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Social insect colonies show all characteristics of complex adaptive systems (CAS). Their
complex behavioral patterns arise from social interactions that are based on the
individuals’ reactions to and interactions with environmental stimuli. We study here
how social and environmental factors modulate and bias the collective thermotaxis of
young honeybees. Therefore, we record their collective decision-making in a series of
laboratory experiments and derived a mathematical model of the collective decision-
making in young bees from our empirical observations. This model uses only one free
parameter that combines the ultimate effects of several aspects of the microscopic
individual behavioral mechanisms, such as motion behavior, sensory range, or contact
detection, into one single coefficient. We call this coefficient the “social factor.” Our model
is capable of capturing the observed aggregation patterns from our empiric experiments
with static environments and of predicting the emergent swarm-intelligent behavior of the
system in dynamic environments. Besides the fundamental research aspect in studying
CAS, our model enables us to predict the effects of a physical stimulus onto the
macroscopic collective decision-making that affects several crucial prerequisites for
efficient and effective brood production and population growth in honeybee colonies.

Keywords: collective decision-making, self-organization, complex adaptive systems (CAS), honeybees, social
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1 INTRODUCTION

Complex adaptive systems (CAS) are ubiquitous. They include diverse systems such as social
networks, Earth’s climate, or its ecosystems [1, 2], but all CAS have specific properties and features in
common: They are comprised of many independent agents whose loosely coupled and local
interactions on the microscopic system level lead to emergent outcomes that are observable on
the macroscopic system level. These macroscopic outcomes often happen surprisingly suddenly, e.g.,
phase transitions, which can profoundly alter the overall system’s properties. These system changes
are not sufficiently predictable by looking only at the microscopic individual behavior [3]. Similar
phenomena can be observed in eusocial insect colonies, which possess all the typical characteristics of
CAS [4]. The abilities of honeybee colonies (such as the western honeybee Apis mellifera L.) allow
colony adaptation on various levels by altering or modulating the interaction network that emerges
between the individuals. These properties involve many nonlinear feedback loops with significant
time constants (delays). These properties of system ingredients are textbook examples of
prerequisites for complex behavior arising from very simple interaction patterns [5, 6]. While
these functional components may easily lead to chaotic behaviors, the existence of balancing
feedback loops within social insect colony systems yields homeostasis and resilience through
mechanisms of social self-regulation and self-organization [7]. Ultimately, these colonies can be
seen as super-organisms: as a collective, they manage to navigate the delicate balance between
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complexity-induced chaos and homeostatic self-regulation, a
property that is seen as a characteristic of organisms and of
life itself [8]. This residing on the edge between chaos and order
makes social insect colonies in general, and honeybee colonies
specifically, an excellent model system for complex but not
chaotic CAS.

We examined the CAS of honeybees by a set of down-scaled
laboratory experiments to keep the complexity of the study
system within tractable bounds but still large enough to show
interesting phenomena, such as collective decision-making,
symmetry breaking, and biasing effects through informed
leadership within the collective. We focused on how group
size, environmental conditions, environmental dynamics, and
local availability of information affect the individual and
collective decision-making within this CAS.

Therefore, we studied groups of young honeybees, which
already show complex social behaviors, e.g., in the collective
thermotaxis where bees are able to collectively distinguish
local from global thermal optima in complex thermal
environments [9], based on simple individual processes [10].
The temperature-based self-localization behavior and the
collective decision-making of young bees in complex and
dynamic temperature fields of the brood nest are crucial
components of the self-regulatory feedback loops of the
colony. These mechanisms are governed by physical
environmental stimuli that are capable of modulating the
microscopic behaviors of the bees, e.g., their motion speed or
their ability to preferably stay longer at places with specific
environmental conditions.

Our focal research question in the presented work is as follows:
Can we explain naturally observed examples of complex group-
level behavior (e.g., collective thermotaxis) in complex adaptive
systems (e.g., honeybees) as an emergent phenomenon arising
from simple microscopic individual motion principles and simple
interaction mechanisms? We here restrict ourselves to study the
simplest set of mechanisms to allow us the building and
parametrization of a simple but complex-enough model that is
able to predict a rich set of empirical data that are collected on
these CAS. This model is able to predict the emergence of
collective taxis, and also the arising collective decision-making
and symmetry breaking phenomena with respect to specific
environmental configurations and dynamics. We further
consider the social context in these processes, because it may
be modulated by group members that have additional
information or follow specifically different roles than our
modeled agents. These predictions are made by a simple
difference equation model that we develop here based on our
empirical data. We used two different methods to solve the
model: a mechanistic top-down approach using the forward
Euler method and a bottom-up approach using an individual-
based Monte Carlo simulation.

