where H(X,Y) is the joint (or combined) entropy of two random
variables conditional upon one another, H(X) is the entropy
solely due to random variable X and H (Y|X) is entropy of Y,
conditional upon some specific X (i.e., X= x) occurring.13

In other words, the joint (or combined) entropy of a second
random variable (Y) that is conditional on a first random variable
(X) is the entropy of X plus the entropy of Y conditional on

13In this regard, the term p
(

y
∣

∣x
)

means the probability of event y given that event
× occurs [12].

X.14 In our bitcoin example this results in the following total
delineative entropy:

H (X, Y) = H (X) +H (Y|X) = 0.72 bits+ (0.8) ∗ (2.006 bits)

= 2.33 bits

Note that this is less than simply adding the deontic and
specificative entropy together. This is because the specificative
entropy only plays a role conditional upon the deontic entropy
resulting in the passage of a bill, which happens 80% of the
time. Thus, in this simple example, one effectively adds the
deontic entropy to chance that the specificative entropy will
be meaningful.

Interpretive Entropy
As noted earlier, once a law is formulated—in a constitution,
statute, regulation, judicial decision, or some other legal text—
it must typically be interpreted to understand its scope and
applicability. In this regard, other types of intermediate legal
documents, such as contracts and patents, must be interpreted
to determine their legal effect. Legal interpretation is fraught
with ambiguity, which can be conceptualized in the framework
of information entropy as interpretive entropy. Specifically, if
one considers the legal rule under consideration the legal
“macrostate,” then the “microstates” are all of the possible
interpretations of the legal rule.15 Thus, the interpretive entropy
is again expressed by the Shannon information entropy, where
each state i is a potential interpretation, and the probability of
i being the interpretation adopted by the legal institution of
interest (e.g., a court or regulatory agency), pi:

S = −
∑

pi log2 pi

If the only step involved in this process were to interpret
the express text of a legal rule with a standard dictionary,
then techniques using word and related forms of linguistic
entropy would provide a fairly accurate value of the
interpretive entropy. For instance, one could measure the
word entropy of legal texts that measures the ambiguity
inherent in each word using a standard corpus (cf.
Piantadosi et al. [54]).

Yet, legal interpretation extends well-beyond textual
interpretation with a standard dictionary. As an initial matter,
many legal terms are “terms of art,” requiring interpretation
by specialized, legal dictionaries. Quantifying interpretive
entropy using text-based measures of entropy must rely
therefore not on a standard corpus, but a specialized one.
More problematic, legal interpretation typically draws upon the

14Formally, the joint entropy H(x, y) of a pair of discrete random variables
(X, Y) with a joint distribution p(x, y) is defined [12] as H (X, Y ) =
−

∑

x∈X
∑

y∈Y p
(

x, y
)

log p
(

x, y
)

. The conditional entropy is formally defined

[12] as H (Y|X) = −
∑

x∈X
∑

y∈Y p
(

x, y
)

log p
(

y|x
)

.
15Of course, one must also determine where a legal rule begins and ends to
interpret the rule. Sometimes, this process is fraught with difficulty, which itself
may introduce a form of interpretive entropy. Here, I abstract away from this
potentially additional layer of entropy.
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language of other legal rules, which necessitates determining
how those other rules’ affect the entropy of the rule-at-issue.
And even more problematic, interpreting rules draw on yet
more disconnected sources, such as legislative history, judicial
decisions, and even general policies and social norms. Not
to mention that interpretive entropy applies not only to the
interpretation of legal rules, but also legal documents more
generally, such as patents and contracts, which introduce further
interpretive issues.

In the face of such complexity, following D’Amato [7], one
might throw up one’s hands and abandon the quantitative
endeavor entirely. However, while complex, legal rules ultimately
are interpreted, and experienced attorneys regularly estimate
the likelihood of a court interpreting a rule in one fashion or
another. Indeed, so much has been recognized since at least
Holmes [55]. Moreover, new approaches in legal analytics—
like those in sports analytics—are likely to be paradigm-
shifting in the ability to predict the outcomes of disputes and
related aspects of the law more generally (cf. Katz et al. [32];
Branting et al. [33]).

Finally, the notions of joint and conditional entropy described
in the context of delineative entropy similarly allow for
interpretive entropy in principle to be broken into discrete parts
and recomposed. For instance, courts and others interpreting
legal documents usually only turn to sources other than the
words when there is some ambiguity in specific words or phrases.
If a word or phrase is entirely clear on its face, then typically
legal interpreters will adopt a textual interpretation. Thus, the
text-based techniques described earlier (e.g., Friedrich et al.
[2]) and others can be used as initial cut to determine those
words and phrases subject to some latent ambiguity. Words
without such ambiguity can either be assumed to have zero
entropy or simply the entropy calculated on the basis of the
text-based methods. For those words or phrases with latent
ambiguity, the text-based score may roughly be considered a
primary variable upon which other sources for interpretation
(e.g., other statutes or regulations, case decisions, social norms,
and the like) can be considered secondary variables conditioned
on the primary variables, allowing for the use of joint and
conditional entropy as explained earlier. Although the precise
nature of this staged approach is beyond the scope of this paper,
the general contours sketched here should provide the beginnings
of a more comprehensive and realizable method to quantifying
interpretive entropy.

