
Coherent Anti-Stokes Raman
Scattering Microscopy: A Label-Free
Method to Compare Spinal Cord
Myelin in Different Species
Gaëtan Poulen1, Yannick N Gerber2, Jean-Christophe Perez2, Khadidja Oubarrahou3,
Nicolas Lonjon1, Florence Vachiery-Lahaye4, Hassan Boukhaddaoui 3 and
Florence E. Perrin2,5*

1Department of Neurosurgery, MMDN, EPHE, INSERM, University de Montpellier, Montpellier, France, 2MMDN, University de
Montpellier, EPHE, INSERM, Montpellier, France, 3Institute for Neurosciences of Montpellier, INSERM, Montpellier, France,
4Department of Coordination Hospitalière des Dons pour La Greffe, Montpellier, France, 5Institut Universitaire de France (IUF),
Montpellier, France

Many histological techniques are used to identify and characterize myelin in the mammalian
nervous system. Due to the high content of lipids in myelin sheaths, coherent anti-stokes
Raman scattering (CARS) microscopy is a label-free method that allows identifying myelin
within tissues. CARS excites theCH2 vibrationalmode at 2845 cm−1 andCH2 bonds are found
in lipids. In this study, we have used CARS for a new biological application in the field of spinal
cord analysis. We have indeed compared several parameters of spinal cord myelin sheath in
three different species, i.e., mouse, lemur, and human using a label-free method. In all species,
we analyzed the dorsal and the lateral funiculi of the adult thoracic spinal cord. We identified
g-ratio differences between species. Indeed, in both funiculi, g-ratio was higher in mice than in
the two primate species, and the myelin g-ratio in lemurs was higher than in humans. We also
detected a difference in g-ratio between the dorsal and the lateral funiculi only in humans.
Furthermore, species differences between axon and fiber diameters aswell asmyelin thickness
were observed. These data may reflect species specificities of conduction velocity of myelin
fibers. A comparison of data obtained by CARS imaging and fluoromyelin staining, a method
that, similar to CARS, does not require resin embedding and dehydration, displays similar
results. CARS is, therefore, a label-free alternative to other microscopy techniques to
characterize myelin in healthy and neurological disorders affecting the spinal cord.
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INTRODUCTION

Myelin is a lipid-rich protective cover formed by oligodendrocytes that surround and protect axons.
Lipids account for about 70% of the myelin and myelin sheaths are characterized by a high lipid-to-
protein ratio. Furthermore, myelin displays different lipid compositions when compared to typical
plasma membranes [1,2]. Myelin sheaths permit to increase the propagation speed of action
potentials along axons [3,4]. Moreover, myelin is a dynamic structure spatially organized in
heterogeneous functional domains that provide metabolic support to neurons [5].

Loss and alteration ofmyelin that results in the reduction of nerve conduction velocity and in the altered
transfer of energy metabolites to neurons are reported in various diseases [6,7]. Damage to myelin sheaths
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in humans is observed in severe neurological conditions such as
multiple sclerosis, idiopathic inflammatory demyelinating diseases,
acute disseminated encephalomyelitis, and neuromyelitis optica [4,8].

To identify myelin on tissues, on the one hand, classical staining
based on the specific lipid composition of myelin, such as Luxol fast
blue [9], Sudan Black B [10], Baker’s acid hematin method [11], and
silver staining [12], had been originally developed. However, these
stainings do not always reach a sufficient resolution and contrast to
visualize individual fibers [13]. On the other hand, immunochemical
methods permit to characterize myelin structure with single fiber
resolution and a high reproducibility. Antimyelin protein antibodies
most commonly used are myelin basic protein (MBP), proteolipid
protein (PLP), myelin oligodendrocyte glycoprotein (MOG), myelin
protein zero (MPZ), and myelin-associated glycoprotein [14]. As for
all immunohistochemistry approaches, drawbacks are the potential
lack of specificity and background noise. Moreover, they only permit
a semiquantitative quantification.

