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Spatiotemporal changes in viscoelasticity are a key component of the morphogenesis of
living systems. Experimental and theoretical findings suggest that cellular- and tissue-scale
viscoelasticity can be understood as a collective property emerging from macromolecular
and cellular interactions, respectively. Linking the changes in the structural or material
properties of cells and tissues, such as material phase transitions, to the microscopic
interactions of their constituents, is still a challenge both at the experimental and theoretical
level. In this review, we summarize work on the viscoelastic nature of cytoskeletal,
extracellular and cellular networks. We then conceptualize viscoelasticity as a network
theory problem and discuss its applications in several biological contexts. We propose that
the statistical mechanics of networks can be used in the future as a powerful framework to
uncover quantitatively the biomechanical basis of viscoelasticity across scales.
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INTRODUCTION

The viscoelastic or material properties of cells and tissues are key regulators of cell and tissue growth,
motion, and homeostasis [1–5]. Viscoelasticity allows living systems to preserve a basic architecture
due to their solid-like characteristics, but also at the same time to dynamically reorganize in different
shapes and patterns due to their viscous-like characteristics [4, 6–8]. Cellular-scale viscoelasticity
influences several single-cell functions such a shape, division, and motility, and it is predominantly
determined by the physical properties of the underlying cytoskeletal networks [8]. Tissue-scale
viscoelasticity was shown to be important in collective morphogenetic processes such as tissue
folding, spreading, wound healing andmigration, and it is mainly determined by the interplay of cell-
cell and/or cell-extracellular space interactions [2, 4, 5]. Advances in biophysical tools measuring
viscoelasticity [4, 9, 10] have revealed an essential and physiologically relevant link between material
properties and morphogenesis [11–13], opening the challenge to now understand how emergent
viscoelasticity is regulated by, and in turn, regulates the mechanochemistry of living systems.

A material is viscoelastic if it displays both viscous and elastic behavior [14]. Our knowledge of
viscoelasticity mainly comes from material sciences, where certain physical parameters are well-
defined for non-living materials such as glasses, rubbers, metals and polymers [14, 15].
Viscoelasticity of such materials is evaluated from the degree of deformation upon constant
force application and release, an experimental procedure called creep and recovery test
(Figure 1A). Solid-like objects deform shortly and reversibly under constant force, whereas
fluid-like objects irreversibly increase their deformation as long as a force is exerted. Viscoelastic
materials exhibit characteristics of both solids and fluids: at short time scales they deform elastically
and, at long timescales, they behave as viscous fluids. On the theoretical level, viscoelasticity was
independently modelled by Maxwell and Kelvin in the 19th century [14]. Both models abstract a
viscoelastic system as a composite structure containing an elastic spring connected to a dashpot
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FIGURE 1 | Emergence of cell and tissue viscoelasticity. (A) Strain plots as a function of time for different materials during constant force application (grey shaded
box) and release. (B) Schematic illustrations of theMaxwell and Kelvin viscoelastic models. In the Maxwell model (top) the spring and dashpot are connected in series and
account for the behaviour of viscoelastic fluid materials. In the Kelvin model (bottom) the spring and dashpot are connected in parallel and account for the behaviour of
viscoelastic solid materials. Stress σ is applied along the axis of the spring triggering a strain c. k is the spring constant and η is the viscosity of the fluid. (C) Cellular-
scale viscoelasticity is defined by the cytoskeletal network and extracellular matrix. The close ups illustrate an exemplary composition of an actin and collagen network.
(C’) Schematic illustration of an experimentally induced deformation of a cytoskeletal network and a paradigm of how viscoelastic properties can be computed from such
experiments. (C”) Stiffness-strain plots of actin and collagen networks exhibiting a non-linear increase of their elastic modulus, or a stress-stiffening response. The plot
was adapted from [71, 141]. (D) Tissue-scale viscoelasticity is determined by several cellular processes such as cell rearrangements, cell-cell adhesion and cell division.
(D’) Schematic illustration of an experimentally induced deformation of an embryonic tissue using micropipette aspiration and a paradigm of how viscoelastic properties
can be computed from such experiments. (D”) Plot of the nonlinear decrease of tissue viscosity as observed during zebrafish morphogenesis. F , Force; σ, stress; c,
strain; G’, elastic modulus; G’’, viscous modulus; ΔP, applied pressure; ΔL, deformation length; Rp, pipette radius.
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containing a viscous fluid (Figure 1B). The difference between
Maxwell’s and Kelvin’s approaches comes from the disposition of
the system: In Maxwell’s model, the dashpot and the spring are
connected in series, whereas in Kelvin’s model, the two
components are connected in parallel. As a result, when force
is applied on the system, in the former, the deformation of the
spring will drag the dashpot, describing the deformation of a
viscoelastic fluid; whereas when force is applied in the latter, the
dashpot response is restricted by the deformation of the spring,
describing thus the deformation of a viscoelastic solid [16].
Although biological materials display characteristics of
viscoelastic materials, due to their heterogeneous composition
and dynamic nature, fitting such models and frameworks from
material science, is conceptually and technically still difficult [16,

17]. For instance, during experimental measurements of cell and
tissue viscoelasticity, typically an external force is applied to the
system such as via a micropipette, or a magnetic field [13, 18, 19]
for a certain time window, during which its deformation is
monitored (Figure 1C’). From such measurements, parameters
such as elastic modulus, viscosity, and yield stress can be
extrapolated (Box 1) [16, 20, 21]. However, whether such
measurements are relevant to the time window of
morphogenesis still needs to be addressed, since such
measurements show how a tissue deforms when applying an
exogenous force for a certain time. How these features compare to
the magnitude and duration of the endogenously exerted forces is
still unclear [9, 22, 23]. In addition, during such experimental
measurements, the applied force typically triggers a large

BOX 1 | Terminology.