Applicative Entropy
Once a legal rule has been interpreted, in order to understand
how it specifically regulates human behavior, it must be
applied to a specific situation, or set of facts.16 Even though
the applicable legal rule has been fully interpreted, residual
indeterminacy in the application of the law may remain and
can be quantified by applicative entropy. This indeterminacy can

16Of course, some laws apply to the process of lawmaking, enforcement, and
adjudication itself. The discussion of applicative entropy here extends to these legal
rules as well. Relatedly, it also applies to the application of an interpreted contract,
patent, or similar legal document to a set of facts.

arise from “uncertainty as to the impact evidence will have on
the decisionmaker,” idiosyncratic behavior in adjudication by a
decisionmaker such as a judge or jury, and the influence of
extra-legal factors on the regulatory and judicial process [56].

Applying the law typically results in the imposition of liability
(or no liability), plus some form of remedy in the event liability
is imposed. Again, Shannon entropy can be used to measure
the entropy of liability and the conditional entropy to measure
the entropy present in the range of remedies in the event
liability is imposed. Before turning to these specifics, it is
instructive to examine the typology of Hohfeld [15], as it offers
a sound, quantitative conceptual basis to describe the entropy of
composite legal systems and subsystems, which is illustrated well
by applicative entropy.

Hohfeld’s (Probabilistic) Typology
Rather than try to describe the entire formalism of Hohfeld [15],
for purposes of this article, is straightforward enough to explain
twoHohfeldian relations: a Hohfeldian right (that is, a right in the
strict sense, hereinafter “strict-right”) and a Hohfeldian power
(see generally Sichelman [57] for a detailed exposition).

Specifically, a legal actor, X, who holds a positive strict-right
vis-à-vis Y, with respect to some action A, implies that Y is legally
obligated vis-à-vis X to perform that action. For instance, X may
hold a contractual strict-right that Y deliver to X’s warehouse
100 widgets by the following Wednesday. If X holds a negative
strict-right vis-à-vis X with respect to some action A, then Y is
obligated to refrain from performing that action (in other words,
Y is prohibited from performing the action). For instance, X may
hold strict-right in tort that Y not punch X on the nose without
justification (e.g., in self-defense).

In Hohfeld [15], whether a first actor X holds a strict-right vis-
a-vis a second actor Y can be answered only in a binary fashion
such as by a classical bit of information.17 In other words, if
the strict-right is positive in nature, Y either has an obligation
to perform some action A or not. Adjudication in the sense
of Hohfeld [15] thus involves a determination by the court (or
other adjudicatory body) if the application of a law to a given
set of facts results in a strict-right/obligation for X and Y or a
no-right/no-obligation for X and Y.

For convenience, we will label a strict-right as r1 and the
absence of a strict-right as ∼r1. In this fashion, one can
represent a strict-right as an “on-bit” (in binary notation, the
number “1”) and a no-right as an “off-bit” (in binary notation,
the number “0”). In order to more easily manipulate these
bits mathematically, it is useful to adopt an equivalent vector
formalism, wherein:

r1 =
(

0
1

)

and ∼ r1 =
(

1
0

)

(matrix notation)

Hohfeldian powers alter, terminate, or create other legal relations.
For instance, by changing the applicable law, the legislature in
effect may change X’s right vis-à-vis Y that Y perform some action
A to no obligation for Y perform the action. In mathematical

17See Marinescu and Marinescu [58] for a detailed discussion of classical
information theory.
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terms, the legislature’s power would be akin to second-rank
permutation tensor (here, a 2 × 2 permutation matrix) that
changes X’s right vector into its negation (a Hohfeldian “no-
right”) corresponding to the lack of any obligation (a Hohfeldian
“privilege”) on the part of Y (Sichelman [59]).

Similarly, higher-order powers may change lower-order
powers. For instance, a new constitutional amendment may
eliminate a previously held second-order power of the legislature.
One such example is the passage of the controversial Proposition
209, which amended the California Constitution to prohibit the
government, including the legislature, from “discriminat[ing]
against, or grant[ing] preferential treatment to, any individual
or group on the basis of race, sex, color, ethnicity, or national
origin in the operation of public employment, public education,
or public contracting” (Cal. Const. art. I, § 31).

