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We propose and evaluate generative models for case law citation networks that account
for legal authority, subject relevance, and time decay. Since Common Law systems rely
heavily on citations to precedent, case law citation networks present a special type of
citation graph which existing models do not adequately reproduce. We describe a general
framework for simulating node and edge generation processes in such networks, including
a procedure for simulating case subjects, and experiment with four methods of modelling
subject relevance: using subject similarity as linear features, as fitness coefficients,
constraining the citable graph by subject, and computing subject-sensitive PageRank
scores. Model properties are studied by simulation and compared against existing
baselines. Promising approaches are then benchmarked against empirical networks
from the United States and Singapore Supreme Courts. Our models better
approximate the structural properties of both benchmarks, particularly in terms of
subject structure. We show that differences in the approach for modelling subject
relevance, as well as for normalizing attachment probabilities, produce significantly
different network structures. Overall, using subject similarities as fitness coefficients in
a sum-normalized attachment model provides the best approximation to both
benchmarks. Our results shed light on the mechanics of legal citations as well as the
community structure of case law citation networks. Researchers may use our models to
simulate case law networks for other inquiries in legal network science.

Keywords: case law citation networks, legal network science, physics of law, network modelling, community
detection

1 INTRODUCTION

Citations between cases form the bedrock of Common Law reasoning, organizing the law into directed
graphs ripe for network analysis. A growing number of complexity theorists and legal scholars have sought
to exploit legal networks to uncover insights about complex systems in general and legal systems in
particular. Clough et al. [1] show that transitive reduction produces different effects on a citation network of
judgments from the United States Supreme Court (“USSC”) as compared to academic paper and patent
networks. Fowler et al. [2, 3] pioneered using centrality analysis to quantify the authority ofUSSC precedent.
This inquiry has been since been extended and applied to other courts [4] such as the Court of Justice of the
European Union [5], the European Court of Human Rights [6], and the Singapore Court of Appeal
(“SGCA”) [7]. Examining case law citation networks (“CLCN”s) from the Supreme Courts of the
United States, Canada, and India, Whalen et al. [8] find that cases whose citations have low average
ages, but high variance within those ages are significantly more likely to later become highly influential.
Beyond case law networks, Bommarito, Katz, and colleagues [9–11] have exploited the network structure of
US and German legislation to study the growth of legal systems as well as the law’s influence on society.
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The community structure of CLCNs has received significantly
less attention. This, however, is a rich area of research that
retraces to seminal works in network science [12, 13].
Understanding communities broadly as connected subgraphs
with denser within-set connectivity than without [14] allows
us to automatically uncover network communities by
iteratively removing links between otherwise dense subgraphs
[13] or stochastically modelling link probabilities [15, 16]. A wide
range of community detection techniques [17–21] as well as
measures for evaluating community quality [22–24] have been
studied. To our knowledge, two prior works have examined
community structures in case law. Bommarito et al. [25]
develop a distance measure for citation networks which they
exploit to uncover communities in USSC judgments.
Mirshahvalad and colleagues [26] use a network of European
Court of Justice judgments to empirically benchmark a proposed
method for identifying the significance of detected communities
through random link perturbation.

Studying community structures in CLCNs can reveal deeper
insights for both legal studies and network science. For legal
studies, how far communities in CLCNs mirror legal doctrinal
areas (e.g., torts and contracts) is telling of judicial (citation)
practices. A judge who cites solely on doctrinal considerations
should generate likewise doctrinal communities; one who cites for
other (legal or political) reasons would transmit noisier signals.
Community detection algorithms could also further the task of
legal topic classification. Thus far, this has primarily been studied
from a text-classification approach [27, 28].

For network science, CLCNs present a special case of the
citation networks that have been studied extensively by the field.
Studies mapping scientific papers as complex networks have
demonstrated that they exhibit classic scale-free degree
distributions [29] (but cf [30]). This has been attributed to
preferential attachment, in that papers which have been cited
more will be cited more. Other factors shaping paper citations
include age [31] and text similarity [32]. These variables’
interacting influences on citation formation yield rich
structural dynamics in citation networks. For instance, over
time, some papers come to be entrenched as central graph
nodes while others fade into obsolescence, showing that age
alone does not determine centrality [33]. Numerous generative
models, discussed further in Part 2.2, have thus been proposed for
citation networks, including for web hyperlinks [33–35].

As [1]’s findings suggest, however, the structure of CLCNs
may differ from those of these traditional citation networks. In
law, judges must consider the authority and relevance of
precedent, amongst other things, when citing cases in their
judgments. The doctrine of precedent further requires them to
prefer certain citations to others. It is thus worth studying how
CLCNs relate to traditional citation networks.

To this end, we examine how far generative models proposed
for traditional citation networks can successfully replicate
CLCNs. After a brief review of existing models (Section 2.2),
we propose and evaluate a CLCN-tailored model that attempts to
account for the unique mechanics of legal citations. The model is
premised on an attachment function that attempts to capture
aspects of legal authority, subject relevance, and time decay

(Section 2.3). As measures for legal authority and decay are
well-established, we focus on how subject relevance may be
modelled. We devise a method for simulating node-level
subjects and experiment with alternative attachment functions
that incorporate these vectors in four different ways: using subject
cosine similarity as a standalone linear feature in the attachment
model; using the same as fitness coefficients [36]; constraining
nodes to citing within subject-conditional “local worlds” [37];
using subjects to generate subject-sensitive PageRank scores [38]
(Section 2.3.3). We then study by simulation the topological and
community properties of networks produced by these alternative
models (Section 3.1) and benchmark promising models (and
baselines) against two empirical CLCNs: early decisions of the
United States Supreme Court and of the Singapore Court of
Appeal (Section 3.2).1

We find that using subject similarity scores as fitness
coefficients within a sum-normalized probability function best
approximates these actual networks. However, key differences
remain between the simulated and actual networks, suggesting
that other factors influencing legal citations are remain
unaccounted for. Nonetheless, our work represents a first step
towards better capturing and studying the mechanics of case law
citation networks.

2 MATERIALS AND METHODS

Section 2.1 sets the legal theory and context behind case law
citation formation. Section 2.2 explores how far these are
captured by existing models. Section 2.3 explains our
proposed models. Section 2.4 describes the simulation
protocol. Section 2.5 explains the graph metrics used to
evaluate the simulations. Section 2.6 details the benchmark
datasets.

2.1 Legal Context
We define a CLCN as a graph G(N , E) where all nodes n ∈ N are
legal case judgments and all edges e ∈ E citations between them.2

Let k, k− and k+ respectively denote the degree, in-degree, and
out-degree distributions of G. Nodes may have attributes such as
the authoring judge, decision date, legal subject, and the text of
the judgment. Edges may be weighted (e.g., if a judgment cites
another more than once), and have attributes such as whether the
citation affirms or overrules the cited case.

Like all citation networks, CLCNs are time-directed and
acyclic.3 CLCNs are unique, however, because the probability
that a new node nt cites an earlier nt−1 (denoted P((nt , nt−1)) and
the entire distribution P) is shaped by legal theory and practice.

1All models and simulation methods are implemented in Python and will
subsequently be made available in a GitHub repository.
2Though judgments often cite to other forms of law such as statutes. We leave these
such hybrid networks aside for now.
3Judgments published close in time could cite one another. This occurs, albeit
rarely, in the Singapore dataset below.
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Posner [39] identifies five overarching reasons for legal paper
citations, namely to:

1. Acknowledge priority or influence of prior art
2. Provide bibliographic or substantive information
3. Focus disagreements
4. Appeal to authority
5. Reinforce the prestige of one’s own or another’s work

Reason (4) is particularly pertinent to case citations in
Common Law systems characterized by the doctrine of
binding precedent. The doctrine, in brief, means propositions
of law central to a court’s essential holding are taken as binding
law for future purposes. Lower courts are bound to follow these
holdings. While courts at the same level of hierarchy are not
technically bound the same way, great deference is generally
accorded to past cases nonetheless.