Coherent anti-Stokes Raman scattering (CARS) microscopy is a
nonlinear optical technique using the endogenous contrast provided
by molecules present in the sample [15–17]. The major advantage of
this technique is to be done directly on tissues without staining,
dehydration, and embedding steps that are detrimental to myelin
preservation [18]. Lipid-rich myelinated tissues, such as the spinal
cord and brain, appeared to be good samples for CARS imaging [19].
CARS had been used to develop an automated method for the
segmentation and morphometric analysis of nerve fibers of spinal
cord tissue [20]. CARS had also been used tomonitor live myelinated
fibers [21], in vivomouse brain [22], and to carry out a longitudinal in
vivo follow-up of demyelination and remyelination in the injured rats’
spinal cord [23]. CARS also permitted to characterize demyelination
in mouse models of diseases such as amyotrophic lateral sclerosis
[24], experimental autoimmune encephalomyelitis [25], and brain
tissues of multiple sclerosis patients [26].

This is the first study using a label-free method to compare
myelin sheaths of two separated spinal cord tracts in three different
species, i.e., mice, lemurs, and humans. Direct comparison of
myelin characteristics between species will not only provide
basic data on their similarities but also open the way to
compare myelin alterations in animal models and human diseases.

METHODS

Study approval: Experiments were approved by the Veterinary
Services Department of Hérault, the regional ethic committee
n°36 for animal experimentation, and the French Ministry of
National Education, Higher Education and Research
(authorizations; mice: n°34118 and non-human primates n°

APAFIS#16177-2018071810113615v3). Experiments followed the
European legislative, administrative, and statutory measures for
animal experimentation (EU/Directive/2010/63) and the ARRIVE
guidelines. Human samples collection was done under the approval
of the “Agence de la Biomédecine” (PFS-ssNUM-BAUCHET).

Spinal Cord Samples
Animals were injected with a lethal dose of tribromoethanol
(rodent; 500 mg/kg, Sigma Aldrich Darmstadt, Germany) or

ketamine (non-human primates; 150mg/kg, Merial, Lyon, France).
Animalswere perfused intracardiallywith cold phosphate saline buffer
(PBS, 0.1M, pH 7.2) followed by cold 4% paraformaldehyde (PFA,
pH7.2, Sigma Aldrich, Darmstadt, Germany) in 0.1M PBS. Spinal
cords were post-fixed for 2 h in 4% PFA and then incubated in 30%
sucrose in 0.1M PBS, frozen in OCT (Sakura, Alphen aan den Rijn,
Netherlands) and stored at −20 °C.

Mice: Three C57BL6/6J male mice of 3 months of age (Charles
River, Wilmington, United States) were used. Non-human
primates: three adult male lemurs (Microcebus murinus, 2 years
old) were used. They were born and bred in the animal facility (the
University of Montpellier, France (license approval 34-05-026-FS)
and housed in cages equipped with wooden nests and an enriched
environment. The temperature of the animal facility was constantly
kept between 24–26°C with 55% of humidity. All Microcebus
murinus were fed 3 times a week with fresh fruits and a
mixture of cereal, milk, and eggs. Water was given ad libitum.

Human: Low thoracic (T11—T12) spinal cords were obtained
from three brain-dead organ-donor patients (2 males 45 and
51 years and 1 female 68 years) under the approval of the French
Institution for Organ Transplantation. One patient died from
cardiac arrest and two from a ruptured aneurysm. Body
temperature was lowered and blood circulation and ventilation
were maintained until 4 h before spinal cord removal. This short-
time interval permitted good preservation of the tissue, as already
reported [27]. After organs removal for therapeutic purposes,
T8–L5 vertebral bloc was isolated and spinal cord segments were
removed and immediately fixed in 4% paraformaldehyde.

Luxol Fast Blue and Neutral Red Staining
14-µm-thick axial spinal cord cryosections (Microm HM550,
Thermofisher Scientific, Waltham, United States) were collected
on Superfrost Plus© slides. Luxol fast blue staining was done as
previously described [28,29]. Briefly, sections were placed 5min in
95% ethanol and then incubated in 0.1% Luxol fast blue under mild
shaking (12 h, room temperature). Slides were then rinsed for 1 min
inmilli-Q water, then placed for 1 min in lithium carbonate (0.05%),
and finally washed in tap water (1 min). Subsequently, slides were
incubated for 10 min in 0.5% neutral red solution, 5 min in 100%
ethanol, and washed twice for 10 min in xylene. All slides were
cover-slipped using Eukitt (Sigma Aldrich, Darmstadt, Germany).