In this instance, the amendment would act as a higher-rank
tensor that flips the legislature’s second-order permutation tensor
to a second-rank identity tensor. This is because an identity
tensor that operates on first-order right/obligation relations
would have no effect on these relations. In other words, a second-
order identity tensor is emblematic of the lack of (a second-order)
power (a Hohfeldian “disability”). More generally, higher-order
powers can be described mathematically as higher-rank tensors
that operate on lower-rank tensors (lower-order legal relations)
(Sichelman [59]). In this regard, it is important to recognize
that vectors are simply lower-rank tensors—thus, a first-order
Hohfeldian strict-right is simply a lower-order Hohfeldian
power. Thus, all Hohfeldian relations can simply be expressed in
terms of legal powers and well-known mathematical relations.

A probabilistic version of Hohfeld’s [15] schema may also
be developed (Sichelman [59]). Here, instead of legal relations
being described by a classical binary bit, the states can exist
in probabilistic superpositions, better described by a quantum
bit (i.e., qubit). The probabilistic nature of the legal relation
may be a result of lack of knowledge of the underlying system
or due to inherent indeterminacy in the system itself prior to
judgment (a form of system measurement), or a combination
of both reasons.18 Using the qubit formalism, one can specify a
probabilistic Hohfeldian relation in the following form:

|j >n= an|jr >n +bn |j∼r >n (5)

Where |jr>n is a legal power (or right, to first-order), |j∼r>n is
the negation of a legal power, P(jr)n = |an|2 is the probability of
a legal power obtaining upon judgment, P(j∼r)n = |bn|2 is the
probability of the negation, |an|2 + |bn|2 = 1, and n is the order
of the legal relation. In other words, probabilistic Hohfeldian

18In the event the indeterminacy results from mere lack of knowledge, the state
of the system can be described wholly by classical probability theory. However,
the qubit formalism can easily model both the lack of knowledge and inherent
indeterminacy in a given system prior tomeasurement. Like the difference between
classical and quantum mechanics (i.e., in physics), the conceptual difference
between mere lack of knowledge and inherent indeterminacy for legal relation
states may—in certain conceptions—lead to quantum-like legal effects, such as
legal “entanglement” of states, that can distinguish “classical” legal indeterminacy
(i.e., lack of knowledge) from “quantum” legal indeterminacy (i.e., inherent
indeterminacy). For simplicity, however, I rely upon the classical entropy formulas
herein.

relations, be they first-order strict-rights and obligations or
higher-order powers and liabilities, can be characterized by the
qubit formalism,19 where there is a probability |an|2 that the legal
relation will be measured (i.e., adjudicated) in the “power” state
and 1–|an|2 = |bn|2 in the negation (or lack) of the “power”
state. The indeterminacy regarding the state of the system prior
to judgment can be quantified as a form of applicative legal
entropy.20

Quantifying Applicative Entropy
As noted earlier, a legal judgment with respect to a first-order
relation (strict-right/obligation) will either result in a finding
that the defendant had an obligation (is liable) or not. Less
frequently, a judgment may concern whether a legal actor holds a
higher-order relation (power) or not. Prior to this judgment, the
indeterminacy in the judgment again can be quantified using the
Shannon entropy:

S = −
∑

pi log2 pi

As there are only two potential outcomes in judgment, this
reduces to the binary Shannon entropy:

S = −plog2p− (1− p)log2(1− p) (6)

where p is the probability that a court finds a power (right to
first-order) and corresponding liability (obligation to first-order)
on the part of the defendant. In general, as discussed earlier, this
entropy is maximum when there is a 50% chance of liability and
a 50% of chance of no liability (see Figure 1).

Conditional upon a finding of liability, Shannon entropy can
be applied to the range of potential remedies. In the event the
remedies are discrete in nature, the ordinary Shannon entropy
formula may be used. However, because remedies are usually
continuous,21 it becomes necessary to use the differential or
continuous entropy [53]:

h(Y) = −
∫

Y
f
(

y
)

lnf
(

y
)

dy (7)

where f(y) is a probability density function of the potential
remedies. For instance, f(y) may represent the likelihoods

19Note that the for the higher-order relations, the states |jr>n and |j∼r>n are 2nd-
rank and higher-rank tensors, not simply vectors, as in the standard quantum
formalism.
20In this regard, note that while the Von Neumann entropy—which in effect
measures the indeterminacy of a mixed quantum state with respect to its entangled
substates—is zero for a pure quantum state, there is nonetheless Shannon
information entropy for a pure state with respect to the indeterminacy of its
potential measurement outcomes prior to a measurement [60].
21In general, outcomes in legal contexts are discrete and small in number, e.g.,
one of a small number of potential formulations, interpretations, and applications
of the law. Even potential remedies are often discrete, though as noted, in some
cases, remedies may form a continuous distribution. Enforcement likelihoods may
also form a continuous distribution, but as noted, this paper abstracts away from
enforcement for simplicity. Of course, empirical studies of legal systems may
construct effectively continuous distributions from large datasets (e.g., of words
in statutes), but this paper explores legal entropy from an internal perspective of
the legal system itself. Of course, it should be straightforward given the discussion
here to apply its concepts to such external empirical studies.
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FIGURE 1 | Binary shannon entropy vs. probability of an event occurring.

of various lengths of prison sentences or the amount of
damages owed.