Recent studies have thus sought to measure legal authority
with network centrality measures calibrated for the legal domain
[2, 3]. Beyond citation counts, a judgment’s authority is further
shaped by its subject areas and time context [40]. Lawyers do not
think of judgments as simply authoritative in the abstract, but
within a given doctrinal subject area (i.e., torts or contracts) and
at a given time. Precedential value waxes and wanes as a judgment
gets entrenched by subsequent citations, ages into obsolescence
over time, and as other complementary or substitute judgments
emerge [7, 39]. Relevance, authority, and age are thus key,
interconnected drivers of CLCN link formation [8].

2.2 Existing Models
How far are these legal mechanics captured by existing network
models? In this section, we review existing citation network
generative models and consider how they may be used to
simulate CLCNs. Note that this paper is not a comprehensive
review and will only highlight illustrative examples.

2.2.1 Degree-based Models
Classic Barabasi-Albert (“BA”) [41] preferential attachment sets
PBA � ki∑j

kj
. This model famously recovers scale-free degree

distributions observed in empirical networks. However, in this
model earlier nodes acquire a significant and permanent
advantage over later ones, particularly if the former are cited
early on. Thus, a known limitation [42] of using BA model for
simulating citation networks is that, since PBA � 0 whenever
k � 0, new nodes (which necessarily have k− � 0) are very
unlikely to gain citations. Thus, the final graph may be such
that most subsequent nodes cite the root node. This, of course,
does not occur in empirical CLCNs (see also Section 3.2).

The “copying” model [34] offers a partial workaround. Links
are determined by first randomly choosing one node from N as a
“prototype”, denoted np. Destinations are then either selected
randomly from N by a coin toss with manually-specified
probability α or copied from np otherwise. While the model
does not explicitly include k in its attachment process, notice that
nodes with zero in-degree may only be cited under the former
branch, while nodes with high in-degree are more likely to be

cited under the latter branch. The copying model can therefore be
broadly understood as a mixture between the Erdos-Renyi and
BA models with mixture intensity controlled by α. Setting α � 1
recovers Erdos-Renyi completely, though the model with α � 0 is
not completely equivalent to BA. This allows the copying model
to produce scale-free degree distributions while leaving open the
possibility for k � 0 nodes to be cited. However, these nodes are
still less likely (depending on α) to be cited, as they cannot be cited
under the copying branch. Moreover, the random process used
for selecting prototypes and deciding whether to copy does not
accord with legal intuitions. We do not expect new judgments (or
papers) to randomly choose older judgments to either cite or copy
citations from.

Another alternative proposed by Bommarito et al. (“BEA”)
[43] is a generalizable attachment function which considers in-
and out-degree separately. More precisely,

PBEA((nt ,Nt−1)) � eαk
−
Nt−1+βk

+
Nt−1

∑  |Nt−1 |
i�1 eαk

−
i +βk+i

(1)

where k−i and k+i are node i’s in- and out-degree respectively, and
{α, β} ∈ R are parameters for tuning their influences on P.
Denoting {k−i , k+i } as a single feature vector Xi and {α, β} as
weight vector B, (1) may be rewritten as

PBEA((nt ,Nt−1)) � eBXNt−1

∑|Nt−1|
i� 1 eBXi

� softmax(BX) (2)

Because the softmax has a vector smoothing effect, using it
over conventional sum normalization ensures that non-zero
citation probabilities are assigned to all nodes, even for nodes
where k � 0. Seen this way, BEA provides a readily-extensible
framework for modelling citation networks. BX is capable of
encompassing an arbitrary range of weights and features.4

The BA and BEA models may be seen as instances of what
Pham et al. [44] call the General Temporal (“GT”) model. GT
generalizes k into an arbitrary function of node degree A(k),
known as the “attachment kernel”, such that PGT ∝A(k). The GT
framework allows a large class of degree-based attachment
models to be specified and estimated by maximum likelihood.
For instance [44], simulate networks with
A(k) � 3((log(max(k, 1)))2 + 1. GT thus offers an attractive
framework for modelling legal authority in CLCN link
formation. But, despite its name, GT attachment does not
explicitly model node age. Yet, age has been identified as a
factor driving citation networks, including CLCNs [8].

2.2.2 Aging Models
More generally, degree-based models generally ignore the well-
documented influence of node age on citation formation [31, 42,
45]. By contrast, “aging” models [31, 45] propose introducing a
decay vector w(n, t) such that P∝A(k) × w(n, t). Here, w(n, t)
can be any standard decay function which takes maps every n to
weights bounded by [0, 1] based on their arrival time tn. Decay

4Notice that this effectively models link probabilities with a multi-class
logistic model.
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functions are further monotonically non-increasing with item age
an � t − tn, and assign weight 1 to nodes with an � 0 [46]. For
instance, a simple sliding window assigns all items younger than a
cut-off age to weight 1 and all other items to weight 0.

The specific aging model proposed by Wang et al. [31] uses
node in-degree and exponential decay such that
Paging ∝ k− × exp(−τa). In exponential decay functions, the
parameter τ controls decay rate and induces a fixed half-life of
ln(2)
τ . Thus, the aging model gives younger nodes a higher chance

to be cited than older ones with the same in-degree. However,
nodes with k− � 0 still have zero probability of being cited,
regardless of age.

One extension of the aging model which incorporates
intuitions from copying models are Singh et al.’s “relay”
models [33]. Like copying models, relay models first choose a
prototype np and performs a coin toss to determine the next step.
But unlike copying models, prototypes are chosen by BA
preferential attachment instead of randomly. The first coin’s
head probability is given by exp(−τan) (that is, exponential
decay). On heads, np itself is cited and the process ends. On
tails, a second coin toss with manually-specified head probability
θ decides if citations are “relayed” (on heads) or if np will be cited
nonetheless (on tails). In a “relay”, a new prototype is selected
fromwithin the set of nodes citing np via a specified distributionD
(Singh et al. use either uniform-random or preferential
attachment). The process repeats until broken by a coin toss
or the maximum specified relay depth is reached (in which case
the final prototype is cited).

The exponential decay which parameterizes the first coin toss
means aged papers are less likely to be cited themselves than they
are to relay citations to younger papers citing them. At the same
time, since prototypes are chosen initially by preferential
attachment and subsequently re-chosen by D, relay models
incorporate aspects of degree-based, scale-free models [33].
show that relay models better fit empirically-observed
distributions of paper citation age gaps (i.e. the age difference
between citing and cited papers) than the classic aging model.
Relay models thus provide a more sophisticated method to
account for both degree and age simultaneously. What
remains missing, however, is a way to incorporate subject
relevance as well. We thus turn to examine “fitness” models.

2.2.3 Fitness Models
Fitness models [47] attempt to account for each node’s innate
ability to compete for citations. This is generally achieved by
introducing a vector of node fitness coefficients ηi. For instance,
the Bianconi-Barabasi model [36] introduces a vector of uniform-
randomly sampled ηs to classic preferential attachment such that

PBB � ηiki∑j
ηjkj

. Introducing η weakens the monopoly k holds over

citation probabilities in PBA. A fit node has a good chance of being
cited even if its degree is low (though not if its degree is zero) [48].
further propose introducing a time-decay vector w, such that the
final attachment function becomes P � ηiA(ki)w∑j

ηjA(kj)w
. Notice that

fitness in this regard may represent any arbitrary attribute
other than degree which is believed to influence citation
probabilities. For instance [42], use the ratio between (a) the

theoretical number of citations a node should receive under BA
and (b) the actual number received to measure the “relevance” of
a node.

Likewise, if we conceptualize η, A(k), and w as capturing legal
relevance, authority, and time effects respectively, this three-
variable model appears ideal for modelling legal citations.
Here, degree-based centrality scores (an instance of A(k)) have
been shown to capture legal authority well (see Section 2.3.1
below). Modelling time effects with w is also relatively standard.
The crux, therefore, is devising etas that capture subject relevance.
This turns on the distribution it is sampled from. Drawing fitness
uniformly from [0, 1], as in [36], yields in expectation an evenly
distributed node ranking inconsistent with the intuition that
nodes sharing subjects with the citing node should be fitter
(that is, more relevant) than others.