To understand the complex link between the individual
microscopic behavioral repertoire of young bees and the
emerging macroscopic patterns of aggregation that emerges
from a collective decision-making process and the physical
environment, we first conducted a set of experiments as a
macroscopic evaluation of the system. We observed groups of

young honey bees in static and dynamic temperature fields
showing either a) one global, b) one global and one local, or
c) two global optima and observed the aggregation behavior of the
bees in these environments. By considering the most relevant
underlying microscopic mechanisms that are the individual
behaviors of young bees in such temperature fields, we
ultimately developed a mathematical model that connects
these two system levels. The first difference equation model is
fitted to the observed empirical data collected in static
temperature fields. This way the only “free parameter” our
model contains, the social factor Xbee, is parametrized based
on empirical data on living honeybees. Based on this
parametrized difference equation model, a set of predictions is
made regarding how this CAS will behave in dynamically
changing environments. These predictions are then compared
to empirical data for further validation of the model. Finally, we
extend the model to incorporating social context and again
predict the effect of biases that may arise by special actors in
the collective that either pursue other goals have different
limitations or possess alternative pieces of information.

2 MATERIALS AND METHODS

2.1 Experiments With Honeybees
2.1.1 Animals
All experiments were conducted with young honeybees (Apis
mellifera L.) aged between 1 and 30 h after hatching from their
brood cells. Honeybees at this age are still ectothermic, i.e., they
are not able to produce heat on their own with their wing muscles

FIGURE 1 | Circular temperature arena setup and evaluation zones. (A)
The setup consists of a circular arena (a) with temperature sensors that are
embedded in the acrylic glass floor underneath the wax foundations,
surrounded by a plastic barrier. The two thermal optima are generated
with ceramic heating lamps mounted above the arena (b). The setup is
illuminated with lamps that are covered with filters so that only infrared light is
emitted (c), and the experiments are recorded with an IR-sensitive camera (d).
Furthermore, technical details can be found in Section 2.1.2 and [9]. (B)
Evaluation zones: The arena was divided into three zones, with the left zone (L)
and the right zone (R) representing the area under each heat lamp and the
center (C) representing the area outside of these zones. For collecting the
empirical data, the number of bees in each zone was determined from video
recordings in either 1-minute intervals (Exp. 1–4) or at the end of each
experimental run in minute 30 (Exp. 5).
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yet [11] and are therefore dependent on the appropriate thermal
environment, in which they navigate actively. To collect bees with
this defined age, a set of brood combs with many sealed pupae was
gathered from colonies and incubated at 35°C and at a relative
humidity of 60%. After hatching, the freshly emerged bees were
removed from the combs and transferred to ventilated plastic
containers with access to honey ad libitum to support their health
and development. Each individual bee was participating only
once in an experiment, and no individual with a visible handicap
was used. After participating in an experiment, all bees were
transferred to an identical separate container, and all bees were
re-introduced into full colonies after the experiments each day.

2.1.2 Experimental Setup
Our basic experimentation setup consisted of a circular arena
(with a diameter of 60 cm) that was surrounded by a plastic wall
(Figure 1A). To prevent the bees from climbing the boundary, the
plastic wall was coated with Teflon spray. The thermal
environments were generated with either one or two ceramic
heat lamps that were mounted above the arena (Figure 1B). To
actively regulate the thermal environment in our setup, an array
of temperature sensors was built into the acrylic glass arena floor
(based on the methods described in [12]). The arena floor was
covered with wax foundations that were replaced after each trial
to remove any possible scent traces left behind by the bees. A
standard PC controlled two digital dimmers that regulate the
ceramic heat lamps by using the data from the temperature
sensors. Three additional sensors were used to measure the
ambient room temperature. The room temperature was kept
around 29 ± 1°C by either heating with a radiator or by
cooling with a portable air conditioning unit before starting
each experiment. All experiments were performed under
infrared light (Figure 1C), at a wavelength that is invisible for
bees [13] so that we could exclude that the bees use any visual cues
but were required to rely purely on their thermal sensory system
and on their haptic sensory inputs when touching other bees or
obstacles. Such conditions exist also in the brood area deep in the
colony’s hive, where young bees usually locate themselves [14].
All experiments were recorded with an IR-sensitive camera
(Figure 1D). For technical details of the individual
components and the setup, see [9, 15].