Affine deformation: Deformation of a body in which the macroscopic strain is translated uniformly to all microscopic parts of the material.
Bulk modulus: Denoted by K, describes the material’s response to isotropic hydrostatic pressure.
Cell contact network: A network where the nodes are cells and links represent active contacts between neighbouring cells.
Contour length: In a polymer chain, the contour length, lc, is the distance between the two extremes of the filament if the polymer is fully unfolded.
Critical point: Magnitude of the control parameter that triggers a phase transition. At the critical point, a discontinuity on some macroscopic observable is expected,
and specific statistical patterns, such as power-laws, often largely independent of system’s details, are observed. Formally, the functional dependence of the order
parameter on the control parameter shows a singularity in some of its derivatives at the critical point.
Cytoskeleton: A network of biopolymer fibres that extends throughout a cell. It is themain determinant of thematerial response of the cell under deformations and stress.
ECM network: The extracellular matrix (ECM) is a non-cellular component providing the material backbone for the cellular constituents. Beyond its structural character, it
plays a key, active role in morphogenesis, differentiation and homeostasis.
Elastic modulus: Also known as Young’s modulus, E, quantifies the strain response to uniaxial stress in the direction of this stress in the linear regime.
Enthalpic elasticity: In a polymer network where lp/lc ≫1 filaments are considered stiff, and deformation comes from the stretching or compression of them. The main
energetic costs come from changes of the enthalpy of the system. Systems in the enthalpic regime show in general small deformations under stress.
Entropic elasticity: In a polymer network where lp/lc ≪ 1 filaments are rugged and fluctuate due to thermal agitation. In these systems, the elastic response against
deformation is due to the unfolding of these filaments towards the axis of the stress. This unfolding results in a decrease of the entropy of the system. The materials in
these regimes are usually elastic and deformations can be in general big, and recover the initial configurations when the stress is released
Interstitial fluid: space between the cells of a nonconfluent tissue.
Isostatic point: A system is at the isostatic point when the degrees of freedom of its constituents are absorbed by the constraints imposed by the structure in a non-
redundant way. In the theory of rigidity, the isostatic point is marked by the critical value of connectivity in which the system becomes rigid, e.g., the lowest value of
connectivity that leaves no degrees of freedom within the internal constituents of the system.
Jamming: Divergence of the viscosity of a material with increasing particle density
Micro/macro mapping: The mapping between microscopic dynamics, often containing a great number of degrees of freedom to a single, often scalar microscopic
observable. The most common example is the microscopic motion of particles in a gas giving rise to the macroscopic observable of temperature.
Network rigidity: A topological concept where a network structure (or part of it) made of nodes and connecting links is considered to be generically rigid if no independent
(geometric) movement of the nodes is possible without stretching/compressing a link.
Percolation: A network is in the percolating regime if a significant part of its nodes define a connected cluster, that is, for any pair of nodes of this cluster, there is a path
that connects them. In a random network, the emergence of the percolating cluster is an abrupt event, and has all the properties of a high order phase transition as
described in statistical mechanics. Many different classes of percolation transitions can be defined, depending on the attributes one expects to observe in the emerging
cluster when the average connectivity increases.
Persistence length: In a polymer chain, the persistence length, lp, quantifies the length scale at which significant bending fluctuations occur. Formally, it is the length at
which the polymer chain appears straight in the presence of Brownian forces.
Phase transition: Macroscopic change in the properties of a system (order parameter) when a parameter crosses a certain critical value (control parameter), also called
critical point.
Rigidity percolation: A high order phase transition triggered by increasing the average number of links per node in a network, leading to the sudden emergence of a rigid
region that spans almost the whole network, the Giant Rigid Cluster (GRC). The term rigidity percolation comes from the fact that almost any two nodes of the graph are
connected through a path that is entirely inside the same rigid cluster.
Shear modulus: Denoted by G, quantifies the material’s response to shear stress.
Strain: Denoted by c, quantifies the deformation of a body. It quantifies relative displacements of parts of the body other than the ones that can be attributed to rigid body
motions.
Strain softening response: Non-linear response of many biological materials consisting on the decrease of the stiffness along the increase of strain.
Strain stiffening response: Non-linear response of many biological materials consisting on the increase of the stiffness along the increase of strain.
Vertex models: Tissue models represented by tilling of the space (in general, over 2D surfaces) in which the energetic contributions come from geometric considerations
on the cell shape and cell-cell contact regions (vertices).
Viscosity: Denoted by η, quantifies the material’s flow at a given velocity upon stress
T1 transition: Relative movement of cells in a tissue occurring when an edge between two cells shrinks to a point and a new edge arises between two neighbouring cells.
The outcome of this process is a net change of neighbouring cells and, in consequence, a relative movement, with respect to the other cells, of at least one cell within the
tissue.
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deformation of the material (nonlinear regime). In contrast
however, most theoretical frameworks predicting viscoelasticity
upon deformation, are based on forces triggering infinitesimal
deformations (linear regime) [24]. Last, similar to the
viscoelasticity of non-living materials, viscoelasticity of cells
and tissues is a property arising from their underlying
structure, defined by the way macromolecules and cells
interact [1, 8, 15, 25–29]. Several theoretical frameworks have
for long been used in non-living materials to link the
microscopic structure to the macroscopic viscoelastic
properties (Box 1), showing that viscoelasticity may behave
as an emergent property [27–32], in the same way, e.g.,
temperature arises non-trivially from microscopic particle
motion in statistical mechanics [14]. How macroscopic
viscoelasticity can be predicted by the interactions of the
microscopic constituents of living cells and tissues is an open
question at the interface of statistical and soft matter physics
with molecular and cell biology, and the main topic of this
review.

An intriguing empirical observation is that the material
properties of the microscale components of cell and tissue
viscoelasticity, such as the cytoskeletal elements and the cells,
respectively, usually do not match the macroscale material
properties of cells and tissues [15, 29, 33]. Macroscopic
viscoelasticity frequently exhibits nonlinear changes that are
not observed at the microscopic level. Such examples have
been experimentally detected such as the strain-stiffening
response of the cytoskeleton networks [26, 30, 34], phase
transitions in the energetic costs of cell movements [12] or
abrupt changes in tissue viscosity [13] (Box 1, Figures
1C”,D”). In the above cases, the mechanical resilience of the
individual microscopic components to forces falls short in
explaining the macroscopic viscoelastic changes, and thus
probing the pattern of interactions between the components
instead, is key.

Such nonlinear phenomena set a number of challenges to the
theoretical understanding of cell and tissue dynamics. Theoretical
analyses of cell and tissue material properties are typically
addressed from the biopolymer or cell level, respectively. In
the first theoretical approach, the microscopic basis is the
mechanical properties of the biopolymer filaments building the
cytoskeleton [35] and the macroscopic viscoelastic features are
derived from the network geometry and local topology of the
filaments [26]. Nonlinear phenomena such as strain-stiffening of
cytoskeletal networks have been probed with such models. In the
second theoretical approach, the microscopic basis is the tiling
patterns of the constituents, such as the cells forming a tissue. In
such modeling frameworks, mainly represented by the vertex
models (Box 1) [25, 36, 37], rheological properties such as rigidity
and fluidity are inferred from the energetic costs for cells to
independently move through the tissue [27, 28, 38–41]. This
viewpoint comes from the fundamental observation that material
deformation can only take place through cell-cell rearrangements.
Nonlinear phenomena such as jamming transitions (Box 1) have
been predicted with such frameworks [27, 28, 40–42]. A third
theoretical approach that is not as frequently applied in active
viscoelastic systems, but has been used so far to probe material

properties across scales, is network theory [29, 31, 43, 44]. In this
framework, the starting point is the topology of the network, e.g.,
how the system’s constituents are connected between them. Of
particular relevance for these approaches is the concept of
percolation (Box 1). Percolation refers to a wide range of
phenomena where a sudden shift in the macroscopic
properties of a system made of microscopic, interacting units,
is observed when a certain threshold of connectivity at the
microscopic scale is overcome [45]. In material sciences,
percolation transitions underlie many sudden, qualitative
changes in the behavior/response of the material, including,
among other, shifts in rigidity and force transmission
properties [46–54]. A paradigmatic example of the role of
percolation theory in explaining material properties is found
in the exploration of the emergence of cracks when the
material is under stress. In this context, the length and width
of cracks emerging in the material increase dramatically when
the system approaches the critical point of rigidity percolation
[55, 56] (Box 1). Several forms of percolation theory have been
applied to cytoskeletal networks, fiber networks and, recently,
to “cellular” networks - tissues - to map material properties
[29, 31, 43, 44]. As is the case with inanimate materials,
the structure of interactions at the microscopic level --and
the potential nonlinear shifts arising from small changes in
them-- are supposed to underlie and, ultimately, explain, the
emergence of macroscopic material properties like
viscoelasticity.