One workaround is to calculate eta empirically from the text
content of actual papers [35]. use the cosine similarity between
(stopped and lemmatized) word frequency distributions of two
papers’ texts to their content similarity. They then propose a
“three-feature model” which places content similarity scores
alongside in-degree preferential attachment and power-law
time decay as competing node attachment distributions. The
model randomly chooses one of the three (with probability α, β, c
respectively, α + β + c � 1) as the final attachment function. This
creates a probabilistic mixture between the content similarity,
degree, and aging models, although only one model is ultimate
used to generate any given edge.

Using text similarity measures to capture content overlap is
intuitively logical and allows us to exploit the growing literature
on text embeddings [49] (which find increasing representation in
legal studies as well [7, 50]). The main drawback is that because
text is difficult to simulate, we are limited to simulating edges
between actual, existing nodes. To illustrate, for CLCNs, we can
compute text similarity between empirically-observed case
judgments and simulate citations between them. This would,
of course, reveal important insights about CLCNs. However,
generating the case judgments themselves would be difficult.
We would not be able to deviate from empirically-observed
node attributes.

To summarise, existing literature provides a wealth of citation
network generation models. Each have their own strengths and
weaknesses when theoretically applied to CLCNs. At the same
time, we are not aware of any study that attempts to do this.
Building on this literature, the next Section proposes a model
tailored for CLCNs.

2.3 Modelling Case Law Citation Networks
Following [43], we start at time t � 0 with G0 comprising |N0| � 1
node and |E0| � 0 edges. For each t till a specified stop T,
|Nt | ∼ Po(λ) new nodes are added. Each nt cites

∣∣∣∣Ent∣∣∣∣ ∼ Po(μ)
prior nodes (re-drawn independently per node). {λ, μ} ∈ R thus
control network growth rates. The main innovation of our model
lies in the attachment function. In the abstract, we use a
probability function P � f (Λ, ρ,w) where Λ generalizes A(k)
above to encompass any function, including functions not
based on k alone, capable of measuring legal authority, ρ
measures subject relevance, and w is a time-decay function.
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The goal is to calibrate these variables in a legally-contextualized
manner. Below we expand on each variable in turn.

2.3.1 Authority
In place of k− and k+ above, we use Kleinberg’s [51] authority and
hub scores. These have been shown to accurately recover legally-
significant cases from CLCNs [2, 3, 5, 40, 52]. We denote
authority and hub scores as A(k−) and A(k+) respectively.
While we might intuitively expect in-degree to be more
representative of authority than out-degree, legal scholars have
found that out-degree-based scores can be a better predictor of
future case influence [40]. Cases which discuss and synthesize a
large number of authorities tend to represent important disputes
into which significant legal and financial resources are poured.
For similar reasons, they also tend to become important legal
checkpoints themselves. We therefore include both score types in
the model. In any event, α or β could be set to zero to remove
either score.

2.3.2 Time
Following the aging model, we use a standard exponential decay
where w(n, t) � exp(−τan). This suits the legal context because
citations to centuries-old judgments are not uncommon. Thus,
discrete decay functions like the sliding window that apply a
standard discount to all papers above a certain age would not
model this observation well. Given the law’s respect for old
authority, we assume throughout this paper that τ � 0.01,
resulting in a precedent half-life of about 70 periods. Of
course, future work could explore how τ may be empirically
estimated (see [31]) and how it may vary over time, jurisdiction,
subject, or even judge.

2.3.3 Subject Relevance
To derive relevance, we first need to simulate subjects for each
node. Drawing inspiration from Latent Dirichlet Allocation
(“LDA”) [53], we assign each node a vector of m subjects
ϕi ∼ Dir(ψ,m). ψ is a m-sized vector that controls subject
skew. If we want some subjects to occur more than others,
possibly following a power-law, a similarly skewed ψ may be
used. As a null model, however, we may set ψ � 1

m.
One drawback of the Dirichlet is that non-zero probabilities

may occur across many subjects. This is inconsistent with how
legal cases generally discuss only a few subjects. Thus, we set a
minimum cut-off of 0.1 below which subject values are floored to
0. The vector is then normalized to sum back to 1. Should this
cutoff result in an entirely zero vector, one randomly-chosen
subject is assigned weight 1. Because LDA treats documents as
finite mixtures over m latent overlapping ‘topics’ that are in turn
multinomial distributions across words, such a cut-off is
intuitively similar to assuming that any subject generating less
than 10% of the words in a judgment is not a subject that should
be ascribed to it.

These subject vectors are analogous to overlapping
community belonging coefficients [24], though it is always
possible to partition nodes into discrete subjects by taking, for
instance, max(ϕi)). Here, we interpret ϕ as non-fuzzy subject
proportions rather than probabilities. That is, a case with ψi �

{0.51, 0.25, 0.24} has subjects 1, 2, and 3, each with probability 1.
But it is primarily about subject 1, in that 51% of its content is
expected to come from the same.

Given ϕ, subject relevance can be modelled in at least four
ways:

As Linear Features: First, we can derive subject similarity
scores ρsimnt ,Nt−1 � g(ϕnt , ϕNt−1), where g is some vector similarity
measure. Many options for g exist, but for now we default to
cosine similarity given its established use in document clustering,
including for legal documents [54]. The simplest way to model
relevance is then to include ρsim as a standalone linear feature with
its own weight γ such that Plinear ∝w × (αA(k−) + βA(k+) +
cρsim).
As Fitness Coefficients: Including ρsim linearly is attractively simple,

but may fail to account for interaction effects between authority,
relevance, and time. Thus, a second approach is to model ρsim as
fitness coefficients, so Pfitness ∝ ρsim × w × (αA(k−) + βA(k+)). This
is broadly similar to the model proposed in [48], except that fitness
values are computed from simulated subjects. Notice that, unlike with
the linear features approach, using subject similarities as coefficients
ensures that prior nodes with zero subject overlap with the citing node
will be assigned P � 0 as well.

As Locality Constraints: Another more direct to enforce this is
to limited nodes to citing within subject-conditional “local
words” [37]. Within each locality, nodes can be selected by
any subject-conditional probability distribution [37].’s original
paper used the uniform distribution. To account for legal
authority and time effects, we continue to choose nodes using
HITS scores and exponential decay. To approximate the idea of
nodes being authoritative within subjects, HITS scores are re-
computed within the subgraph of nodes sharing at least one
subject with the citer. More precisely then,
Plocal ∝w × (αAlocal(k−) + βAlocal(k+)), with the subscript
‘local’ denoting that the vector is computed on a subject-local
subgraph.

For Subject-Sensitive PageRank: Another way to interact
subject overlap with degree-based authority is to use ϕ to
compute so-called topic-sensitive PageRank (“TSPR”) scores
[38] that may be used in place of HITS scores. While
conventional PageRank [55] produces one global ranking that
disregards node topic, TSPR first calculates m (the total number
of topics) different rankings by setting non-uniform
personalization vectors for each topic given by

v(ni) �
⎧⎪⎪⎨⎪⎪⎩

1∣∣∣∣Nj

∣∣∣∣ if ni ∈ Nj

0 otherwise

(3)

where Nm is the set of nodes with subject j. Given a query node q
with topic weights ϕq, TSPR then returns TSPRq � ∑

v
ϕq · PRj,

with PRj being personalized PageRank scores for topic j. While
TSPR has not been studied in legal networks literature, it offers a
promising way to simultaneously account for authority and
subject relevance using just one centrality measure. Thus,
PTSPR ∝w × TSPRq.

The subject models above are, of course, based on the literature
reviewed in Section 2.2. The best approach for modelling subject
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relevance is not obvious. Neither are the approaches mutually
exclusive. For instance, after constraining the citable node set by
subject, we may still include ρ as a linear feature while also using
TSPR scores to model authority. Other combinations are also
theoretically possible. But doing so may lead to contradictions.
For example, calculating TSPR within a subject-constrained
subgraph will return the simple PageRank score of that
subgraph. It may also overplay the importance of subject
relevance. For now, we study the properties of the networks
produced by each approach independently.