2.1.3 Experiments
We carried out five different sets of experiments to gather
empirical data on the honeybees’ behavioral repertoire: Three
sets of experiments were conducted with groups of bees in static
thermal environments to examine the influence of a static,
thermally heterogeneous environment on the collective
behavior. Another set of experiments was conducted with
groups of bees in a dynamic environment to examine the
flexibility of the collective behavior in response to sudden
changes in the environmental conditions. Finally, another set
of experiments was conducted with a static thermal environment
and an additional social stimulus. The optimum temperature of
36°C was chosen in all experiments as it corresponds to the
preferred temperature (thermal optimum) of freshly emerged,
still ectothermic, honeybees [16]. To minimize the time the

animals have to spend in the experimental setup, we set the
runtime of experiments in stable thermal environments to 30 min
to ensure enough time for the bees to explore their environment
and form stable aggregations and to 105 min in dynamic thermal
environments to additionally take into account the thermal
inertia and the time the bees need to react to the changes in
the thermal environment.

Static Thermal Environments—Experiments 1, 2, and 3
We conducted three different sets of experiments with this
setting, each one with groups of 64 bees, in different
configurations of static thermal environments. The bees were
introduced (released from their cup) in the center of the arena,
and each experimental run lasted for 30 min. In Experiment 1,
we generated a thermal environment with one global optimum
at 36 ± 1°C on one arena side and with a pessimum of 30 ± 1°C
on the other arena side, as depicted in Figure 2A (n � 9
repetitions). In Experiment 2, we generated a more complex
environment with, again, a global optimum at 36 ± 1°C on one
arena side, but this time also with a local optimum at 32 ± 1°C on
the opposite side of the arena as depicted in Figure 2B (n � 8
repetitions). In Experiment 3, we generated a thermal
environment with two equally optimal spots at 36 ± 1°C on
two opposite sides of the arena as depicted in Figure 2C (n � 6
repetitions).

Dynamic Thermal Environment—Experiment 4
The experimental runs with a dynamic thermal environment
were also performed with groups of 64 bees. The bees were
introduced in the center of the arena, and each experimental run
lasted for 105 min (n � 17 repetitions). For this experimental
setup, we generated an initial environment with a global optimum
at 36 ± 1°C and a local optimum at 32 ± 1°C on the opposite side
of the arena, equal to the second set of experiments with a static
thermal environment. Thirty minutes after introducing the bees,
the heat lamp providing the 36 ± 1°C optimum was shut off while
the heat lamp generating the 32 ± 1°C optimum remained at the
initial setting, leading to a change in the thermal environment as
depicted in Figure 2D.

Static Thermal Environment With Social
Stimulus—Experiment 5
In the experimental runs with a social stimulus, we used groups of
24–25 bees that could run freely in the arena. The thermal
environment was equivalent to the one used in experiment 2
with one global optimum at 36 ± 1°C and a local optimum at 32 ±
1°C on the opposite side of the arena (as depicted in Figure 2B).
To provide a local social stimulus, we introduced additional bees
as a local “social stimulus” that was confined to a specific location.
To confine these “social stimulus” bees, we used circular cages
that were built from wire mesh and covered with an acrylic glass
Petri dish (3B). We put two cages in the arena, one under each
heat lamp (3A), whereby the cage in the local optimum contained
the five stimulus bees. The cage in the global optimum remained
empty and acted as a control against effects such as the wire cage
itself hypothetically acting as an attractant for the bees. The test
bees were introduced in the center of the arena and could run
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FIGURE 2 | Graphical representation of the used static and dynamic thermal environments in the different experiments. (A) static environment with one global
optimum of 36±1°C on the left side (used in Experiment 1), (B) static thermal environment with a global (36±1°C) optimum on the left and a local optimum (32±1°C) on the
right side (used in Experiments 2 and 5), (C) static environment with two global 36±1°C optima on opposing sides of the arena (used in experiment 3) and (D) dynamic
environment used in Experiment 4 with an initial configuration equal to (B) and the resulting thermal environment at the end of the experiment after switching off the
heat lamp on the left side at minute 30 with the new global optimum of 32±1°C on the right side. The run-time of the experiments with static environments was 30minutes
and 105 minutes in the experiments with the dynamic environment.