Coherent Anti-Stokes Raman Scattering
and Quantifications
We used LSM 7MP optical parametric oscillator (OPO)
multiphoton microscope (Zeiss, Oberkochen, Germany) with an
upright Axio Examiner Z.1 optical microscope associated with a
femtosecond Ti: sapphire laser (680–1,080 nm, 80MHz, 140 fs,
Chameleon Ultra II, Coherent, France) pumping a tunable OPOs
(1,000–1,500 nm, 80MHz, 200 fs, Chameleon Compact OPO,
Coherent, France) to acquire CARS images. We imaged axial
spinal cord sections (14 µm) in all species. A x20 water
immersion lens (W Plan Apochromat DIC VIS-IR) with the
following characteristics: 1024 x 1024 pixels frame size, scan
speed of 6 (zoom x1.2) and 8 (mosaic, zoom x3, PixelDwell 3.15
and 1.27 μs/scan, respectively) and either a zoom x1.2 or x3 was
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used. CARS excites the CH2 vibrational mode at 2845 cm−1 and CH2

bonds are found in lipids and thus in myelin sheath [30]. Excitation
wavelengths are 836 and 1,097 nm (synchronized Ti-sapphire and
OPO, respectively) and the signal is detected at 675 nm (filter from
660-685 nm).

The non-resonant background is reduced due to the use of
femtoseconds impulsions [31,32] and EPI-detection [33] [for
review see [34]]. We collected CARS signaling in the near-
infrared (670 nm) since this wavelength produces rather limited
autofluorescence when using biological tissue. Moreover, and as
previously reported, before getting a simultaneous scan of both
lasers, we switch off sequentially one of the laser beams (either
OPO or Ti : sapphire) to confirm a robust intensity decay when
compared to the CARS signal [30].

Pictures are a stack of 3 µm (3 slices) and were taken in six
locations within the lateral funiculus and three locations in the dorsal
funiculus (Figure 1C). In each picture, a square of 100 µmX100 µm
located in the center of the image was quantified. Imaris 9.6.0
software was used (Bitplane AG, Zurich, Switzerland) for
quantifications using numeric x3 zoom applied to the original
image (Figure 1G). Only fully identifiable fibers were quantified,
and diameters were randomly selected and measured through
unidirectional length, without selection criteria (shortest or longest
diameter). For some acquisitions, a quick fluoromyelin (20min, 1:
200, Invitrogen Carlsbad, United States), (rinsed 3 × 10min in PBS)
staining was added to observe eventual co-localization.

Fluoromyelin Staining
We imaged 14 µm-thick axial spinal cord cryosections of the same
individuals as for CARS analysis for all species. Sections were
incubated 20min with fluoromyelin (1:200, Invitrogen, Carlsbad,
United States), rinsed 3 × 10min in PBS and mounted with
fluorosave (Dako, Glostrup, Denmark). Images were acquired
with THUNDER Imager 3D (Leica, Wetzlar, Germany; lens x
63). For all species, one field of 600 µmX400 µm was acquired in
the lateral funiculus and one field of 600 µmX200 µm in the dorsal
funiculus. In each field, a picture of 200 µmX200 µm located in the
center of the image was taken for quantification, and 40 fibers were
randomly selected and measured per location and sample. ImageJ
software was used (National Institutes of Health, United States) for
quantifications using numeric zoom to reach 300% of the original
image. Diameter measurements were done for CARS analysis.

Three-Dimensional Illustration
3D image processing software Imaris x64 7.2.2 (Bitplane AG, Zürich,
Switzerland) was used for illustration (Supplementary Figure S1).

Statistics
For CARS analysis, at least 432 fibers were quantified per
anatomical location and species (3 individuals per species)
[number of fibers analyzed: mice (DF � 432; LF � 481);

FIGURE 1 | CARS microscopy, a label-free method to visualize myelin
and analyzemyelin g-ratio in the spinal cord of humans, lemurs, andmice. Fast
scanning mosaic of axial thoracic section of a human spinal cord imaged with
CARS (A); this acquisition allows to locate where higher quality zoomed
images were taken for further analysis. Human thoracic spinal cord stained
with Luxol fast blue (B). Schematic drawing of a spinal cord, black squares
represent locations in the dorsal and lateral funiculi of quantified images in all
species (C). Humans (D) and lemurs (E) dorsal funiculus (DF), as well as
mouse lateral funiculus (LF) (F), were imaged with CARS. Human dorsal
funiculus (G). Higher magnification of G and method used to measure the
g-ratio (H). Comparison of the g-ratio in lateral and dorsal funiculi in humans
(I), lemurs (J), and mice (K). Data are mean ± SEM per fibers. **p < 0.005;