To summarise, the proposed subject models begin with one
root node and, at each time step t, adds |Nt | ∼ Po(λ) nodes with∣∣∣∣Ent∣∣∣∣ ∼ Po(μ) edges per node. Attachment probabilities are
specified generally by P � f (A(k),w(t), ϕ), where A(k) is
some degree-based centrality measure including simple in/out-
degree, HITS scores, and TSPR, w(t) is an exponential decay
function, and ϕ ∼ Dir(ψ,m) a vector of simulated node subjects
whichmay be incorporated into P in four different ways proposed
here (though we do not rule out alternatives).

2.4 Model Simulations
To study the properties of our proposed models, we simulate 50
iterations of T � 500 steps for each subject model. Building on
[43], we experimented with softmax as well as sum normalization
for each model. For ease of reference, below we refer to the four
proposed subject models as Linear, Fitness, Locality, and TSPR
respectively. We use brackets to identify the normalization
scheme. To illustrate, TSPR (sum) refers to a sum-normalized
attachment model based on exponentially-decayed subject-
sensitive PageRank scores.

For baseline comparison, we also simulated the BA, BEA,
aging, copying, and relay models. We ran BA with degree-based
preferential attachment (not in-degree), following the original
model. Likewise, BEA was simulated with α and β both equal to 1.
The aging baseline follows [31]’s specification, using only in-
degree and an exponential decay with tau � 0.01. A softmax-
normalized alternative was tested as well. The copying model was
run with copying probability α � 0.5 (not to be confused with the
in-degree weight α in our models). Finally, we used preferential
attachment relay and set relay depth at 1, τ � 0.3, and θ � 0.9.
This follows optimal parameters found by Singh et al. for
approximating the scientific paper networks they studied.

Including 5 baselines, subject models, and alternative
normalizations, a total of 16 different models are run for 50
iterations each.5 To promote comparisons across models, we fix a
few key parameters in our simulations. First, |Nt| is fixed
universally at 1. Thus, exactly one node is added at every step
for every simulation. Second, the number of subjects is fixed at 30.
Third, within each iteration we first draw all

∣∣∣∣Ent∣∣∣∣s from Po(5) and
all ϕnts from Dir( 1

30, 30) and use the same inputs across all
models/approaches. This means the out-degree distribution of
all models in the same iteration will be similar. Further, because
the same subject vectors are used across all parameterizations

within the same iteration, only 50 × 501 individual node subject
vectors are generated.6 Fourth, all weights {α, β, c} are set at 1
whenever relevant (though recall that c is only used by the linear
feature subject model). Finally, an exponential decay with τ �
0.01 is used for all models (except the relay model).

A few implementation details are worth noting. First, because∣∣∣∣Ent∣∣∣∣ is randomly-drawn, it can exceed the total number of nodes
in the existing, citable graph. Further, some attachment models
result in zero citation probabilities for certain nodes, further
limiting the citable node set. Thus, whenever

∣∣∣∣Nt−1
∣∣∣∣ <

∣∣∣∣Ent∣∣∣∣, we
draw only |Nt−1 destinations (while still using P). As a result, a
node’s realized out-degree can be lower than its initially-drawn
out-degree. This is more likely to occur in the Locality models
since nodes may only cite within subject-local subgraphs. This
accounts for minor differences in total edge counts across model
simulations. Second, nodes and edges are added in batches after
attachment probabilities and edge destinations for every new
node at a given t is determined. All computations are based solely
on Gt−1, so nodes and edges added at the same t do not influence
computations for each other. Third, after P is calculated,
destination nodes are selected without replacement, so

∣∣∣∣Ent∣∣∣∣
unique destination nodes are always drawn. This follows prior
literature which (implicitly) samples without replacement [43].

Finally, we use NetworkX’s [56] Python package to compute
HITS scores. Since convergence is not guaranteed, we allow the
algorithm to run for a maximum of 300 power iterations, three
times the package default. We modify the package slightly to
return prevailing scores if convergence is not achieved by then. To
facilitate convergence (and save computational resources), we
exploit the intuition that HITS scores for step t + 1 should not
differ too much from those of step t and provide HITS scores
from previous steps as warm starts. Note that this cannot be done
for Locality. Because the citable node set in that model varies from
node to node, relevant prior HITS scores vary.

2.5 Model Properties
An important preliminary question is whether the subject models
yield scale-free degree distributions even as they seek to model
time and relevance effects. As our simulation protocol fixes out-
degree distributions, so comparing out-degree or total degree
distribution is less meaningful. Thus, we begin by examining each
model’s realised in-degree distributions. To compute the average
distribution across 50 iterations of the same model, we stack
distributions on each other to produce a 50 × 501 matrix of in-
degree counts. We then take the column-wise mode of this
matrix7 as the average distribution and compute the
frequency-rank distribution of the same.

To further examine how the baseline and subject models differ
in subject structure, we also derive subject signatures for each
network. These are broadly inspired by [33]’s temporal bucket
signatures. More precisely, denote the subject edge histogram of a

5Other parameterizations for the copying (α ∈ {0.1, 0.9}) and relay models(uniform
relay) were run but do not change our results.

6This includes the root node plus 500 node-time steps.
7Mean and median are not suitable here since they yield decimal values that would
render frequency counts problematic. Where more than one mode exists we take
the smallest value.
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graphGwhose nodes fall withinm subjects as a sizem ×mmatrix
H(i, j) where each entry is the total number of times nodes with
subject j have cited nodes with subject i. Because one node may
have many subjects, a single edge can add to many entries.8 Thus,
|H| ≥ |E|.

The global-sum-normalized matrix Hnorm � H
|H| then yields the

unconditional probability distribution for the cited and citing
subject pairings of an arbitrary edge. Meanwhile, normalizing H
column-wise so that Hcol � H|H(j)| yields in each column the
probability of subject i being cited conditional on the citing
edge having subject j. In this way, H, Hnorm and Hcol offer
different insights on the subject signature of a single network.
Subject signatures for each model may then be computed by
averaging these matrices across model iterations.

Finally, we compute a range of network density and
community quality metrics for selected models. These include
intra/inter-community edge ratios [57] and link modularity,
being [18]’s modularity scores extended to the case of
overlapping, directed communities [22]. We compute these
metrics against (1) the simulated ϕs themselves (as ground
truth subject labels) and (2) communities recovered by
k-clique percolation. k-Clique percolation is a useful baseline
because it is an established method for overlapping community
detection [14]. Briefly, it recovers communities by percolating
k-sized cliques to adjacent k-cliques (i.e., those sharing k-1
nodes). Its time-efficiency also means running the algorithm
on all simulated networks is more practical than other equally
established but less efficient algorithms, such as Girvan-Newman
edge-betweenness [13]. We fix k at 3, the smallest meaningful
input, to allow more, smaller communities to be returned.
Though a directed k-clique algorithm exists [58], we could not
find any open-source implementation. As an accessible baseline
was desired, we relied on NetworkX’s undirected implementation
instead. Code for k-clique percolation and all community quality
metrics are from CDLIB [59].

2.6 Empirical Benchmarks
Studying the structural properties and subject signatures of the
simulations identifies certain more promising approaches for
modelling CLCNs. As a final step, we benchmark selected
approaches against two empirical CLCNs. The first is the
internal network of USSC judgments that is well-studied in
legal network science. To obtain legal subjects, we join Fowler
et al.’s [3] edgelist with metadata from the Spaeth database [60],
particularly the “issue areas” identified for each case. The second
is an internal network of SGCA judgments that has also been
studied in prior work [7]. The dataset covers citations between all
reported decisions of the SGCA from 1965 (the year Singapore
gained independence) to 2017. Judgments are assigned to subjects
using catchwords provided by the Singapore Law Reports, the
authoritative reporter of SGCA judgments. Following [28], we
map these subject labels to 31 unique subject areas (including the
“Others” category). Note that in both datasets subjects are

overlapping in that the same case may belong to more than
one subject.