FIGURE 3 | Setup for experiment 5. (A) A wire cage with a transparent top was placed under each heat lamp. The cage placed under the right heat lamp that
produced the local optimum contained 5 stimulus bees while the cage on the left in the global optimum remained empty and acted as a control. (B)Close-up of the caged
bees with aggregated bees around.
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freely in the arena, except for the space covered by the cages. Each
experimental run lasted for 30 min (n � 10 repetitions).

2.1.4 Data Collection and Evaluation
The experiments were evaluated by assessing the location of the
bees in specific time intervals throughout the experimental
runtime. To collect the data, the area of the circular arena was
subdivided into three zones: L (zone under left heat lamp), R
(zone under right heat lamp), and C (remaining area; center) as
depicted in Figure 1B. The left and right zones cover 11.2% of the
total arena size each, corresponding to the area heated by the heat
lamps. We manually counted the bees in each evaluation zone in
1-min intervals on still images from the recordings for
experiments 1–4 to acquire a sufficient amount of data points
for the model fitting (experiments 1–3) and to capture the
dynamics in experiment 4. For experiment 5, we evaluated the
number of bees in the respective zones at the end of the
experimental runs (after 30 min). Each bee was attributed to
the zone where most of its body was located. If a bee happened to
be exactly on the evaluation line between two zones, it was
attributed to the zone its thorax was located in. If a bee’s
thorax was directly on the line, it was attributed to the zone it
was headed to. We evaluated a total of 50 runs with this method.

To visually depict the influence of the physical stimulus
(temperature) on the macroscopic distribution pattern of the
bees, we indicate the expected occupancy of the different zones,
assuming that the bees ignore other bees and the local
temperature (uniform distribution as a null model, see also
[9]), in the result graphs for the empirical data. The expected
occupancy is indicated as a dotted horizontal line for the
respective evaluation zone, with an expected fraction of bees
of 0.112 for the right and the left zones, respectively, and 0.776 for
the center, corresponding to the size ratios of the
evaluation zones.

All statistical comparisons were performed using the
MannWhitney U test with a significance level of 0.05, and the
p values are given in parentheses where results are reported.

2.2 Method of Parameterization and Fitting
of the Developed Difference Equation
Model
2.2.1 Implementation of the Temperature-Dependent
Waiting Time
Bees are known to often rest (wait) for some time after a bee-to-
bee contact, and it is known that this behavior is affected by the
local temperature [9, 17]. To represent this important mechanism
in the difference equation model, we generated a waiting-time
function that maps a given time-dependent temperature T(t) to a
predicted waiting period duration.

This waiting time of a bee W (T(t)) is derived from empirical
data collected in observations of young honeybees [18] and is
described through the sigmoidal function

W(T(t)) � a · tanh T(t)
b

− d( ) + e (1)

with the parameters a � 12, b � 1.2, d � 27, and e � 13. This yields
a curve that returns 1 s at 28°C and 25 s at 36°C as depicted in
Figure 4A. Restricted through the lower boundary of the waiting
time, we chose a time step of Δt � 1 s for our model.

Our model needs also to be able to depict a dynamic thermal
environment, i.e., the temperature decay over time that is a
significant aspect in experiment 4 after the heating lamp is
turned off. Thus, we used the mean temperature sensor data
for the left temperature field zone from the runs of experiment 4
and fitted a temperature decay curve to the values that lie on the
mean of the deviation (see Figure 4B).

2.2.2 Model Fitting
To fit our model’s difference equations, we used the proven
method of least squared residuals. Here, we looked at the
difference between the model’s prediction and the empirically
observed mean value at equally spaced given points in time and
minimized the sum of all squared residuals by numerically
solving the equations while adjusting our social parameter
Xbee. To find the one parameter value that suits all the
conducted experiments 1, 2, and 3, we fitted the equations to
the mean empirical data of all zones and experiments at once.