(Continued )

FIGURE 1 | paired t-test. The number of fibers analyzed: n is at least 432 and
up to 681 per group; however, in a given species, the number of fibers in LF
and DF is similar. In all graphs, quantification in the lateral funiculus is in black
and the dorsal funiculus is in light grey. Scale bars: (A,B) 1 mm, (D–G) 10 µm.
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Microcebus murinus (DF � 643; LF � 681); human (DF � 544;
LF � 580)]. Significance was accepted at p ≤ 0.05. Results are
expressed as mean ± standard error of the mean. Student’s paired
(comparison within a given species) or unpaired (comparison
between species) t-tests with Welch’s correction were used. For
fluoromyelin analysis, 120 fibers (40 for each individual) per
anatomical location and species were quantified.

RESULTS

Coherent Anti-Stokes Raman Scattering
Imaging Allows Discriminating Myelin
Across Species Through G-Ratio
Measurement
We first compared coherent anti-stokes Raman scattering (CARS)
imaging (Figure 1A, fast scanning mosaic) with standard

histological methods to detect myelin, including Luxol fast blue
staining (Figure 1B). The dorsal (Figures 1C–E) and lateral
(Figures 1C, F) funiculi were analyzed on axial sections of the
thoracic spinal cord of humans (Figures 1A, D; Supplementary
Figure S1A–D), lemurs (Microcebus murinus) (Figure 1E), and
mice (Figure 1F). We then calculated the g-ratio on numerically
zoomed images (ratio of the inner-to-outer myelinated fiber
diameter, Figures 1G–H) in the lateral (LF) and in dorsal (DF)
funiculi in each species. No significant difference in between
funiculi was observed in lemurs (p � 0.0565; Figure 1J) nor in
mice (p � 0.34; Figure 1K). Conversely, in humans, the g-ratio was
higher in dorsal than in lateral funiculus (p � 0.0029, mean g-ratio
DF � 0.48 ± 0.005; mean g-ratio LF � 0.45 ± 0.005; Figure 1I), that
may reflect differences in conduction speed in between funiculi. For
each species, no major difference in the distribution of the g-ratio
between the lateral and the dorsal funiculiwas observed (Figure 2).
However, g-ratio between 0.4 and 0.5 (0.45) was the most prevalent
in both funiculi in humans (Figures 2A,B) and lemurs (Figures

FIGURE 2 | Histograms of g-ratio distribution in humans, lemurs, and mice using CARS microscopy. Distributions of g-ratio in lateral (A, C, E) and dorsal (B, D, F)
funiculi were quantified in humans (A–B), lemurs (C–D), and mice (E–F). The number of fibers analyzed: n is at least 432 and up to 681 per group.
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2C,D) contrariwise to mice (Figures 2E,F) where the peak was
observed for g-ratio between 0.5 and 0.6 (0.55).

Spectra of G-Ratio, Fiber Diameter, Axon
Diameter, and Myelin Thickness in the
Three Species
Comparison of g-ratio, fibers, and axons diameters (Figure 1J) in
the lateral and dorsal funiculi (Figure 3) also highlighted species
specificities. In both funiculi, g-ratio was lower in humans than in
lemurs than in mice (Figure 3A, p < 0.001 for all comparisons);
that may reflect differences in conduction speed in between species.
Moreover, in humans, fiber and axon diameters, as well as myelin
thickness, were higher in the dorsal (fiber diameter: 6.99± 0.09 µm,
axon diameter: 3.47 ± 0.07 µm and myelin thickness: 1.77 ±
0.03 µm) as compared to the lateral funiculus (fiber diameter:
5.78 ± 0.10 µm, axon diameter: 2.69 ± 0.06 µm and myelin
thickness: 1.54 ± 0.03 µm) (Figures 3B-D, p < 0.001 for all
parameters). In mice, all parameters were lower in the dorsal
funiculus (fiber diameter: 4.03 ± 0.07 µm, axon diameter: 2.35 ±
0.06 µm and myelin thickness: 0.85 ± 0.02 µm) as compared to
the lateral funiculus (fiber diameter: 4.52 ± 0.09µm, axon diameter:
2.59 ± 0.07 µm and myelin thickness: 0.91 ± 0.018 µm) (Figures