These networks represent different CLCN archetypes.
Although both the United States and Singapore inherited
English law, the legal, social, and time contexts in which each
system originated and developed is vastly different. Further, while
the USSC primarily (and selectively) reviews cases of federal and
constitutional significance, the SGCA, as its name suggests,
routinely considers appeals on matters of substantive
(including private) law. The datasets are also practically
usefully because both provide human-labelled legal subjects.
To be sure, this also implies that comparisons between the
two networks must be made with caution. On top of their
different legal contexts, the legal subjects provided by each
database also differ. The Spaeth database uses broad issue
areas such as “Civil Rights” and “Due Process”. The Singapore
dataset uses specific doctrinal areas such as torts and contracts.
Below we refrain from drawing comparisons between the two
networks except on broad properties such as degree distributions.

As we are primarily interested in network generation, we focus
on the first 2001 nodes of the USSC network and the first 1001 of
the SGCA network (making allowance for one root node). More
USSC nodes were used because the early USSC graph was sparser.
The resultant USSC and SGCA benchmark graphs had 777 and
779 edges each. The USSC benchmark spans from the year 1791
(the first node) to 1852 (the 2001th node), while the SGCA
benchmark spans from 1970 to 1999. More detailed properties of
both graphs are discussed in Section 3.2.

To set up the comparison, we first calibrated the model with
the empirical properties of each network. Specifically, USSC
simulations used an average edge rate per case of 777

2001 � 0.388.
Subject vectors were drawn across 14 issue areas from
Dir(ψus, 14), with ψus being the normalized issue frequency
distribution of the benchmark graph. Likewise, SGCA
simulations were run using edge rates of 779

1001 � 0.778 with
subjects drawn from Dir(ψsg , 31). As with the initial
simulations, we fix |Nt | � 1 for all t and pre-draw all |Et |s and
ϕs per iteration.

All benchmark simulations are run and assessed using the
same protocols and metrics described in Section 2.4. The
implementation details noted there apply. Additionally, we
exploit the subject signatures to compute vector distances
between the simulated and empirical graphs. In particular, we
take the distance between Hnorm as an indicator of the aggregate
differences between the subject structure of two graphs. We also
measure distances between the main diagonals/off-diagonals
alone for insight into differences between intra/inter-subject
structure. Column-wise distances between Hcols can be taken
as a measure of per-subject differences in structure.

Amongst the wide range of graph distance measures available
(see [61] for a review) we use the L1 distance because of its simple,
intuitive interpretation as the sum of absolute differences.9 More

precisely, L1(H1,H2) � ∑
j
∑
i
|H1(i, j) −H2(i, j)|. At the same time,

8To illustrate, if a node with subjects 1 and 2 cites a node with subjects 3 and 4,
entries(3,1), (4,1), (3,2) and (4,2) are all incremented.

9We also experimented with Kullbeck-Leibler divergence and obtained similar
results, though that measure often returns infinity.
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classic measures such as the Hamming and Jaccard distances are
meant primarily for binary (adjacency) matrices. Future work
could explore more tailored distance measures. In particular,
since H and Hnorm may also be interpreted as adjacency matrices
for a weighted and directed meta-graph between the subjects, a
distance measure specialized for such graphs (e.g. [62, 63]) may
be useful.

Importantly, note that subject indexes must be aligned before
computing most vector distances, including the L1, as entry order
affects results. In our context, this is akin to ensuring that subject i
of H1 is comparable to subject i of H2. As our simulated subjects
are arbitrary, we cannot order them by substantial content: say, to
place torts at index 0 and contracts at index 1. Instead, we place
the most frequent subject at index 0 and the least frequent at
m − 1. Since the most common subjects are often also more likely
to be cited (simply as a function of frequency), frequency
indexing desirably concentrates probabilities towards the top-
left quarter of the matrix, presenting a visually-readable signature
(see Section 3.2). When computing signature distances,
therefore, we are comparing citation patterns across subjects
as ranked by frequency. If the most common subjects in
graphs G1 and G2 both primarily cite other common subjects,
signature distances would be relatively small. But if common
subjects in G2 primarily cite its least common subjects, signature
distances would be larger.

3 RESULTS

3.1 Model Simulations
As shown in Figure 1, most subject models successfully generate
scale-free in-degree distributions similar to baselines. We also
observe that Aging (sum) produces an average in-degree
distribution with one node monopolizing most edges. Because
aging models consider only in-degree, sum-normalization leads
exactly to the problem, discussed in Section 2.2, where new nodes
are never cited. This is partially addressed in by softmax
normalization, but the Aging (softmax) model still manifests a
visibly more imbalanced in-degree distribution than others. The

same is also true for the BEA model. This is because even though
the softmax function generally assigns non-zero probabilities,
small-valued input elements are quickly assigned vanishingly
small values. Consider for example that softmax(5, 5, 1) �
0.495, 0.495, 0.009 at three decimal places. This affects models
like BEA and Aging, which use simple degree counts as inputs,
more directly because differences in feature values are larger.

The models are further differentiated by subject signatures.
Figure 2 shows that the baseline models do not reproduce intra-
subject citations. Instead, citation densities are evenly spread
across all subjects. As expected, this also applies to the
softmax-normalized subject models (except Locality). The
softmax function’s smoothing effect is particularly significant
here because we use features — such as authority score and
cosine similarities — that range within [0, 1]. Much of the
potentially differentiating information captured by these
variables are expressed in terms of small decimal differences
which are easily smoothened away. Therefore, except when used
in the context of the Locality model (which would impose strict
subject constraints to begin with), softmax normalization appears
unsuited for our purposes.

The remaining subject models have largely similar subject
signatures. To further distinguish them, we examine specific
graph properties presented in Tables 1 and 2. While our
subject models are similar to baselines in some respects like
connectivity, they have clear structural differences, particularly in
terms of subject communities.

General Properties: Clustering coefficients were generally low
(save in the BEA and Aging (softmax) models). All models
produced giant components encompassing most (around
99.9%) of the graph. However, in-degree distributions in
baselines are generally more imbalanced than in the subject
models. Gini coefficients for the baselines ranged between 0.52
(relay) to 0.998 (Aging (sum)) whereas those for the subject
models ranged between 0.417 (Linear (sum)) to 0.598
(TSPR (sum)).

Subject Structure: Relative to all others, sum-normalized
subject models yielded more intra-subject edges, lower
expansion and conductance scores for communities defined by

FIGURE 1 | Mode-averaged in-degree distributions for simulated sum-normalized (left), softmax-normalized(centre), and other baseline models (right). 50
iterations of 500 node steps are run per model. Models in the same iteration number use identical, pre-drawn out-degree counts from |En| ∼ Po(5) and subjects from

ϕ ∼ Dir( 1
30, 30).
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the gold labels, as well as higher link modularities. These
networks therefore exhibit stronger within-subject clustering
(an attribute which, to recall, should in theory characterize
CLCNs). Conversely, the softmaxed subject models differed
only slightly from the baselines. To be sure, stronger
conformity with subject labels is not necessarily better, since
legal citations are influenced by more than subject relevance
alone. Depending on the extent of subject clustering desired,
therefore, TSPR approaches may offer a middle-ground.

k-Clique Structure: The k-clique metrics paint a less
coherent picture. There is no clear correlation between how
well the models retrace gold label subjects and the average
number, size, and quality of the communities recovered by
k-clique percolation. The average number (size) of
communities uncovered amongst sum-normalized subject
models varies from around 28 to 82 (7–18) whereas the

softmaxed subject models tend to yield around 70 k-clique
communities of 5–8 nodes. Insofar as our models approximate
the legal citation process, these results suggest that k-clique
percolation may be less useful for clustering (and classifying)
case law by legal subjects. Communities recovered by the
algorithm do not appear to reflect actual legal areas,
suggesting that legal subject clustering does not follow the
assumptions of k-clique percolation. Nonetheless, the
observed k-clique communities may be the result of other
clustering mechanics inherent in legal citation networks. To
this extent, they offer an independent basis for assessing the
structural similarity of different simulated models. For
instance, it is clear from Table 2 that the BEA model,
which always results in exactly 1 large k-clique community
that encapsulates the whole network, is structurally distinct
from the rest. The sum-normalized Fitness and TSPR models

FIGURE 2 | Hnorm subject signatures for simulated baselines (top row), sum-normalized subject models (middle row), and softmax-normalized subject models
(bottom row). Subjects are indexed by descending frequency from 0 to 30.
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also stand out from the other sum-normalized subject models
as they tend to produce fewer but larger k-clique communities
(see Table 1).