For example, suppose that the likelihood of sentences follows
a typical bell curve function:

f (y) =
1

σ
√
2π

e
− (y−µ)2

2σ2 (8)

where µ is the mean of the distribution and σ is the standard
deviation of the curve. In this instance, the differential entropy is:

h(Y) = −
∫

Y

1

σ
√
2π

e
− (y−µ)2

2σ2 ln
1

σ
√
2π

e
− (y−µ)2

2σ2 dy (9)

With some rearranging, this reduces to the simple
expression [61]:

h (Y) = 2 ln(2πeσ 2) (10)

The total applicative entropy of a given dispute can then be
calculated by the chain rule discussed in Part 4.2:

H (X, Y) = H (X) +H (Y|X) (11)

Here, H(X) is applicative entropy related to whether liability will
be found or not, andH (Y|X) is the applicative entropy related to
the remedy, conditional upon liability being found.

Systemwide Entropy
The previous discussion of legal entropy, be it delineative,
interpretive, or applicative entropy, has involved one or a narrow
set of rules, interpretations, and applications. An immediate
question arises as to how to derive the entropy of a legal system
or subsystem that encompasses numerous legal relations (in the
Hohfeldian sense). Although a full treatment of systemwide legal
entropy is beyond the scope of this article, some preliminary
remarks may be made.

First, the Hohfeldian mathematical formalization of relations
into vectors and tensors is particularly helpful in conceptualizing
the quantitative state and related entropy of a system. Recall that
the general probabilistic state of a legal relation can be described
as the following:

|j >n= an|jr >n +bn|j∼r >n (12)

For a first-order relation (a Hohfeldian strict-right), the state of a
single legal relation is simply a 2-D vector in a “Hohfeldian” state
space. As the vector rotates in the state space, the an and bn—and,
hence, the relative probabilities of a right being found—change
in time. This rotation may be due to the operation on the vector
by a power (i.e., a tensor) or simply by the change in external
circumstances (e.g., changing underlying facts). For the higher-
order relations (a Hohfeldian power), the state of a single relation
is a multi-dimensional tensor in the Hohfeldian state space. Like
the vector, these tensors may rotate (in a higher-dimensional
sense) in the state space, with corresponding changes in the
relative probabilities of liability being found (or not).

In theoretical terms, one can imagine the complete Hohfeldian
state space as a collection of a multitude of vectors and tensors
corresponding to every possible action and states of the world
affected by law (and a complement space of all of those actions
and states not so affected). In other words, any action or state of
the world with a non-zero probability of being subject to a power
(including a first-order, power, i.e., strict-right) has an associated
vector (or tensor) in the state space representing that specific
probability.22 The complement state space represents all actions
and states of the world with a zero probability of being subject to
a power (including a strict-right).

Of course, listing every possible action and state of the world
potentially subject to law and determining how those states
change over time is essentially an impossible task.23 However,
for discrete subspaces, it is certainly possible to construct such
a space, measuring entropy and other useful properties of the
system. For instance, a patent typically will contain multiple,
separate claims, each of which describes a slightly different
instantiation of the invention. In this sense, each claim provides
a separate legal right to prevent third parties frommaking, using,
and selling the corresponding claimed invention. One claim in
a patent may relate to a product, the sale of which infringes
that claim, while another claim in a patent may relate to the
performance of a method with the product that infringes the
claim. Although the two claims are related, actions that infringe
one claim (e.g., the product claim) may not infringe the other
claim (e.g., the method claim).

The legal subspace of interest may be all of the claims of the
patent as they apply to the activity of a potential infringer. For
an accused infringer to be found liable, the claim must both
be valid and enforceable (which typically does not depend on
the specific activity of the infringer24) and infringed (by the
particular activity of the infringer). Thus, using Shannon entropy,
one can first determine the probability that each claim will be
found valid and enforceable, using that to determine the entropy
related to validity/enforceability, and conditional upon a positive

22Cf. Gold and Smith [45, 46] (“In other words, we pick the costlier-to-provide
legal relation where Shannon entropy is higher and the cheaper signal (sometimes
doing almost nothing) for where it is lower.”).
23For a discussion of how one might model the changing information nature of
legal rights and related interests over time using an evolutionary approach, see
Alston and Mueller [62] and Ruhl [63].
24Sometimes the enforceability of a patent claim turns on facts unique to a given
dispute, but for simplicity, I assume here that it is a general determination—i.e.,
that it applies across all disputes.
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determination, the probability that the claim is infringed by
the accused infringer, which then can be used to calculate the
conditional entropy and, ultimately, total entropy of each claim
(again, according to the chain rule described earlier).