3B-D, p < 0.001 for all parameters). In lemurs, fiber diameter (DF:
3.75 ± 0.05 µm and LF: 4.04 ± 0.06 µm) and myelin thickness (DF:
0.87± 0.014 µm and LF: 1.00± 0.02 µm)were lower in the dorsal as
compared to the lateral funiculus; no difference was detectable in
axon diameter between funiculi (DF: 2.01 ± 0.04 µm and LF: 2.09 ±
0.04 µm) (Figures 3B-D).

Taken together, these data demonstrate that using CARS to
compare fiber and axon diameters as well as myelin thickness
allows interspecies discrimination of three healthy mammal
spinal cords.

Fluoromyelin Analysis Display Similar
G-Ratio Values as Coherent Anti-Stokes
Raman Scattering Imaging

To confirm the accuracy of CARS imaging, we then carried out in
the same samples, g-ratio analysis using fluoromyelin staining;
another method that, similar to CARS, does not require resin
embedding and dehydration and permits to visualize myelin
(Figure 4). In the first step, we acquired simultaneously CARS
(Figure 4A) and fluoromyelin staining (Figure 4B), both signals
partly co-localized (Figure 4C). We then used a Thunder imager
with computational clearing to obtain images without out-of-focus

FIGURE 3 | Comparison of g-ratio, fiber diameter, axon diameter, and myelin thickness between species using CARS microscopy. Comparison of g-ratio in the
lateral and dorsal funiculi in between humans, lemurs, and mice (A). Comparison of fiber diameter in the lateral and dorsal funiculi in humans, lemurs, and mice (B).
Comparison of axon diameter in the lateral and dorsal funiculi in humans, lemurs, and mice (C). Comparison of myelin thickness in the lateral and dorsal funiculi in
humans, lemurs, andmice (D). Hu: human, Le: lemurs, andMo:mice. Data aremean ± SEMper section. ***p < 0.001, **p < 0.01 ns: non-significant; unpaired t-test
with Welch’s correction. Number of fibers analyzed: n is at least 432 and up to 681 per group.
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blur (Figures 4D,E; Supplementary Figures 1E–H) and to measure
g-ratio in the same samples used for CARS analysis. We confirmed
for each species the absence of difference in g-ratio distribution
between both funiculi (Figures 4F, G, humans; J&K; lemurs and
N&O; mice). Moreover, similarly to CARS quantifications, a g-ratio
in between 0.4 and 0.5 (0.45) was the most prevalent in both funiculi

in humans (Figures 4F, G); for lemurs, the g-ratio in both funiculi
was predominantly at 0.55 (however, the proportion of fibers
presenting a g-ratio of 0.45 was almost identical) (Figures 4J, K);
finally, in mice, the peak was observed for g-ratio at 0.55 (Figures 4).
Linear regression curves of g-ratio against axon’s diameter
highlighted that lemurs display characteristics (Figures 4L–M; LF

FIGURE 4 | g-ratio distribution in humans, lemurs, and mice using fluoromyelin staining CARS image of an axial section of the human thoracic spinal cord showing
the lateral funiculus (A) stained with fluoromyelin (B). Merge of both signals (C). Axial section of the human thoracic spinal cord showing the lateral funiculus stained with
fluoromyelin and imaged with Thunder Imager (D). Higher magnification of the white box presented in D (E). Distributions of g-ratio in lateral (F, J,N) and dorsal (G,K,O)
funiculi were quantified in humans (F, G), lemurs (J–K), and mice (N-O). Scatter plots of g-ratio against axon diameter in the lateral (H, L, P) and dorsal (I, M, Q)
funiculi in humans (H-I), lemurs (L–M), and mice (P–Q). Correlation between g-ratio and axon diameter is expressed by the linear correlation coefficient (R2) of the linear
regression curve. Each group included three individuals. The number of fibers analyzed: 120 per group. Scale bars: (A-C, E) 10 μm, (D) 50 µm.
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R2� 0.313 andDFR2� 0.349) in between human (Figures 4H–I; LF
R2 � 0.166 and DF R2 � 0.289) and mice (Figures 4P–Q; LF R2 �
0.426 and DF R2 � 0.510). Taken together, these data demonstrate
that CARS is a label-free alternative to other microscopy techniques
that allow to discrimination of myelinated fibers across species in the
mammal spinal cord funiculi.