In sum, preliminary simulations demonstrate that the specific
approach used to incorporate subject relevance induces
significantly different network structures. While using subject
cosine similarities as fitness values in a sum-normalized model
may be theoretically similar to setting subject constraints on
citable localities, the resulting networks differ in key aspects
such as in-degree distribution and k-clique structure. The
normalization function used also makes a key difference. This
in turn underscores the importance of carefully selecting the
subject model. Here we do not declare any one model as correct
or best. To the extent that an ideal model exists, its
parameterization likely turns on the specific type of CLCN we
are trying to simulate. The legal and institutional context
underlying the network would be relevant. Citation practices

in one court at a given time may fall closer to the Fitness model,
whereas another court may cite more in line with the
TSPR model.

That said, it is also clear that certain subject models, especially
those using softmax normalization, are unlikely to successfully
capture the nuances of legal citations for the reasons given above.
For benchmarking purposes, therefore, we focus on approaches
that appear more promising, being Linear (sum), Fitness (sum),
Locality (softmax), and TSPR (sum). For brevity, we only present
results for more promising baselines as well (being BA, Copying,
and Relay).10

TABLE 1 | Simulated properties for sum-normalized and relay models.

BA Aging Relay Linear Fitness Locality TSPR

General Structure
Avg Clust Coef 0.043 (0.0) 0.0 (0.0) 0.018 (0.0) 0.059 (0.0) 0.086 (0.01) 0.058 (0.0) 0.07 (0.0)
Giant Comp % 0.994 (0.0) 0.994 (0.0) 0.994 (0.0) 1.0 (0.0) 0.994 (0.0) 0.999 (0.0) 0.999 (0.0)
Gini (In-Deg) 0.739 (0.01) 0.998 (0.0) 0.52 (0.01) 0.417 (0.01) 0.597 (0.01) 0.456 (0.01) 0.598 (0.01)

Subject Structure
#Intra Edges 420.08 (29.29) 83.84 (33.3) 405.86 (25.59) 2228.54 (52.4) 2507.18 (60.4) 2449.08 (59.06) 1740.94 (46.04)
Expansion 4.559 (0.11) 0.917 (0.03) 4.435 (0.11) 2.981 (0.08) 2.594 (0.07) 2.626 (0.08) 3.388 (0.09)
Conductance 0.865 (0.01) 0.923 (0.03) 0.866 (0.01) 0.437 (0.01) 0.38 (0.01) 0.387 (0.01) 0.528 (0.01)
Link Modularity 0.005 (0.0) 0.005 (0.0) 0.005 (0.0) 0.031 (0.0) 0.035 (0.0) 0.034 (0.0) 0.023 (0.0)

k-Clique Structure
#Comms Recov’d 32.66 (7.64) 0.0 (0.0) 84.74 (10.69) 72.36 (9.53) 28.14 (5.45) 81.92 (10.15) 52.48 (6.4)
Avg Comm Size 13.485 (2.92) – 5.205 (0.38) 8.929 (0.98) 18.058 (3.09) 7.661 (0.81) 10.02 (1.04)
#Intra Edges 1819.5 (94.97) – 983.42 (85.87) 1915.8 (124.49) 2107.3 (89.04) 1740.84 (116.24) 1890.7 (103.13)
Expansion 4.563 (0.23) – 4.911 (0.19) 3.864 (0.14) 4.097 (0.27) 4.01 (0.15) 4.078 (0.2)
Conductance 0.663 (0.01) – 0.68 (0.01) 0.598 (0.01) 0.62 (0.02) 0.617 (0.01) 0.628 (0.01)
Link Modularity 0.044 (0.0) – 0.019 (0.0) 0.042 (0.0) 0.056 (0.0) 0.038 (0.0) 0.047 (0.0)

Notes: Values represent the mean (standard deviation) of the relevant metric over 50 iterations. Relay was simulated with θ � 0.9, τ � −0.3, relay depth 1, and preferential relay. Relay is not
a sum-normalized model but because the relay mechanism relies on sum-normalized preferential attachment, it is expedient to present its properties here instead of in a separate table.

TABLE 2 | Simulated properties for softmax-normalized and copying models.

BEA Aging Copy Linear Fitness Locality TSPR

General Structure
Avg Clust Coef 0.469 (0.01) 0.341 (0.02) 0.044 (0.0) 0.015 (0.0) 0.015 (0.0) 0.051 (0.0) 0.016 (0.0)
Giant Comp % 0.994 (0.0) 0.997 (0.0) 0.999 (0.0) 0.999 (0.0) 0.999 (0.0) 0.999 (0.0) 0.999 (0.0)
Gini (In-Deg) 0.988 (0.0) 0.905 (0.01) 0.719 (0.01) 0.544 (0.01) 0.548 (0.01) 0.564 (0.01) 0.549 (0.01)

Subject Structure
#Intra Edges 417.82 (64.92) 411.02 (48.24) 423.82 (24.52) 476.0 (25.78) 420.42 (25.01) 2448.34 (58.85) 424.32 (26.85)
Expansion 4.561 (0.14) 4.565 (0.12) 4.557 (0.11) 4.511 (0.1) 4.559 (0.1) 2.642 (0.08) 4.555 (0.1)
Conductance 0.878 (0.02) 0.874 (0.01) 0.863 (0.01) 0.847 (0.01) 0.864 (0.01) 0.385 (0.01) 0.862 (0.01)
Link Modularity 0.005 (0.0) 0.005 (0.0) 0.005 (0.0) 0.006 (0.0) 0.005 (0.0) 0.034 (0.0) 0.005 (0.0)

k-Clique Structure
#Comms Recov’d 1.0 (0.0) 1.32 (0.87) 27.94 (5.58) 77.34 (8.28) 76.52 (8.07) 62.96 (7.16) 77.46 (8.91)
Avg Comm Size 480.68 (4.38) 419.163 (109.05) 14.826 (2.86) 5.245 (0.27) 5.293 (0.31) 8.565 (0.89) 5.257 (0.35)
#Intra Edges 2452.9 (56.38) 2388.24 (61.4) 1680.34 (95.53) 986.3 (81.47) 1000.64 (84.98) 1742.48 (110.98) 997.5 (83.89)
Expansion 0.0 (0.0) 0.353 (0.74) 4.035 (0.27) 4.502 (0.18) 4.476 (0.16) 4.027 (0.2) 4.469 (0.15)
Conductance 0.0 (0.0) 0.064 (0.13) 0.629 (0.02) 0.663 (0.01) 0.662 (0.01) 0.629 (0.01) 0.661 (0.01)
Link Modularity 0.072 (0.0) 0.07 (0.0) 0.042 (0.0) 0.019 (0.0) 0.02 (0.0) 0.04 (0.0) 0.02 (0.0)

Notes: Values represent the mean (standard deviation) of the relevant metric over 50 iterations. Copy was simulated with α � 0.5. Note that Copy is not a softmax-normalized model but is
tabulated here for brevity.

10Results for the other baselines and varying paramaterizations of Copying and
Relay(on file) do not affect our conclusions.
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FIGURE 3 | Mode-averaged in-degree distributions for USSC-calibrated baselines (left) and subject models (right) relative to the actual. Mirroring the actual
network, 50 iterations of 2000 node steps are run per model. Models in the same iteration use identical, pre-drawn out-degree counts from |En| ∼ Po(0.388) and
subjects from ϕ ∼ Dir(ψus , 14), mirroring the USSC network’s actual properties.

FIGURE 4 | Mode-averaged in-degree distributions for SGCA-calibrated baselines (left) and subject models (right) relative to the actual. Mirroring the actual
network, 50 iterations of 1000 node steps are run per model. Models in the same iteration use identical, pre-drawn out-degree counts from |En| ∼ Po(0.778) and
subjects from ϕ ∼ Dir(ψsg , 31).