In this review we summarize and discuss experimental and
theoretical work probing cell and tissue viscoelasticity as an
emergent property. We will first introduce experimental
findings on how viscoelasticity emerges in cytoskeletal
networks, extracellular matrix fiber networks and tissues. We
will then summarize and classify theoretical frameworks
supporting such experimental findings that address cell and
tissue material properties. Finally, we will discuss the potential
of applying network theory to predict viscoelasticity, and
speculate how such an approach could impact our biophysical
understanding of the material properties of living systems and
their morphogenesis.

VISCOELASTICITY AS AN EMERGENT
PROPERTY: EXPERIMENTAL
OBSERVATIONS
Cellular Viscoelasticity
Changes in cellular-scale viscoelasticity are key for cell physiology
[57]. Both the cytosol and cytoskeleton contribute to cellular-
scale viscoelasticity, with cytoplasmic viscosity dominating
processes of macromolecular movement [58] and cytoskeletal
viscoelasticity influencing cell morphology, motility and division
[8, 57]. Given that experimental work suggests that the
cytoskeleton is the major determinant of cellular viscoelasticity
[59, 60], we focus here on its viscoelastic properties. The
cytoskeleton is the underlying biopolymer scaffold of living
cells, and its viscoelasticity offers a balance between dynamic
reorganization and maintenance of the cell body. Cytoskeletal
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viscoelasticity is a complex phenomenon, since it arises from the
mechanical properties and interactions of at least three different
biopolymers: actin, microtubules and intermediate filaments.
These fiber structures further self-organize into filaments and
heterogeneous networks through mechanisms of entanglement,
branching, crosslinking and bundling (Figure 1C) [61–64]. Such
mechanisms involve several types of linkers, such as cross-
linking/bundling proteins a-actinin and fascin, and motor
proteins like myosin and kinesin [65]. In general, the
mechanical properties of the cytoskeleton depend on the
physical properties of the individual filaments, the pattern of
linkages between the filaments, and the geometry of the filament
arrangement [66, 67]. Although cell viscoelasticity is a result of
the heterogeneous mechanical properties of all cytoskeletal
elements together, our understanding of this process comes
mostly from studying each type of element separately (for
extensive reviews see [1, 3, 8]).

At the single-filament level, each cytoskeletal biopolymer
displays different physical properties, assessed by the ratio of
its persistence length (lp) over its contour length (lc) (Box 1). When
lc > lp, the polymers are flexible, and this is the case for the
intermediate filaments, which display the shortest lp (from
200 nm to ∼1 μm) and are the softest among the cytoskeletal
elements [68, 69]. Actin filaments have a higher lp (from 3 to
17 μm) and are semiflexible and microtubules exhibit the highest
lp (>1 mm) and are stiff polymers [70]. Already at the single
filament level, semiflexible polymers such as actin and vimentin,
display a nonlinear increase of their shear modulus at different
strain amplitudes [71] (Box 1). This nonlinear force-extension
relationship becomes more apparent at the network level, where
new material properties emerge that are absent at the single
filament level. Cytoskeletal elements build networks via various
forms of filament interactions that influence the viscoelastic
behavior of the whole network. For example, transient and
non-covalent interactions with crosslinks turn the network
into a viscoelastic material, whereas covalent interactions turn
the network into an elastic material [3]. Experimental
measurements of reconstituted cytoskeletal networks
(Figure 1C’) revealed nonlinear force-extension relationships
such as stress-stiffening in the presence of tensile load
(Figure 1C”) but also stress-softening in the presence of
compressive load [5, 30, 33, 62, 71, 72] (Box 1). Actin and
intermediate filament networks are highly strain-sensitive, with
10–100 times stiffening appearing at very low strains [71, 73].
Experimental work suggests that depending on the density and
interactions in the network e.g. dense vs sparse, the macroscopic
material properties change following a well-defined phase
diagram [30]. Gardel and colleagues have shown that the
addition of crosslinkers results in the formation of rigid
solid networks, with elastic modulus several orders of
magnitude greater [30]. Even when using flexible
crosslinkers like filamin, the network displays nonlinear
increases of the elastic modulus when increasing strain,
reaching values that match the elastic moduli of cells [34].
Similarly, addition of molecular motors to reconstituted actin
networks, such as myosin II, leads to a sharp increase of the
elastic modulus [74, 75]. Microtubules on the other hand, and

also weakly cross linked actin networks, decrease their
modulus as the applied stress is increasing displaying a
stress-softening response [30, 76–78]. In conclusion,
experimental work shows a very rich collection of nonlinear
macroscopic viscoelastic behaviors of the cytoskeleton that
represent a challenge for theoretical understanding at the
microscopic level.

Extracellular Matrix Viscoelasticity
Besides the emergence of material properties in intracellular
cytoskeletal networks, similar behaviors are observed in
networks of the extracellular matrix (ECM), the non-cellular
material backbone spanning cells and tissues. ECM
viscoelasticity is fundamental in cell migration, tissue
morphogenesis, organ development, and cancer progression [5,
79, 80]. The ECM is a heterogeneous network composed by
several biopolymer filaments, such as fibronectin, laminin, and
collagen, that exhibit various persistence lengths. This can range
from the 4–8 nm persistence length lp of flexible hyaluronan
biopolymers to a few millimeters’ persistence length lp of stiff
collagen fibers [81, 82]. Given that the ECM is composed of
various proteins, enzymes and polysaccharides, probing its
viscoelasticity becomes highly complex. Due to its covalent
nature of crosslinking, in contrast to the cytoskeletal networks,
the ECM is considered an elastic-like network [83]. Collagen
networks also display a strain-stiffening response that is in this
case emerging from the network level and specifically its
connectivity [73, 84, 85] (Figures 1C, C’’). In this case, the
nonlinear behaviour emerges for strain of only 10% increase
where stiffness increases by 100x before network rupture [44]
(Figure 1C’’).

Tissue Viscoelasticity
Similarly, tissue-scale viscoelasticity has been recently
experimentally measured to undergo nonlinear changes
[11–13, 86–89] resembling phase transitions [90–92]. Direct
measurements of viscoelastic features such as yield stress and
viscosity have been performed in embryonic tissues and spatial
and/or temporal drastic changes have been observed [12, 13]. In
the case of the early zebrafish blastoderm, for example, tissue
viscosity was found to abruptly drop by more than an order of
magnitude within a few minutes at the onset of morphogenesis
[13] (Figures 1D’, D’’). In addition, comparison of the yield stress
between two neighboring tissues along the zebrafish body axis,
the presomitic mesoderm and the progenitor zone, has revealed
the presence of solid-like and fluid-like tissues, respectively [12].
However, does cell viscoelasticity scale in such cases with tissue
viscoelasticity? Although --to our knowledge-- no simultaneous
analysis has been performed yet onmeasuring both cell and tissue
scale viscoelasticity under different conditions to quantitatively
assess their relationship, several lines of evidence point at the
hypothesis that tissue-scale viscoelasticity critically depends on
the interaction patterns between cells. Along these lines, it was
reported that inhibition of myosin cytoskeletal motors in
zebrafish, that is expected to decrease cell-scale viscoelasticity,
had no effect on tissue viscosity [29]. Similarly, pharmacological
treatments of the zebrafish tailbud with blebbistatin (a
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pharmacological myosin II inhibitor), which lowers cytoskeletal
elasticity, had surprisingly inverse results on the tissue-scale
material properties, where the tissue yield stress in treated
embryos it is almost double than the control embryos [12]. In
contrast, changes in cell rearrangements, cell-cell adhesion,
contractility and cell division rates were shown to trigger
changes in the tissue scale material properties (Figure 1D)
[11–13, 86–88, 93]. This agrees with extensive theoretical work
inferring tissue material phase transitions based on certain cell
parameters such as cell motility and adhesion [27, 28, 32, 41], and
quantitatively linking tissue rigidity to cell-cell connectivity and
adhesion [29], but not directly to the rigidity of individual cells.