DISCUSSION

Here, we present the first CARS analysis of spinal cord myelin in
two white matter tracts (lateral and dorsal funiculi) of three
different species, i.e., mice, lemurs, and humans. We identified
species specificities in particular regarding values of the g-ratio
and thus confirmed the accuracy of CARS imaging as an
alternative to other microscopy techniques to assess and
compare myelin across species.

G-Ratio Coincides with Species Evolution
and Myelin Fibers Differ within the Same
Species According to Their Location
Myelin fibers g-ratio of both funiculi was higher in mice than in
lemurs than in humans and thus inversely coincides with species
evolution. This may partly reflect differences in fiber conduction
speed across species. Indeed, a few studies have demonstrated that the
g-ratio is not only a key determinant for the conduction velocity of a
fiber [3,35,36] but also optimized for speed of signal conduction,
cellular energetics, and spatial constraints [37]. The distribution of the
g-ratio within lateral or dorsal funiculi in the three species highlighted
a similar repartition in humans and in lemurs by opposition to mice.
Moreover, we identified a higher g-ratio in dorsal as compared to the
lateral funiculus only in humans. Conversely, no difference in g-ratio
is observed between the lateral and the dorsal funiculus in mice and
lemurs. Fibers and axons diameters, as well as myelin thickness, are
higher in the dorsal funiculus in humans. This observation certainly
mirrors anatomical differences in fiber tracts displaying sensory
motor functions and may reflect species-specificities of conduction
velocity of myelin fibers.

Taken together, structural similarities between humans and
lemurs central nervous system confirms the necessity to develop
non-human primate models to study CNS diseases such as
demyelinating disease, traumatic brain injury, and spinal cord
injury. This is particularly important when studying spinal cord
disorders since closer anatomical and functional characteristics of
the motor systems, including the corticospinal tract, is observed
between human and non-human primate as opposed to rodent [38].

Coherent Anti-Stokes Raman Scattering
Microscopy, an Alternative Method to
Analyze Myelin
A neuroimaging method, termed multi-component-driven
equilibrium single-pulse observation of T1 and T2
(mcDESPOT), allows to examine myelin water fraction
(MWF) as an in vivo metric of myelin integrity and content
[39,40]. It has been demonstrated that a combination of magnetic

resonance (MR) markers that are sensitive to the myelin volume
fraction (MVF) and to the intra-axonal volume fraction (AVF) is
sufficient to compute a g-ratio for each voxel (aggregate g-ratio).
However, it does not allow estimating axon diameter, myelin
sheath thickness, and pitfalls of g-ratio imaging such as MR
artifacts, lack of specificity, low spatial resolution, and long
acquisition times remain [37]. Thus, as suggested recently
[18], the emergence of exhaustive databases of myelin fibers
structure using several modalities of investigation tools will
facilitate further validation of non-invasive methods such as
magnetic resonance imaging.

The overall lower g-ratio values (about 0.5) that we obtained
using both CARS and fluoromyelin staining as compared to those
obtained using electron microscopy may result from variation in
factors such as fixative, embedding, and dehydration steps. As
recently reviewed, methods that do not require staining,
embedding, and dehydration, which are all critical steps for
myelin damage, may provide accurate measurement of
parameters such as g-ratio and myelin sheath thickness [for
review see [18]]. Slight differences in g-ratio repartition that we
observed when using CARS imaging and fluoromyelin; in particular
with lemurs, may thus also reflect differences in tissue processing.
Indeed, even if both techniques do not require resins embedding and
dehydration, conversely to CARS, fluoromyelin is not a label-free
method and requires mounting.

In conclusion, this study compared the first-time spinal cord
myelin sheath in three different species using a label-free method
and thus represents a new biological application of a label-free
method in the field of spinal cord analysis. We identified species
differences between axon and fiber diameters, myelin thickness, and
g-ratio that may reflect species-specificities of conduction velocity of
myelin fibers. The combination of several imaging techniques,
including CARS, will thus permit to better characterize myelin
structure in healthy conditions and its alterations in diseases.
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