FIGURE 5 | Hnorm (top row) and Hcol (bottom row) subject signatures for USSC-calibrated baselines and selected subject models. Subjects are indexed by
descending frequency from 0 to 14. Note that color scales differ across rows.
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3.2 Empirical Benchmarks
Figures 3 and 4 compare in-degree distributions produced by the
calibrated baseline and subject models against actual distributions
from the USSC and SGCA benchmarks respectively. Both
benchmark distributions are broadly reproduced by all models
(including baselines), though BA and Fitness (sum) produce
slightly gentler-sloping distributions in both cases. At the same
time, Figures 5 and 6 show that only the subject models
successfully reproduce empirical subject signatures. To see this,
first notice that since subject distributions for both the USSC and
SGCA are imbalanced, citation densities are naturally
concentrated within the top left quarter (which indexes the
most frequent subjects). Second, observe that main diagonals
for both benchmarks are also denser than their off-diagonals,
showing that subject overlap materially influences actual legal
citations. Although the general top-left concentration is
reproduced by all models (recall that simulated subjects are
drawn from a Dirichlet parameterized by actual subject
frequencies), only subject models exhibit the benchmarks’
distinctive signature.

These observations apply to bothHnorm andHcol signatures. As
expected, Hcol densities for both the actual and simulated graphs
are concentrated upwards across all rows, reflecting how nodes
with the most frequent subjects are relatively likely to be cited,
regardless of citing subject. This may be explained by subject
frequency imbalance. To illustrate, most nodes, by definition, will
have subject 0. Assuming node i has subjects {0, 1} and node j has
{0, 30}, j may cite i under the subject models due to the shared
subject 0. The edge (j, i) would count not only towards H(0, 0)
but H(30, 0) and H(30, 1) as well.

Downward density gradients for the benchmarks’ signatures
are noticeably less smooth than for the simulations. This is
clearest for the SGCA benchmark, where (within the top 15
subjects) some less frequent subjects are more likely to be cited
than the most frequent. This is suggestive of specific correlations
between legal subjects. For example, subject 15 may be legally
very relevant to and therefore often cited by subject 5 even though
the former rarely occurs. Our models do not currently account for
such subject covariance and future work could explore this
further.

Figure 7 tabulates L1 distances between the benchmark and
simulated networks and provides further confirmation that the
subject models offer a closer approximation of CLCNs than
baselines. Total, diagonal, off-diagonal, and column-wise
distances are consistently smaller for the subject models than
for the baselines. Note that results are similar if we include other
(previously discussed) baselines, including alternative
paramaterizations of Copying and Relay, and also if we use
Kullbeck-Leibler divergence instead of L1 distance.11

Surprisingly, none of the subject models are clearly superior to
the others. All clock in comparable numbers for every metric.

Therefore, to determine which models produce better
empirical fit, we look into detailed network properties for each
benchmark as presented in Tables 3 and 4. Results here are
consistent with the preliminary simulations. Clustering
coefficients and giant component percentages for all models
are broadly similar, but in-degree distributions vary across
models.

As expected, subject models yield networks with stronger
subject communities than all baselines. The subject models fit
the SGCA benchmark well, each producing around 800 intra-
subject edges compared to the benchmark’s 889. They also yield
expansion, conductance, and link modularity scores indicating
better subject community quality. However, the community
quality metrics for the benchmark’s network are even better,
suggesting that our models can place even more weight on subject
overlap.

Fit for the USSC benchmark is less clear. The USSC network
has relatively few intra-subject edges. Resultantly, the baselines
fall closer to the benchmark on this metric. However, community
quality for the subject models are significantly closer to the actual.
Re-creating the USSC network may therefore require model
paramaterizations which create smaller but even more
distinctive communities.

In terms of k-clique structure, the model closest to both
benchmarks is Fitness (sum). The model produces on average
13.62 communities of 3.85 nodes (compared to 24 and 4.042) and

FIGURE 6 | Hnorm (top row) and Hcol (bottom row) subject signatures for SGCA-calibrated baselines and selected subject models. Subjects are indexed by
descending frequency from 0 to 31. Note that color scales differ across rows.

11Though Kullbeck-Leibler returns infinity on some graphs.
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20.52 communities of size 4.452 (compared to 45 and 4.978) for
the actual SGCA network). All other models yield significantly
fewer k-clique communities. Indeed, 15 iterations of Linear
(sum), 28 iterations of Locality (softmax), and 13 iterations of
TSPR produced 0 k-clique communities. Conversely, Fitness
(sum) always returns at least one k-clique community
(including when calibrated with the SGCA network).

4 DISCUSSION

The mechanics of case law citations involve complex interactions
between the legal authority of a case, its relevance to the citer’s
subjects, as well as the case’s age. We may represent the case law

citation function in abstract as a probability distribution
P � f (Λ, ρ,w), where each input variable captures each of
these attributes respectively. Determining the exact functional
form to be used, however, is difficult. Numerous reasonable
approaches can be imagined. For subject relevance alone, we
experimented with using subject similarities as linear features,
fitness values, to constrain citable horizons by subject, and to use
subject-sensitive centrality scores. These all draw on existing
literature on citation networks, but other approaches may be
possible.

In this light, this paper studied by simulation the expected
properties of networks generated by the four approaches above
and compared them against established networkmodels. We then
compared more promising models against two actual CLCNs

FIGURE 7 | L1 distances for USSC-calibrated (left) and SGCA-calibrated models (right) relative to their respective benchmarks. Distances in the top three rows
are computed from Hnorm while the column-wise average L1 is computed from Hcol (though for L1 distances computing this from Hnorm yields the same result).

TABLE 3 | Actual versus simulated properties for the USSC network.

Actual BA Copy Relay Linear
(sum)

Fitness
(sum)

Locality
(softmax)

TSPR
(sum)

General Structure
Avg Clust Coef 0.009 0.001 (0.0) 0.0 (0.0) 0.0(0.0) 0.0(0.0) 0.002(0.0) 0.0(0.0) 0.001(0.0)
Giant Comp % 0.259 0.32(0.01) 0.041(0.02) 0.32(0.01) 0.025(0.01) 0.319(0.01) 0.101(0.04) 0.037(0.02)
Gini(In-Deg) 0.811 0.94(0.0) 0.841(0.01) 0.876(0.01) 0.736(0.01) 0.962(0.0) 0.792(0.01) 0.785(0.01)

Subject Structure
#Intra Edges 384 623.76(42.38) 618.4(31.41) 618.54(35.13) 956.0(42.03) 964.0(46.54) 909.98(38.74) 986.66(43.5)
Expansion 0.206 0.325(0.03) 0.325(0.03) 0.323(0.03) 0.263(0.03) 0.266(0.02) 0.27(0.03) 0.206(0.03)
Conductance 0.356 0.764(0.02) 0.759(0.02) 0.758(0.02) 0.562(0.04) 0.585(0.04) 0.585(0.04) 0.382(0.04)
Link Modularity 0.036 0.028(0.0) 0.028(0.0) 0.028(0.0) 0.046(0.0) 0.045(0.0) 0.043(0.0) 0.044(0.0)

k-Clique Structure
#Comms Recov’d 24 6.12(2.15) 0.14(0.5) 2.66(1.62) 1.0(0.9) 13.62(2.93) 0.52(0.68) 1.4(1.07)
Avg Comm Size 4.042 3.429(0.47) 3.0(0.0) 3.204(0.5) 3.095(0.26) 3.852(0.3) 3.091(0.29) 3.009(0.05)
#Intra Edges 124 23.26(8.63) 4.2(2.68) 9.082(5.34) 4.6(2.51) 63.8(13.67) 3.727(1.55) 5.73(2.42)
Expansion 1.925 0.596(0.15) 0.267(0.28) 0.591(0.22) 0.252(0.3) 0.468(0.13) 0.321(0.35) 0.296(0.24)
Conductance 0.378 0.207(0.04) 0.107(0.11) 0.213(0.06) 0.095(0.1) 0.162(0.04) 0.12(0.12) 0.114(0.08)
Link Modularity 0.011 0.002(0.0) 0.0(0.0) 0.001(0.0) 0.0(0.0) 0.004(0.0) 0.0(0.0) 0.001(0.0)

Notes: Except in the “actual” column, values are the mean(standard deviation) of the relevant statistic over 50 simulations per model. For the actual network properties the case issue areas
assigned by the Spaeth database are used as subject labels. k-Clique expansion, conductance, and link modularity scores are only computed for and averaged within simulations which
return at least 1 k-clique community and should be interpreted in this light. 45, 15, 28, and 13 iterations of the Copy, Linear, Locality, and TSPR models respectively returned 0 k-clique
communities. All other models tabulated always returned at least 1. In each row, results numerically closest to the benchmark are bolded.
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from the USSC and SGCA respectively. Our findings underscore
the importance of a legally-informed model of link generation
process. The properties of all proposed subject models were
substantially different from those of the baseline models,
(provided that sum-normalization was used), and closer to
empirical benchmarks in terms of both graph properties and
subject signature.