Overall, experimental measurements of several viscoelastic
characteristics in cells and tissues have revealed nonlinear
changes at the macroscale, e.g., viscosity, yield-stress, elastic
modulus that do not trivially match similar changes at the
microscale, e.g., individual cell and filaments material
properties, strongly supporting that viscoelasticity of living
systems is an emergent property.

VISCOELASTICITY AS AN EMERGENT
PROPERTY: THEORETICAL MODELS

Several theoretical frameworks have been developed to establish a
micro-macro link that can explain cell and tissue viscoelasticity.
Numerous models exist in describing complex viscoelastic
behaviors in chemical polymers where we recommend to the
reader for a more specialized relevant literature [94–96]. Here
however, we will summarize experimentally-based models
belonging to three categories, based on the abstraction used to
represent the biological system: In cytoskeleton networks, the

building blocks are the biopolymer filaments and their
mechanical properties, in vertex models, the geometrical
properties of individual cells tilling the tissue and finally, in
the topological models, the local topological arrangements of
e.g., cell-cell contacts.

Modeling Viscoelasticity in Cytoskeleton
Networks
The theoretical modeling of filament networks must account for
the particular rheological phenomena these systems show, such as
the strain stiffening response, stiffening tunability, and
recoverable network fluidization [8, 15, 26, 30, 33, 71, 77,
97–99]. These models consider, at the microscopic level,
filament properties like stiffness or length, and the local
geometric and topological patterns of cross-linking, which
project to the macroscopic level as material properties. Given
these parameters, qualitative shifts in the response of the network
are expected while increasing the density of filaments: First,
beyond a certain threshold of density, the phenomenon of
geometric percolation is observed, usually referred to simply as
percolation, purely based on the network topology (Box 1). At
higher filament density, another qualitative shift in the properties
of the network is observed, when the stiffness percolation
threshold is overcome (Figure 2A). Beyond this filament
density threshold, any stress applied at any point of the
network will propagate throughout the whole system, meaning
that the Young modulus, E, transits from E � 0 to E > 0 [26, 100].
Stiffness percolation is related to rigidity percolation (Box 1),
where stresses are no longer absorbed locally, but rather
globally. Rigidity percolation, however, only refers to the
topological structure [48, 101], whereas, in the case of

FIGURE 2 | Modelling cell and tissue viscoelasticity. (A) Phase diagram of the regimes arising in a topological model for rigidity, such as stiffness percolation,
predicting a floppy to rigid transition at a critical point of average connectivity of the underlying network (grey rectangle). A random network displaying average
connectivity below the isostatic point (critical point), has a small Giant Rigid Cluster (red) and the whole network is floppy, displaying Young’s modulus E � 0. The same
network, exhibiting connectivity above the critical point forms a big Giant Rigid Cluster making the whole network rigid, hence displaying E >0. Figure adapted from
[31, 138]. (B) Phase diagram of the network of WLC filaments’ model showing strain-stiffening response of semiflexible biopolymer networks. At low density and low
filament length, the network is in solution and in a floppy regime. The solid line indicates the rigidity percolation transition where the network gains stability above a critical
density and length, and can be approximated by L ∼ 1/9. At intermediate density but longer lengths, the network displays an affine elastic deformation due to the entropic
stretching of the filaments. At higher density the network displays an affine elastic deformation dominated by the enthalpic stretching and bending of the network and is in
a rigid regime. Figure adapted from [26]. (C) Phase diagram of a vertex model predicting a floppy to rigid phase transition in simulated confluent tissues. Below a critical
point of a cell shape index s0 (defined by cell-cell adhesion and cell contractility) cells are free to move and display high mean squared displacement (long cell trajectories)
and the tissue is fluid-like, thanks that the increase of energy due to cell-cell rearrangements ΔH � 0. Above the critical point cells acquire a hexagonal shape and display
caged limited motion (short cell trajectories), and cell-cell rearrangements have a positive energy penalty ΔH> 0. Figure adapted from [27, 28].
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filament networks, further parameters are considered, as
discussed below.

A well accepted model describing the phase space of filament
viscoelasticity defined by the parameters of filament density and
individual filament properties is the Worm-like Chain (WLC)
model [15, 102]. In the WCL model, biopolymers are considered
as elastic rods or fibers with finite resistance to bending.
Geometrically, such fibers are depicted by an inextensible
curve with an energy penalty for bending. Let r(s, t) denote
the path the curve takes in space (and time), parameterized by s,
the arc length along the curve and χ the bending modulus. The
functional accounting for the energy costs of fiber deformation
will be given by:

H � χ

2
∫lc

0

∣∣∣∣∣∣∣∣
d2r
ds2

∣∣∣∣∣∣∣∣
2

ds

The second derivative accounts for the local curvature of the
filament. The bendingmodulus χ has units of energy times length.
The above energy function is penalizing any increase of the
filament curvature and χ gives us the scale of such energy
penalties. Thermal fluctuations play an important role here,
due to the microscopic size of the filaments. As it is standard
in statistical mechanics [103], non-zero temperature regimes
imply the presence of stochastic, brownian fluctuations whose
scale is kBT , where T is the room temperature and kB is the
Boltzmann constant. Knowing the scale of the local stochasticity
due to temperature enables the definition of a characteristic
length for the system, as:

lp � χ

kBT

which corresponds to the persistence length lp(Box 1).
Together with the contour length lc (Box 1), the filaments
are classified according to their stiffness as flexible, semi-
flexible and stiff. If lp/lc ≪ 1, the filament is flexible and
thermal agitation can induce traverse fluctuations. In this
regime, entropic elasticity (Box 1) dominates the dynamics,
such as during cytoskeleton stretching [30, 71, 75, 104]. In the
case where lp/lc ≫ 1 , filaments are considered stiff and no
fluctuations induced by thermal agitation are allowed. In this
regime, enthalpic elasticity (Box 1) dominates the
deformations of the filament, such as during cytoskeleton
bending or buckling observed in branched actin networks in
the cell lamellipodia [77, 105]. Finally, when lp/lc ≈ 1, filaments
are considered semi-flexible and transverse undulations due to
thermal fluctuations are possible, although attenuated.
Whereas both the flexible and rigid regime show linear
response to strain, the response in the semiflexible regime is
nonlinear. To characterize the phase space, we observe that the
system can transit between different regimes by changing the
filament density ρ (proportional to 1/lc) and filament length L
playing the role of lp (proportional to the chain’s molecular
weight). Taking these two parameters as the coordinates of a
phase diagram, one can identify four regimes: Affine entropic,
affine enthalpic, non-affine, solution [15, 26, 33] (Figure 2B,
Box 1). In this phase diagram, the phase transition from a fluid

regime to a rigid regime is found at the border between the
solution and the non-affine regime (Figure 2B), whose
functional shape can be approximated as:

L ∼ ρ−1

Experimental work on reconstituted F-actin networks,
revealed that linear and nonlinear strain-stress
relationships can be explained by entropic and enthalpic
models, respectively. In the absence of crosslinkers, actin
networks generally form weak elastic gels mimicking the
elastic nature of the filaments [106, 107]. At the entropic
regime, elasticity comes from the resistance of each polymer/
filament against stretching [33, 107]. At the enthalpic regime,
while increasing strain, filaments first bend, reorganize along
the direction of shear strain and the network deformation
arises from the enthalpic stretching of the aligned filaments
[108–110]. Further work showed that by decreasing the
concentration of cross-linkers the network transits from
affine to non-affine [74, 75]. In conclusion, the modeling
of biopolymer networks within this framework has proven
powerful enough to account for the special viscoelastic
properties of these systems.