If the decision for each patent claim is statistically
independent, then one can simply add the entropy for each
claim together. However, whether a given patent claim is
valid, enforceable, and infringed is typically correlated to other
patent claims in the same patent. When the judgment of
particular claims is correlated, the joint entropy of the claims in
combination can be used to determine the total entropy.

Specifically, the joint entropy of a set of multiple, random,
discrete variables that are potentially correlated can be written as
[53]25:

H (X1, . . . , Xn) = −
∑

x1

. . .
∑

xn

P(x1, . . . , xn) log2 P(x1, . . . , xn)

Here, P (x1, . . . xn) is the joint probability that each event occurs
together. For instance, if there are only two patent claims, X and
Y, then the possible outcomes are defendant is liable on X and
Y (outcome 1); liable on X but not Y (outcome 2); liable on Y
but not X (outcome 3); and liable on neither (outcome 4). If the
probability of outcome 1 is 1/4, outcome 2 is 1/3, outcome 3 is 1/6,
and outcome 4 is 1/4, then the joint entropy for the two patent
claims is:

− (1/4) log2 (1/4)+ (1/3) log2 (1/3)+ (1/6) log2 (1/6)

+(1/4) log2 (1/4) = 0.96 bits

Note that the underlying probabilities of liability—and, hence,
legal entropy—may change in time due to the exercise of
a second-order power by a legislature or some external set
of circumstances. For instance, Congress passed the America
Invents Act in 2011, which effectively changed the probability
that a given patent claim would be found invalid. In this instance,
the legislative change would immediately rotate all patent claim
vectors in state space, resulting in different probabilities and, in
turn, a different subsystem entropy. Similarly, exogenous changes
in societal norms, technology, economics, and so forth, may affect
the underlying probabilities of legal claims (e.g., Cooter [64]),
again, rotating vectors in state space as these changes take effect.
For instance, the advent of the Internet arguably changed how
judges view software patent claims as a whole, which in turn led
to a diminished role for software patents more generally (e.g.,
Barzel [65]).

These concepts can be extended to the legal system as a whole.
First, divide the legal system into independent legal subsystems
(To the extent the law is truly a “seamless web,” skip this
step.) The entropy of any legal subsystem can be constructed
in principle by using the joint and conditional entropies of
individual states within the subsystem. (Even if the law is a
seamless web, at some point, the correlations among states is so
low, they can be ignored and the legal system treated as if it is
composed of independent subsystems.)

25For continuous variables, such as remedies, the differential joint entropy may be
used [53].

Again, in practice, this will be nearly impossible, but for
certain subsystems of interest—e.g., a patent—certainly possible,
especially with improvements in AI approaches for modeling
the law. And, again, in the very least, it provides a conceptual
framework for richer jurisprudential understandings of the law.
The next part considers the beginnings of these richer accounts
in a few notable areas.

PRACTICAL USES OF LEGAL ENTROPY

Legal Indeterminacy
There is an extensive literature on the notion of legal
indeterminacy (see Solum [13] for a discussion). One camp,
particularly those in the critical legal studies vein, argue
for radical indeterminacy of legal doctrine and judicial
decisionmaking (e.g., Kennedy [66], D’Amato [7], Singer [67]).
Another argues for minimal determinacy, at least in principle
(e.g., Dworkin [3]). And the last camp takes an intermediate
position (e.g., Kress [68]). Yet, despite the numerous articles
on the topic of legal indeterminacy, only a handful of pieces
attempt to quantify it—some by examining the ambiguity of
legal language using measures from computational linguistics
(e.g., Katz and Bommarito [1]) and others by analyzing reversal
rates and dissents as a possible proxy of indeterminacy (e.g.,
Lefstin [69]). Yet, none attempt a wholesale quantification of the
amount of indeterminacy present in legal rules and adjudication.
This lacuna is notable, because filling it may help to solve
many of the recurring debates and disagreements regarding legal
indeterminacy in the literature.