Amongst the range of approaches studied, we found softmax
normalization generally unsuited for the task because it
smoothens away distinguishing differences in case attributes.
We also see that model properties vary substantially when
alternative means of modelling subject relevance were tested.
All subject models performed comparably in terms of subject
signature distance from both benchmarks. However, while three
of the four subject models studied yielded average in-degree
distributions very close to both benchmarks, the Fitness (sum)
model yielded a noticeably gentler degree-rank slope.
Nonetheless, Fitness (sum) best fits the k-clique structure of
both benchmarks.

The emergent picture is that all subject models provide
plausible (and superior to baseline) approaches for modelling
CLCNs. For our two benchmarks, however, Fitness (sum) slightly
edges out the other approaches as the most promising method for
modelling CLCNs. To recall, this model takes the cosine
similarity between the subject belonging vectors of two cases
as a fitness coefficient that modifies the weight computed from
each case’s authority and age. Notice that this model is similar to
the General Temporal model in many respects, and may be seen
as an extension of that model tailored to the legal citation context.
An important caveat here is that although Fitness (sum) is
relatively better when compared to alternative models, it is not
in absolute terms a perfect approximation of either benchmark.
Key differences remain between the actual and fitness-simulated
networks. Further, alternative models may be better suited for
CLCNs from other courts.

Our findings hint at possible universality in terms of the way
courts think about subject relevance when deciding which cases
to cite, though we hasten to add that the two benchmarks ran do
not offer sufficient evidence. Universal or otherwise, the
alternative models proposed may be useful for examining
how courts and possibly individual judges differ when
selecting cases to cite. If court/judge A’s citation network is
better approximated by model X while court/judge B’s network
is better approximated by model Y. Our models are also helpful
for generating better simulated data that may be used to
research other questions in legal network science. For
instance, researchers could benchmark centrality algorithms
against networks simulated with these models to study how
far these algorithms recover legally-significant nodes. This, to
recall Section 1, is a rich area of legal networks research. Since
the data is simulated, it becomes possible to specifically dictate
which nodes are legally-significant.

5 LIMITATIONS AND FUTURE WORK

This paper is the first to study how the unique mechanics of case
law citations may be simulated and studied using network
models. As a first step, it necessarily leaves a number of
important questions unexplored.

First, although we have identified promising approaches for
modelling CLCNs, alternative models for legal authority, subject
relevance, and time decay remain to be studied. We have focused
on comparing different methods for modelling subject relevance
because this is the least explored question. Nonetheless, the effect
of varying authority and time-decay models are worth studying
further. Varying time-decay models in particular may yield
insights on how quickly the value of precedent depreciates (a
question often raised by legal scholars [8, 39]), as well as how
much deference different courts accord to antiquated precedent.

TABLE 4 | Actual versus simulated properties for the SGCA network.

Actual BA Copy Relay Linear(sum) Fitness(sum) Locality(softmax) TSPR(sum)

General Structure
Avg Clust Coef 0.044 0.005(0.0) 0.001(0.0) 0.002(0.0) 0.003(0.0) 0.009(0.0) 0.002(0.0) 0.005(0.0)
Giant Comp % 0.347 0.535(0.02) 0.557(0.03) 0.535(0.02) 0.572(0.04) 0.534(0.02) 0.584(0.03) 0.589(0.03)
Gini(In-Deg) 0.789 0.903(0.0) 0.804(0.01) 0.789(0.01) 0.624(0.01) 0.911(0.01) 0.721(0.01) 0.71(0.01)

Subject Structure
#Intra Edges 889 259.96(24.28) 260.7(19.54) 257.22(21.85) 815.82(32.9) 831.18(41.47) 813.04(31.06) 768.5(27.58)
Expansion 0.332 0.712(0.03) 0.713(0.03) 0.709(0.03) 0.534(0.03) 0.531(0.03) 0.533(0.03) 0.479(0.03)
Conductance 0.449 0.87(0.01) 0.869(0.02) 0.872(0.02) 0.564(0.02) 0.577(0.03) 0.563(0.03) 0.462(0.03)
Link Modularity 0.047 0.011(0.0) 0.011(0.0) 0.011(0.0) 0.037(0.0) 0.037(0.0) 0.036(0.0) 0.033(0.0)

k-Clique Structure
#Comms Recov’d 45 11.98(3.03) 2.06(1.46) 7.08(2.66) 6.14(2.15) 20.52(4.19) 4.74(2.08) 9.86(2.85)
Avg Comm Size 4.978 4.482(0.93) 3.659(1.5) 3.233(0.25) 3.448(0.42) 4.457(0.64) 3.172(0.22) 3.167(0.21)
#Intra Edges 386 69.44(15.58) 9.545(6.04) 24.56(9.53) 23.64(8.11) 122.0(24.07) 15.88(7.24) 33.12(10.63)
Expansion 1.139 0.922(0.15) 0.391(0.24) 1.079(0.18) 0.63(0.19) 0.78(0.15) 0.61(0.24) 0.519(0.14)
Conductance 0.273 0.283(0.03) 0.14(0.08) 0.323(0.04) 0.21(0.05) 0.242(0.04) 0.207(0.07) 0.183(0.04)
Link Modularity 0.031 0.005(0.0) 0.001(0.0) 0.002(0.0) 0.002(0.0) 0.009(0.0) 0.001(0.0) 0.003(0.0)

Notes: Except in the “actual” column, values are the mean(standard deviation) of the relevant statistic over 50 simulations per model. For the actual network properties, case catchwords
assigned by the Singapore Law Reports are used as subject labels. k-Clique expansion, conductance, and link modularity scores are only computed for and averaged within simulations
which return at least 1 k-clique community and should be interpreted in this light. 6 iterations of the Copy model returned 0 k-clique communities. All other models tabulated always
returned at least 1. In each row, results numerically closest to the benchmark are bolded.
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Second, future work can explore a larger space of model
parameterizations. An immediate extension would be using
time-variant network growth rates. That is, both λ and μ may
vary across time. Further, the feature weights α, β, and c may be
adjusted to generate and also reflect different judicial attitudes
towards assessing authority and relevance. It may be possible to
learn these weights from empirical data, whether using
exponential random graph models or machine learning
techniques. This would provide a means of quantitatively
measuring which factors most influence legal citation
decisions, providing a common metric for comparing how
these differ (or remain the same) across judges, time, and space.

Third, this study was limited by data availability. Despite
growing literature in case law citations analysis, few publicly
available edgelists can be linked to case-level (subject) metadata.
For now, we have benchmarked our models against two empirical
networks produced by apex Common Law courts. Future work
can consider how closely these models approximate the citation
mechanics of courts in other jurisdictions, particularly those of
Civil Law jurisdictions where the doctrine of precedent
theoretically holds less sway.

Fourth, while we have focused primarily on network structure,
the microscopic properties of our proposed networks remain
largely unexplored. Future work could use node-level metrics
such as centrality and accessibility to study what kinds of cases
and subjects are most likely to become entrenched in the core of
such networks (e.g. [64]). Additionally, the task of replicating and
studying CLCNs would also benefit from also exploiting the
textual content of case judgments, as was done in [35].
Methods that exploit both network structure and node
attributes for community detection (e.g. [65]) could be

explored. This would connect our work to the growing
literature on legal language processing (e.g. [66, 67]).
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