Modeling Viscoelasticity in Tissues
Cell-Based and Energy Minimization in Vertex models
When modelling tissue viscoelasticity, the fundamental units,
cells, are considered to exhibit certain properties [25, 111–117]
(Box 1) arising from the cell cytoskeleton [118]. Parameters, such
as departure from an ideal cell shape and active fluctuations
condense the material response of the cell and its effect to the
tissue architecture under stress. There are several abstractions,
depending on where the emphasis is placed concerning the
energetic cost of the tissue deformations or configurations. Here,
we will briefly mention Cellular Potts models and Centroid models,
and focus more on the Vertex models (Box 1) which provide a
widely applicable framework to the understanding of biological
tissue properties.

Cellular Potts models idealize the tissue architecture as a mesh
in which each point can be in several states and, accordingly, can
represent a part of the cell, a contact point, or a free space. Each
state of the mesh point has a particular contribution to the overall
energy of the system, and may depend critically on the state of its
neighbors [116]. Cellular Potts models may be considered within
the much broader family of network models. In turn, centroid
models base the analysis on the assumption that cells can be
represented by their centroid position within the geometry of the
tissue. Energetic contributions are based on geometrical
considerations between centroids, such as distance between
them [117, 119, 120]. The source of energetic contributions
can be considered somehow complementary or even opposed
[120] to the one considered in vertex models and the energetic
costs associated with different configurations can be associated
with material properties of the modeled tissue.

Vertex models have recently received a lot of attention due to
their potential in describing a wide range of tissue properties [25,
27, 36, 111–115, 117–119, 121–123]. Moreover, the accurate
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study of their mathematical properties revealed a plethora of
interesting physical properties [27, 28], such as second order
rigidity [121], that could play a relevant role in the modeling of
biological tissues. Importantly, these properties may imply an
interesting departure from the framework proposed by inanimate
material science, and proposes a theoretical framework that
extends to biological materials. In principle, vertex models
have been postulated to model confluent tissues, with recent
approaches extending the framework to non-confluent tissues
[32]. The essential problem vertex models try to answer is: what
are the energetic costs for cell migration within a tissue? In that
framework, fluid states are those by which the movement of cells
can happen at almost no cost, and rigid states will correspond to
those states by which moving a cell - in particular, performing a
T1 transition - implies a positive energy penalty, to be paid either
in the form of external work or by the cells themselves
(Figure 2C). Arguably, the response to an external stress will
be, at least partially, driven by the possibility of cell
rearrangements which, in turn, depend on the ease of
movements of cells within the tissue. The energetic

contributions that configure the overall energy of the tissue
come from the resistance against compression and the
departure from some preferred shape in cells which, in most
cases, is introduced as the preferred relation perimeter/area in 2D
projections [27, 113, 121, 122]. Having N cells, the functional
accounting for the energy of the (2D) system reads:

H � ∑N

j
KAj(Aj − A0j)2 + KPj(Pj − P0j)2 (1)

where Aj and A0j are the actual and preferred areas of cell j; Pj
and P0j are the actual and preferred perimeter of cell j. KAj and
KPj are the area and perimeter moduli, respectively. The first
term models volume incompressibility and the second term
models the active contractility of the actomyosin subcellular
cortex. As shown, the underlying complex properties of the
filament network which are themselves the outcome of a
multidimensional problem have been absorbed by the scalar
parameters KAj and KPj. The above equation can be non-
dimensionalized in length if we divide it by

���
A0

√
, resulting in

an effective shape index s0:

FIGURE 3 | Rigidity percolation in living systems. (A) Schematic illustration of rigidity. A rhombus cluster of four nodes and four links deforms in the presence of a
deformation force. Just by the addition of one link that absorbs the remaining degrees of freedom of the central nodes, under the same deformation force it does not
deform and it is considered rigid. (B,B’) Rigidity percolation transition in actomyosin crosslinked networks. (B) At low connectivity (left) or low crosslinker concentration
the network is mostly disconnected and displays local contractions. At intermediate connectivity (middle) and intermediate crosslinker concentration the network is
critically connected. At higher connectivity (right) and high crosslinker concentration the network is fully connected, the Giant Rigid Cluster (GRC, red) emerges and the
network displays global contractions and signs of fracture. (B’) Plot of the size of the GRC as a function of crosslinker concentration and thus average connectivity.
Depending on the absence or presence of contractility the system can be considered as passive or active respectively, and this changes the transition point. Figure
adapted from [43]. (C,C’) Rigidity percolation transition in cellular networks - tissues - of the zebrafish embryonic blastoderm. (C) At low average connectivity (∼3.5
contacts per cell) the GRC (red) is small and the blastoderm is fluidized whereas at higher connectivity (>4 contacts per cell) the GRC is big, occupies almost the whole
network and the tissue displays experimentally high viscosity. (C’) Plot of the size of the GRC as a function of cell connectivity. Note that the GRC is emerging sharply at
the critical point of connectivity (2/3 of maximum potential connectivity). Figure adapted from [29].
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s0 � P0���
A0

√

s0 will act as the control parameter in the different phase
transitions between the material regimes of the tissue
(Figure 2C). The study of the energetic costs of motility
within the tissue is performed through the analysis of the
energy barriers arising when a T1 transition occurs (Box 1).
The energy barrier corresponding to a T1 transition can, in
consequence, be computed as the energy difference, based on
Eq. 1, associated to the reduction of the length of an edge to 0
[124, 125]:

ΔH � H(l) −H(0)
If a T1 transition can be performed at no energy cost, the tissue is
in a fluid configuration. Otherwise, the tissue is considered rigid.
Remarkably, one can observe a well-defined phase transition
from ΔH � 0to ΔH > 0 as a function of s0. In particular, for
values s0 < 3.81, the energy imbalance is no longer zero, meaning
that T1 transitions happen at a finite energy cost. Interestingly, in
disordered systems, the shear modulus vanishes at s0 < 3.81 [25,
27]. Given the composition of tissues, any deformation must
involve rearrangement of cells and, therefore T1 transitions.
Consistently, one would expect that the shear modulus goes
hand in hand with the energy barriers. Remarkably, this is not
the case, and for values 3.71< s0 < 3.81, the tissue has zero linear
response but non-zero high-order response [121]. In
consequence, this phenomenon has been called “second order
rigidity” and the material regime has been named “soft solid”
regime [126]. In spite of the numerical evidence that the
emergence in the linear regime of the shear modulus coincides
with the emergence of theoretical energy barriers in disordered
systems, it is currently still unclear what is the theoretical
background that could explain the emergence of viscoelastic
properties from the theoretical framework of vertex models.
Finally, an extension of this vertex model has been developed
for non-confluent tissues where stochastic fluctuations in cell
surface tensions, density and cell rearrangements control rigid-
to-fluid transitions [32]. This contribution detaches the
framework of vertex models from the structural constraints
that confluency imposes, hence broadening their application in
biological tissues.