For instance, Kress [68] contends, “The pervasiveness of easy
cases undercuts critical scholars’ claim of radical indeterminacy.”
Interpretive and applicative entropy measured across numerous
legal rules and related disputes provide a quantitative test of
this assertion. Of course, practically quantifying these types of
entropy is no simple feat, but a combination of human-coded
and automated methods—including those using advances in AI
(e.g., Branting et al. [70]; Katz et al. [32]; Branting et al. [33])26—
could certainly provide a precise quantitative metric for at least
a particular field or doctrine in the law. As machine learning
and other automated techniques in legal document classification
and analysis continue to improve, arguably, the previous impasse
among scholars regarding the “indeterminacy” of the law should

26Branting et al. [33] uses “maximum entropy” classification models to predict
outcomes of a variety motions in federal district court. Although Branting et al.
[33] does not discuss legal entropy as that term is used here, maximum entropy
models as applied to legal disputes implicitly concern interpretive and applicative
entropy. Specifically, Branting et al. [33] attempt to predict outcomes for three
different types of motions using the following features: “the party filing the
motion, the judge ruling on the motion, the sub-type of motion, and alphanumeric
character sequences having non-alphanumeric characters on both the left and right
sequence borders that occur in the text of the motion.” As Berger et al. [50] explain,
a maximum entropy approach “model[s] all that is known and assume[s] nothing
about that which is unknown.” Thus, if one has no information about the result of
a motion in court, one assumes the “maximum entropy,” which would give each
side a 50% chance of winning. In modeling legal outcomes with maximum entropy
models, one begins with one bit of interpretive and applicative entropy per decision
and works to reduce the overall entropy—and, thus, increase predictability—by
incorporating more and more (training) information by fitting that information to
the known data through a series of logistic regressions (see, e.g., Yu et al. [71]).
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yield to at least a modicum of agreement. Regardless, quantitative
approaches to legal entropy can provide a deeper understanding
of this core issue in the law.

Legal Entropy, Modularity, and Work
Refining Legal Modularity With Legal Temperature

and Work
As noted earlier, the original concept of entropy in
thermodynamics resulted from investigations regarding an
ideal engine and how the transfer of heat, 1Q, from a heat
source at a certain temperature, T, to an idealized engine in a
so-called reversible process, increased the entropy of the system
by an amount 1Q/T. Recall that Boltzmann [17] provided a
microscopic picture of the macroscopic entropy, whereby heat
is essentially a “disordered” collection of microscopic particles,
the introduction of which increases the system disorder by a
measure of 1Q/T. According to Boltzmann [17] this ratio can
be captured by the total number of microstates of a system
corresponding to a given macrostate.

To gain a deeper appreciation of legal entropy, it is useful
to construct the notion of legal heat and legal temperature.
For simplicity, consider the context of applicative legal entropy
with respect to first-order Hohfeldian relations (i.e., strict-
right/obligation), where a fully interpreted legal rule is subject
to judgment. Recall that each legal relation can be depicted as a
vector in state space, such that if the vector does not lie upon one
of the axes, there is indeterminacy in the judgment, such that:

|j >= a|jr > +b|j∼r > (13)

where |jr> is a legal right, |j∼r> is the negation of a right, P(jr) =
|a|2 is the probability of a legal right obtaining upon judgment,
P(j∼r)= |b|2 is the probability of the negation obtaining, and |a|2

+ |b|2 = 1. Also recall that the entropy in this situation is:

S = −p log2 p− (1− p) log2 (1− p) = −|a|2 log2 |a|2

−|b|2 log2 |b|2

As legal “heat” enters a legal system, the entropy of the
system increases by increasing the underlying uncertainty in
outcome. For instance, in the context of applicative entropy
(i.e., judgments), increasing uncertainty in the underlying facts
constitutes legal “heat” that shifts the Hohfeldian state vector
away from vertical or horizontal and into a diagonal position,
maximizing entropy when the state vector is at a perfect diagonal,
|a|2 = |b|2, with the corresponding result that judgment is a coin
flip (50/50).

Incoming legal heat will have less effect the higher the legal
temperature. For instance, if a legal system is at its maximum
applicative entropy (50/50), the introduction of more heat
cannot increase the entropy of the system. For instance, suppose
that the adjudicator—the judge or jury—has already decided
to flip a coin to determine the outcome of a dispute. Thus,
increasing uncertainty in the underlying facts will have no effect
on the ultimate outcome. Because the change in entropy is
proportional to the change in heat divided by the background
system temperature, at least for applicative entropy, we can see
that background system temperature is directly proportional to

the background entropy. In other words, when the background
entropy is very low, the background temperature is low, and the
introduction of legal heat will be more meaningful.

The notion of legal heat, temperature, and entropy can be
useful in explaining important theoretical concepts in the law at
a more quantitative and arguably deeper level. Importantly, the
insightful work of Smith [8–10] on the role of modularity in legal
systems can be refined using these concepts. Specifically, Smith
[8–10] posits that information costs play an integral role in the
“modularity” of legal systems—namely, the use of “boundaries”
in the law (be they spatial or intangible) to “economize on
information costs” by “hiding” classes of information “behind”
the boundaries.