Topological Models Based on Cell Contact Networks
The presence of interstitial fluid (Box 1) in non-confluent tissues,
such as embryonic tissues and tumors [12, 13, 127], opens the
possibility to apply even simpler theoretical frameworks to
study their viscoelasticity [29]. The reason is that abandoning
confluence liberates the system from a lot of implicit
constraints at the structural level. Within non-confluent
tissues, the range of potential structural patterns increases
enormously and topological models can exploit this potential
heterogeneity. Here we discuss how topological models can be
connected to the rheological properties of non-confluent
tissues.

Topological models consider only the structural pattern of
connections as the source of the material properties of the tissues.

When the system is abstracted at the topological level, its
structure is represented by a network defined by nodes and
connections among them (Figure 2A). It is important to stress
that, at first approximation, no other component, such as link
properties or geometric embedding, is considered. The
topological analysis, therefore, distills the structure of the
system at the level of microscopic minimal components and
combinatorial relations among them. In that sense, the basic
observables of these models are, for example, the number of links
connecting a given node to other nodes of the network, or the
existence of paths, within the graph, between a given pair of
them. In general, the approximation of a random network, in
which the number of connections per node fluctuates
stochastically according to some general constraint, quite
accurately describes the behavior of real systems --given a
suitable choice of constraints [92, 128–131]. For example, in
the case that a network is representing the contacts of cells in
epithelial (2D) tissues, it must belong to the class of planar
networks, namely, those networks that can be extended in a 2D
surface without displaying any link overlap [131]. In spite of the
apparent simplicity of the approach, the study of networks at
the topological level displays a wide range of non-linear
phenomena, such as phase transitions or self-organized
criticality [92, 129–131]. Particularly relevant is the
phenomenon of percolation [91, 92, 128, 129], briefly
mentioned in previous sections (Box 1). We will focus on
the emergence of the so-called rigid cluster percolation (Box
1), due to its important implications in cells and tissue material
properties.

Rigid cluster percolation is based on generic rigidity theory.
Given a graph of N nodes and NL links, a graph is rigid if none
of its nodes can be moved independently without constraining
or stretching a link (Figure 3A). Despite that the informal
definition provided above for rigidity percolation appeals to
material deformations e.g., stretching, compressing links, it
turns out that the identification of rigid regions in a graph is
a purely topological problem: it relies on the identification of
actual degrees of freedom remaining in the network through
application of the pebble game algorithm [47] based on a
theorem considering only the topology of the network [101]
(see Figure 3A). A natural question arises: what are the
conditions leading to rigidity in a network? The answer is
based on Maxwell’s constraint counting [48, 132], where very
large networks made of N nodes and NL links are considered,
the links acting as pairwise constraints, limiting the possibilities
of independent motion of the nodes connected by the link. For
simplicity, a random triangular lattice is considered (e.g.,
networks in Figure 2A) where the probability that a link
exists is pe. If pe � 1, all the links are present and the
average connectivity 〈c〉, the average number of links per
node, is 〈cM〉 � 6 --recall we are considering very large
networks where the boundary effects are negligible. In
consequence, the number of links of this network will be
fairly approximated by:

NL � pe
2
N〈cM〉 (2)
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A network will be rigid if the constraints absorb all the degrees of
freedom for the motion of nodes (Figure 3A). Considering a
triangular lattice embedded in a 2D plane, each node has, a priori,
d � 2 degrees of freedom (position x and y). The number of
degrees of freedom remaining in the network or Floppymodes, F,
will be approximated by:

F � dN − NL

Note that here we consider that all links are responsible for an
independent constraint. We must notice that this is an important
simplification [51, 132] of the problem, but has proven useful in
terms of both simplicity and predictive power. Starting from
pe � 0, the number of floppy modes is expected to decrease as
long as pe grows. The key question is to identify the pe by which
F � 0 and, thus, the whole network is expected to be rigid. This is
known as the isostatic point (Box 1) and, using the expression for
E found in Eq. 2, and setting F � 0, we obtain:

dN � pe
2
N〈cM〉

that lead us to:

pe � 2d
〈cM〉

� 2
3

(3)

which, in terms of average network connectivity, implies 〈c〉 � 4.
That is, if the probability of link existence is pe > 2 /

3, one expects
the network to be rigid, and no independent movements could, in
principle, be performed without imposing work over the system.
Nevertheless, the emergence of rigidity is a much more complex
phenomenon. In the case that pe < 2 /

3, for example, there are
constraints already acting in the system, so one would expect to
see rigid regions within the network. At the same time, the
probabilistic nature of the reasoning for finding the isostatic
point may induce one to think that some regions of the network
may remain floppy even for pe > 2 /

3 The answer is that, in very
large systems, the relative size of rigid regions at pe < 2 /

3, is
negligible and that, for pe > 2 /

3 one observes the emergence of
the giant rigid cluster (GRC) spanning almost all the network
(Figure 2A). The emergence of the GRC is abrupt and has all the
features of high order phase transitions. Therefore, the isostatic
point pe � 2 /

3 is the critical point of a phase transition called
generic rigidity percolation, or simply, rigidity percolation
[47, 51].

In order to connect rigidity and topology with the material
properties, the mechanics of the links, considered as springs,
should also be considered. In that context, pe < 2 /

3 (subcritical
regime) implies that one can perform a differential deformation
over the network at no cost. On the contrary, if pe > 2 /

3, any
deformation implies an energetic cost in the form of external
work performed over the network, as some spring will have to be
unavoidably stretched or compressed. Therefore, in the case of
very large systems, the first natural consequence of the emergence
of the rigid cluster is that the Young modulus E will be E � 0 in
the subcritical regime and E > 0 in the supercritical regime. In
consequence, the topological phase transition that results into the
emergence of the GRC projects into the material properties,
implying a qualitative shift in the material response of the

system under deformations. How does it project specifically
into the viscoelastic behavior of the network? To understand
that, a minimal ingredient of viscoelastic behavior should be
introduced within the springs. This is performed by considering
that each spring may update its rest length at random [29, 133].
Specifically, in the simplest approach, the spring updates its rest
length at random at every time unit step with probability p � 1

τ.
Formally, if at time t the rest length is l(t) and the actual length,
due to some external stress, is l(t) + Δl(t), then:

p(l(t + 1)→ l(t) + Δl(t)) � 1
τ

In Box 2 we show how the microscopic dynamics of energy
dissipation gives rise to macroscopic viscosity. In particular, if
E is the Young modulus of the network, each link has the same
spring constant k, and all such springs update their rest length
at random with probability p � 1

τ at every time step, one is
led to:

dc
dt

� 1
E
(dσ
dt

+ σ

τ
) (4)

where γ, is the strain and σ, the applied stress (Figure 1B). Eq. 4 is
a constitutive equation for a Maxwellian viscoelastic material [14]
(Figure 1B). The above equation enables us to identify:

η � Eτ (5)

as the viscosity of the system. What is relevant here is that we
have a direct relation between the Young’s modulus of the
system, E, and the viscosity of the material, η, up to a constant
that is the average lifetime of springs: The faster the update of
the spring rest length is, the more fluid the behavior of the
material will be. On the contrary, in the limit of no updating,
the material is only elastic. Moreover, it is established above
that the emergence of a finite Young’s modulus depends
critically on the rigidity regime of the network. In
conclusion, non-zero viscosity will emerge as the
consequence of the emergence of the GRC, at least at the
linear level. The phase transition observed for the emergence
of the rigid cluster must therefore leave a footprint in the
viscoelastic behavior of the network at the critical point.