Smith’s concept can also be understood in terms of legal
entropy. Specifically, as the entropy of a legal subsystem
increases, more information—and, hence, more information
costs—are required to encode and resolve disputes concerning
the legal subsystem. For instance, consider a piece of real
property, and the potential uses of an “owner” and “third
parties” with respect to the property. One could list out every
potential use of the owner and third parties with respect to the
property, determining whether such use “improperly” interferes
with the owner’s or a third party’s “rights,” where the rights and
interference thereof are defined by some set of background laws
and principles. Each step in this use-by-use analysis would be
fraught with substantial indeterminacy, generating high entropy
and hence large information costs to resolve whether each use
is “rightful” (cf. Smith [8–10]). Similarly, a use-by-use approach
would involve large costs in delineating and interpreting the law.

As an alternative, the boundary of the property may be used
as a proxy to define rightful and wrongful uses to substantially
reduce systemwide entropy and, hence, information costs in
delineating, interpreting, and applying the law. In other words,
in the terms of Smith [8–10], the boundary effectively hides
the owner’s (unspecified) interests in using the land from legal
consideration in the investigation of actions by a third party.
To determine if a third party unreasonably interfered with the
owner’s interests, instead of examining whether a particular
action on the part of the third party interfered with particular
uses of the owner, the law generally assumes that when a third
party unjustifiably crosses the boundary, an interference occurs.
This assumption economizes on information costs by using the
boundary as a reliable proxy for actual interference with the
owner’s and third parties’ specific interests.

Of course, erecting boundaries as proxies can introduce
error costs in allocating rights and duties, so it is important
to place some constraints on the modularization of law. The
notions of legal temperature and entropy can also perform
important work in imposing such constraints. Namely, it is
only when the legal system inside the boundary has relatively
low temperature and entropy, especially when compared to
the temperature and entropy near or outside the boundary,
that modularity will serve its role to reduce information costs
without imposing significant error costs. If, on the other hand,
entropy and temperature were to rise inside the boundary—
for instance, as the result of substantial, ever-changing and
indeterminate State regulation as to the uses that the owner
could undertake—then the modularity of an “exclusionary”
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approach to property becomes less attractive, instead yielding
to a more particularized “governance” approach (Smith [8–10]).
Using the information-theoretic concepts of legal entropy and
temperature not only helps to more fully explain modularity, but
also provides a means to quantify how modularity functions, and
when exclusionary regimes should yield to governance regimes
[see generally (Sichelman and Smith, unpublished)27].

Reducing Legal Entropy and the “Work” of the Legal

System
As the discussion of modularity shows, the legal system can
in effect reduce legal entropy by reducing the uncertainty
and related information costs in delineating, interpreting, and
applying the law. More generally, lawyers and the legal system
expend “work” by drafting and interpreting constitutions, laws,
regulations, contracts, patents, and other legal documents to
reduce the amount of uncertainty in whether particular actions
that legal actors may perform are permitted, forbidden, or
obligated (in deontic terms) and in whether particular laws are
valid or not (i.e., can effectuate a power in Hohfeldian terms).

Legal “work” expends transaction costs in the time and effort
required to draft, interpret, and apply the law, which often
encompasses time and effort in negotiation, the collection of
facts, the investigation of background law, and so forth.28 A
portion of these transaction costs are “information costs” in the
sense of Smith [8–10]. The efficient level of information costs can
be specifically quantified as the amount of entropy reduction in a
legal system or subsystem performed by legal work.29 Specifically:

1WI = −1SL (14)

In other words, the amount of legal work efficiently expended
in information costs directly reduces the legal entropy by the
same amount.30 The legal entropy is the sum of the delineative,
interpretive, and applicative entropy defined in earlier, as

27Sichelman T, Smith HE.Measuring Legal Modularity. On file with author (2021).
28Another set of information costs (and associated entropy) arises from
enforcement of the law. As noted earlier, this article abstracts away from such
concerns for simplicity, but they are certainly important, and susceptible to the
approaches described herein.
29Here, the “efficient level of information costs” assumes that it is efficient to
increase legal certainty; in some situations, legal uncertainty may be economically
efficient. Cf. Kaplow [72] (describing potential benefits of uncertainty in legal
rules).
30Parisi [5] is apparently the earliest work to associate legal entropy with positive,
asymmetric transaction and strategic costs. Themodel offered in the present article
provides a more precise relationship between legal entropy and transaction costs;
namely, it posits that transaction costs arise from activities that reduce legal entropy.
In other words, information (a form of transaction) costs are expended to make a
legal system or set of entitlementsmore predictable. Cf. Yang [73] (noting that costs
to acquire information in the context of an economic coordination game reduce
informational entropy). However, in economic parlance, transaction costs may be
viewed as a form of economic “friction,” burning up surplus in a metaphorical
manner that reduces the amount of available energy (i.e., analogous to surplus)
with a concomitant increase in systemwide entropy. More precisely, the burning
of surplus in the form of transaction costs will lead to economic uncertainty
in the sense of Shannon entropy if the number of microstates corresponding
to suboptimal, high-transaction cost welfare regimes is higher than the number
of microstates corresponding to relatively optimal, low-transaction cost welfare
regimes. (For general reflections on the notion of entropy in economics, see Rosser
[74].) Moreover, economic transactions are achieved by physical activities that

well as other types of legal entropy not discussed here (e.g.,
enforcement entropy).

The direct relationship between legal work, information costs,
and entropy reduction provides a direct linkage between legal
entropy and the economic theory of law, importantly including
Coase’s Theorem. Specifically, because information costs are a
class of transaction costs, one can postulate a Coasean world in
which the only transaction costs are information costs.

In a world solely of information costs, the efficient allocation
of legal rights will depend on the amount of legal work the legal
system must expend on reducing the entropy of the system from
one in which both actors hold Hohfeldian privileges (i.e., the
absence of a duty) to one in which the actors are subject to one
or more duties. As Parisi [4] notes, it is only in the hypothetical
absence of transaction costs that delineation is costless and
entropy may effectively be disregarded.

Importantly, Coase [12] abstracted away from the fact that
the initial delineation of legal entitlements between legal actors
itself expends transaction (including information) costs (Lee and
Smith [76]). Instead, Coase posited an artificial world of zero
transaction costs only after the initial assignment of “property
rights,” assuming such assignment is costless. Indeed, as Lee and
Smith [76] properly recognize, Coase’s [12] notion of “property
rights” is more akin to “thin,” costly-to-delineate contractual
rights than the usually “lumpy,” less-costly property rights. In
this sense, Coase [12] obscured an important aspect of the
relationship between transaction costs and the assignment of
legal rights. Namely, because “pre-Coasean” transaction costs
must be expended in the delineation of the law itself, it will only
be efficient to randomly delineate and assign a right to one legal
actor or another when these pre-Coasean transaction (including
information) costs in so doing are symmetric and, thus, equal.

However, in many, if not most, cases, the transaction costs of
delineation are not symmetric in the assignment of entitlements,
which implies that an efficient allocation of entitlements will
not occur even if transaction costs following that allocation are
zero.31 This is particularly so for well-defined legal entitlements,
a key assumption of the Coasean, post-assignment, transaction
cost-less world.32

generate transaction costs, including information costs, and may result in real-
world, physical entropy (e.g., the use of a computer) (see, e.g., Georgescu-Roegen
[75]). Nonetheless, economic and physical frictions are not the type of “frictions”
of concern to legal entropy in the sense used in the present article. In other
words, each form of entropy (e.g., legal, economic, physical) is an independent
instantiation of the general notion of entropy embodied in the Shannon entropy
formula (cf. Jaynes [20]).
31Parisi [77] offers a revision to the Coase Theorem based on a conceptual
approach to entropy that focuses on how asymmetric transaction costs in the
transfer of property rights affect remedies, rather than the asymmetric costs in
the delineation of legal entitlements in the first instance (see also Luppi and Parisi
[78]).
32Barzel [65] notes that “[i]t is evident, however, that costless transacting results in
the perfect delineation of rights and that it is redundant to also require that rights
are well defined,” but does not extend this observation to its effects on the Coase
Theorem in the first instance (see also Barzel [79]). Cheung [80] makes a similar
observation, stating “private property rights cannot coexist with zero transaction
costs.” Cheung [80] criticizes the Coase Theorem on these and other grounds, but
does not discuss how these costs might be incorporated into an extended notion of
the Coase Theorem.
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In sum, even before the Coasean world comes into being,
transaction costs typically play a fundamental role. Thus,
postulating a world with no transaction costs only subsequent
to the allocation of entitlements does not necessarily imply that
the initial assignment is always efficient. An understanding of the
delineation entropy involved in the assignment of rights prior to
the Coasean world of zero transaction costs is central to a deeper
understanding of how transaction costs bear on the efficiency of
the legal system.

CONCLUSION

Numerous legal scholars have discussed the notion of legal
entropy, but few have attempted to quantify it. Those attempts
to quantify the notion have been limited to analyzing the
ambiguity of legal texts by measuring the entropy of words.
Although certainly useful, these approaches fail to capture the
multifaceted nature of legal entropy. In this article, relying upon
the work of Shannon [14, 31] and Hohfeld [15], I have proposed
the beginnings of a mathematical framework to quantify legal
entropy more broadly. The model proposed offers several useful
benefits. First, it offers a potential template for how legal AI
systems canmeasure and store information about the uncertainty
of legal systems. Second, the model helps to explain more fully
the nature and function of so-called legal indeterminacy as well
as the “modularization” of the law and Coasean notions of how
transaction costs affect the allocation of legal entitlements. To
be certain, the model fails to address important practical details

concerning how to assess the underlying probabilities necessary
to calculate legal entropy, but hopefully increasing advances in
legal AI will lead to the wide-scale realization of such a model in
the near future.
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