The above framework is able to bridge, in spite of its
simplicity, microscopic topological patterns to macro-
structural properties [47, 51], without a priori reference to
the mechanical properties of the constituents. These patterns,
in turn, can be formally mapped to macroscopic material
observables, such as viscoelasticity, hence demonstrating a
potentially widely applicable framework to quantitatively link
microscopic interactions to macroscopic viscoelasticity across
scales.

RIGIDITY PERCOLATION PROBING
VISCOELASTICITY ACROSS SCALES

Recent experimental work indicates that analysis at the purely
topological level has the potential to indeed probe viscoelastic
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BOX 2 | Viscosity of a network of springs.

We sketch here, in a very simplified way, the connection between viscoelasticity and the topological property of generic rigidity. We present a version of the Maxwell’s
model for viscoelasticity (see Figure 1B), where the particularity comes from the conceptualization of the dashpot, whose role is absorbed by a stochastic resetting of
the rest-lengths of the springs forming a network that, in turn, models the structure of the material. This modelization enables the linking of Maxwell’s network
rigidity to Maxwell’s theory of viscoelasticity.
Let us consider a network of springs, each with elastic constant k. Each spring updates its rest length at random with probability p � 1/τ at every time step. If, at time
t the rest length is l(t) and the actual length, due to some external stress, is l(t) + Δ(t), with probability p � 1/τ , the rest length at time t + 1 will be updated as:

l(t + 1)→ l(t) + Δl(t).

The whole network has Young’s modulus E. We consider a random lattice arranged in a rectangular form, in a way that the bottom layer is attached to the ground and
the upper layer receives the stress σ(t) uniformly—is pulled up. To study the strain c(t), the elastic contribution, ce(t) and the contribution of the energy dissipation due
to rest-length resetting, cu(t) must be considered. The overall strain will thus read:

c(t) � ce(t) + cu(t).

We first consider the elastic component, e.g.:

ce(t) �
σ(t)
E

.

To compute cu(t), we observe that, in a mean-field approximation, a fraction of 1/τ of springs of the network will update their rest length per time step. Since the elastic
deformation for the applied stress is ce(t), the equation for cu(t) is:

δcu(t) ≈
ce(t)
τ

.

Using the expression for ce(t), and applying the continuous approximation, this leads to:

dcu
dt

� σ

τE
.

Considering the two contributions, the overall strain evolves according to the following equation:

dc
dt

� 1
E
(dσ
dt

+ σ

t
),

Which is a constitutive equation for a Maxwellian viscoelastic material [14]. The above equation enables us to identify the viscosity as:

η � Eτ.

In consequence, qualitative changes in the Young’s modulus of the network will project into qualitative changes in the viscoelastic behaviour of the system. If k � 0, as it
happens in spring networks whose connectivity is in the rigidity subcritical regime, one expects that, at the linear level, η � 0. On the contrary, if the network is in the
supercritical rigidity regime, k >0 and, in consequence, η>0.
To grasp the physical role of τ, we consider the simple scenario where we perform an instantaneous, small deformation over the network by pushing the upper layer a
distance d, under the assumption that k >0. In this case, the constitutive equation can be rewritten as:

dσ
dt

+ σ

t
� 0,

since the strain is 0. The solution of the above equation is given by σ(t) � σ0e−t/τ , that is a dissipation of energy in as system with characteristic scale τ.
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properties across scales. These models have been applied to
several forms of biological networks, such as the cytoskeleton,
ECM and cellular networks–tissues, to probe their material
properties [29, 31, 44].

In the case of the cytoskeleton, both experimental and
theoretical studies have shown that network connectivity is an
essential parameter for cytoskeletal network mechanics [26]. If
the actomyosin cytoskeleton is considered as a passive system,
then rigidity percolation can predict the elastic modulus of the
system based solely on its connectivity. In fact, a phase transition
is proposed to occur in such networks, where mechanical rigidity
emerges at the isostatic point --see Eq. 3 [31] (Figures 3B,B’).
Such a framework can be expanded to active systems, where
network connectivity together with motor activity can be further
used as parameters to predict the contractile behavior of the actin
cytoskeleton. Experiments on actin gels, where connectivity is
regulated by the density of fascin crosslinkers and the motor
activity by the density of myosin, showed characteristics of a
rigidity percolation transition [43]. Briefly, weakly crosslinked
networks (low connectivity) showed local contractions, medially
crosslinked networks (higher connectivity) formed distinct
contractile clusters within the network with a certain rigid
cluster size distribution and, strongly crosslinked networks
(highest connectivity) exhibited global network contraction
associated with network fracture [43] (Figure 3B). The
authors further propose that the motors have the ability to
reduce connectivity via forcing the crosslinkers to unbind, in
order to avoid network fracture and thus the interplay of motor
activity and crosslinking drives active gels to a critically
connected state that can balance between local and global
contractions [43].

Rigidity properties of ECM networks and, in particular,
type I collagen fiber networks, have also been well-described
by rigidity percolation theory [134]. Studies combining
experiments and theory suggest that the shear modulus of
collagen fibers shows a strong correlation with the collagen
volume fraction, and that these networks display connectivity
near the percolation threshold [134–138]. Further
experimental work however, has revealed that collagen
networks with connectivity slightly below the isostatic
threshold, can also become rigid in the presence of large
deformation instead, thus in such cases passive rigidity
percolation may not be sufficient to explain ECM rigidity
[44, 85]. In particular, increasing shear deformation in sub-
isostatic networks leads to nonlinear increase of the elastic
modulus of such networks along different connectivity values,
an observation highlighting the possibility of incorporating
the active nature of such systems when applying rigidity
percolation theory [139].

Recently, the concept of rigidity percolation has been applied
in non-confluent embryonic tissues to map tissue rigidity/
viscosity (Box 2). Although tissues do not form physically
crosslinked networks as the cytoskeleton or ECM, they can be
approached as “cellular networks”, where the nodes are the cells
and the connecting links the adherens-junctions (Figure 3C)
[140]. This theory was applied to the zebrafish blastoderm which
undergoes an abrupt and dramatic loss in viscosity at the onset of

morphogenesis [13, 29]. These changes in blastoderm viscosity
were probed via rigidity percolation analysis over cell contact
networks of the blastoderm. The size of the GRC was analyzed as
a function of connectivity, and it was found that the GRC size
correlates with the experimentally observed changes in tissue
viscosity [29] (Figure 3C). The emergence and disappearance of
the GRC around the critical point matched the empirical
observations where embryos whose cell contact network
displays an average connectivity below the critical point,
display a small GRC and are fluidized, whereas embryos
whose network displays an average connectivity above the
critical point display a big GRC and are rigid (Figure 3C).
This work further traced hallmarks of phase transitions, such
as the diverge of macroscopic observables and its critical
exponents at criticality, showing that rigidity percolation
theory can be applied in embryonic tissues in vivo to link
macroscopic tissue rigidity to the microscopic cell connectivity
of these tissues [13, 29].

DISCUSSION AND OUTLOOK

Living cells and tissues behave like viscoelastic materials [20, 141],
a long-standing observation that has only recently been linked to
cell and tissue physiology [2–5]. Spatiotemporal regulation of
viscoelasticity has been shown to influence essential biological
processes, such as cell motility, proliferation, wound healing and
the morphogenetic processes of body axis elongation and tissue
spreading during embryonic development [11–13, 86, 88,
142–144]. Tracing the microscopic regulators of viscoelasticity
is, however, a challenging task: typically, the mechanical
properties of these microscopic building blocks do not match
trivially the emerging viscoelastic behavior of cells and tissues at
the macroscopic scale. Among many examples, we find the
nonlinear increase of the elastic modulus of cytoskeletal and
fiber networks in response to strain, or abrupt drastic changes in
tissue viscosity without associated mechanical changes at the
cellular level [12, 29, 30, 33]. Given that the mechanical properties
of tissues are regulated at the microscopic level, e.g., from the
properties of the microscopic building blocks and their
interactions, quantitatively bridging the microscale to
macroscale is fundamental in order to understand the
emergence of viscoelasticity [145]. Several theoretical
approaches shed light on the biological mechanisms by which
viscoelasticity can emerge in a system. However, the application
of such theories is still far from comprehensive, given several
challenges --such as the active, non-equilibrium nature of living
systems.

At the cellular scale, the viscoelasticity of networked
biopolymer filaments forming the cytoskeleton and ECM is
most frequently modeled based on the mechanics, geometric
alignment and local topology of the biopolymer fibers. It is
worth mentioning that most of the research activity was
performed in networks composed of actin or microtubules or
intermediate filaments. In fact, biopolymer networks show a
much wider heterogeneity, since the cytoskeleton is a dynamic
mixture of all the cytoskeletal elements, interacting with each
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other, and these interactions were shown to affect their
mechanical properties. Percolating networks of actin and
vimentin for example, display synergistic effects in the elastic
modulus, which becomes much greater than the sum of the elastic
moduli of the two networks alone [146]. Another synergistic
effect on actin and IFs networks is the recently reported
phenomenon of super-elasticity, observed during epithelial
morphogenesis [147]. Similarly, actin and MTs composite
networks were shown to exhibit reinforcement against
compression and mechanical enhancement [148–150], and a
similar phenomenon was also observed when compressing
composite ECM networks of collagen and hyaluronan [151,
152]. Future experimental and theoretical work on composite
networks is expected to provide a more complete understanding
of cell and ECM viscoelasticity.

At the tissue scale, the vertex models are widely used to
represent tissue viscoelasticity and have the special advantage
of collapsing the emergence of macroscopic properties on a single
cellular parameter, such as cell shape, and its associated scalar
parameters, such as compressibility or departure from preferred
area/perimeter [27, 28]. Since, in a tilling of cells, deformation can
only arise through cell-cell rearrangements, vertex models mostly
focus the analysis on the study of the energy penalties associated
with these cell-cell rearrangements. Such rearrangements can for
example be induced by differences in cell-cell adhesion and
cortical tension or active tension fluctuations [27, 28, 32, 125].
It is implicitly postulated that the results at that level of
abstraction will project into the material properties of the
system. Even though numerical approaches are coherent with
the predictions of the models, a direct bridge between micro and
macro scales in tissue viscoelasticity has yet to be clearly
described. The recent application of rigidity percolation in
tissues however, provides a quantitative link between the
topological patterns of cell-cell contacts and tissue rigidity
regime (quantified by the size of the GRC). In the case of the
zebrafish blastoderm, the topological approach of rigidity
percolation was sufficient to capture the floppy and rigid
regimes of the tissue by one single (microscopic) measurable
parameter, the average number of cell-cell contacts in different
cell types and, as a result, match the observed (macroscopic)
changes in viscoelasticity [29]. Cell connectivity was further
shown to be defined by the biophysics of cell-cell contacts and
specifically the cell-cell interfacial tension at the contact. In this
biological context, experimental testing of the phase transition
parameters revealed that changes in connectivity and cell-cell
adhesion were driven by cell division, and not by cell
rearrangements, cell shape or active tension fluctuations [29].
Since cell-cell adhesion is key in tissue rigidity theoretical
frameworks so far, we speculate that some parameters may be
common, such as cell-cell adhesion strength [29, 32, 118, 123],
and some others may be context-specific such as cell division and
rearrangements. Future experimental work has the potential to
disentangle the physiological role of several cellular parameters in
rigidity transitions.

In all of the above models, incorporating detailed
dynamic analyses of the microscopic parameters that can
account for local heterogeneities, such as in adhesion

strength (between the cells and with their environment),
shape differences or heterogeneous motility patterns, will
increase their potential to model absolute viscosity values
and provide a more accurate and representative image of
tissue viscoelasticity. A key challenge is the choice of the
viscoelastic model relevant to the biological system. Here,
we have extensively described how Maxwell viscoelasticity
has the potential to be linked to Maxwell rigidity. However,
other biological systems may be better described with
different models. For example, the Kelvin model was
recently used to describe the phenomenon of arrested
coalescence in multicellular aggregates from the adherent
and contractile protrusion interactions between the cells
[153]. In addition, both Maxwell and Kelvin viscoelastic
models can describe different viscoelastic regimes during density/
packing dependent collective cell migration [154]. Another
important challenge is to understand if and how the timescale
of a biological process taking place at the microscale is relevant to
the timescale of a biological process taking place at the macroscale
when bridging scales in viscoelasticity. For example, how
macromolecular motion within the cytoskeleton (milliseconds to
seconds) influences cell shape changes driven by the mechanics of
the cytoskeleton (seconds to minutes), or how cellular motion
within a tissue (minutes) influences tissue-scale fluidization
(minutes) and spreading (hours)? Several theoretical and
experimental frameworks should be developed do bridge scales
in time and space [142, 155].

Disentangling the connection between microscale behavior
and emerging, macroscopic properties is not a novel goal: it has
been the long-sought target of statistical mechanics in order to
connect thermodynamics to a solid microscopic basis [156].
Moving towards a broader conception of statistical mechanics
encompassing the living phenomena requires the introduction
of the microscopic role of the biological building blocks - which
are far more complex than gas particles, for example.
Nevertheless, establishing the critical point in the
microscopic dynamics of the building blocks that would
trigger a macroscopic phase transition would create a rich
toolbox for biology, regardless of the theoretical approach
being used. Phase diagrams or morphospaces, accounting for
what is possible in the relations between tissue organization and
material properties, can be defined that will allow further
exploration for the different regimes the system can occupy
and their grounding. In the case of the zebrafish blastoderm, for
example, it was experimentally possible to position the system in
the vicinity of criticality. Hallmarks of criticality, such as
divergence of macroscopic observables with associated power
laws, were determined experimentally in the living embryo,
showing that tissue morphogenesis in vertebrates may start
close to a critical point of a rigidity transition. This indicates
that embryonic tissues may be at optimal fitness [157] since they
are able to easily switch between rigid and floppy regimes by
slightly changing their connectivity at almost zero energetic cost
[29]. Through this lens, one can explore fundamental questions
concerning morphogenesis. How do local heterogeneities in the
microscopic parameters influence the emergence of macroscopic
viscoelasticity? How do noisy biological systems [158–160]
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guarantee stability during development when they are poised at
criticality?

Networked systems and criticality have been for long used to
understand an extremely rich palette of macroscopic phenomena
occurring in the natural world [92, 131, 161, 162], that now
include the viscoelastic characteristics of biological systems, from
the nanometer scale of the cytoskeleton to the micrometer scale of
tissues and embryos. Such observations indicate that an efficient
organizing strategy of complex biological systems may be to
behave as networked systems close to criticality.
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