2.2.3 Noise Implementation
The basic behavior exhibited by most bees in a thermal field is
forms of correlated random walks [10, 17, 19, 20]. To reflect this
randomness in the underlying microscopic behaviors, we
implemented a noise-affected term in our model. This noise is
introduced to the system by multiplicative application of a time-
discrete, uncorrelated, and Gaussian distributed random value
(see Eq. 2) on the free parameter, the social factor Xbee, with the
mean μ � 1 and a standard deviation σ � 0.25 restricting the
possible values to the interval [0; 2], which is necessary to
guarantee non-negativity and symmetry around the mean.

ϵ(t) � 1
σ

���
2π

√ e−
1
2

t−μ
σ( )2 (2)

3 RESULTS

3.1 Groups of Bees in Static Thermal
Environments
To examine the macroscopically observable patterns of
aggregation, we conducted experiments with different static
thermal environments. In experiment 1, with only one global
optimum at 36°C, the majority of bees are found in the left
evaluation zone at the end of the experimental runs. This zone
corresponds to the global thermal optimum, and most bees are
located there within 15 min. The median fraction of bees in the
left zone is significantly higher than in the center zone and the
right zone after 15 and after 30 min (p < 0.001, compare
Figure 5A left, center, and right). Similarly, in experiment 2,
with a global optimum on the left and a local optimum on the
right side of the arena, the median fraction of bees at the global
optimum on the left was significantly higher than the median
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fraction of bees in the center (p � 0.003) and at the local optimum
on the right (p � 0.012) (Figure 5B left, center, and right) after
30 min. In experiment 3, with a thermal environment containing

two equally warm global optima, the results in Figure 5C show no
statistical difference in the median fraction of bees between the
right and the left zones (p � 0.261). For this experiment, we also

FIGURE 4 | (A) Function of the implemented waiting time in dependence of the locally experienced temperature according to equation 1. (B) Temperature decay
model. Shown are the mean temperature sensor data with standard deviation from the left zone overtime for the runs of experiment 4 (blue line and band) and the
implemented temperature profile for the model (dashed red line). The decrease in temperature after the lamp was switched off at minute 30 (dotted vertical line) follows
the characteristics of an exponential decay.

FIGURE 5 | Results of Experiments 1, 2, and 3. Shown is the median fraction of bees (with Q1, Q3, minimum, and maximum) at minutes 0, 15, and 30 in the left
evaluation zone (L), the center (C), and the right evaluation zone (R) for (A) Experiment 1 (L: 36±1°C, R: 30±1°C), n�9 repetitions, (B) Experiment 2 (L: 36±1°C, R: 32±1°C), n�8
repetitions, and (C) Experiment 3 (L: 36±1°C, R: 36±1°C), n�6 repetitions. The crosses indicate the model fits for each data series for the model described in the discussion
section. Dotted horizontal lines indicate the expected occupancy if the bees ignored other bees and the local temperature (uniform distribution model).
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looked at the individual trials that show that while the groups split
up approx. 50:50 in most of the trials, in 20% of the trials a strong
symmetry breaking occurred, i.e. the majority of the bees
aggregated on one side of the arena (see Figure 6).

3.2 Building a Difference Equation Model of
the Observed System
Based on the empirical results we described in the previous
section, we here develop a simple difference equation model in
which we break down the social stimulus-based self-localization
behavior into basic principles. We aim at constructing a
parsimonious model with a limited set of parameters that
describe the observed complex behaviors in a simple way. An

overview of all model variables and parameters is given in
Table 1. The model tracks the bees with conservation of mass
and describes their rates of change between the three
compartments that were used and are thus suggested by the
empirical experiments’ analysis method: The state variable L(t)
models all bees located in the left zone, the state variable R(t)
models all bees located in the right zone, and the state variable
C(t) models all other bees. The total number of bees is N � L(t) +
C(t) + R(t), guaranteeing respect for mass conservation in the
model. For the sake of simplicity, we do not explicitly model the
area of the zones (and, respectively, the proportions of its
boundaries) or the area a bee or a group of bees would occupy.

The changes of the three state variables are then described as a
system of coupled ordinary difference equations, whereby

FIGURE 6 | Results for Experiment 3–individual runs. Shown is the fraction of bees in 1-minute wide intervals over the whole experimental run-time (30 minutes) for
each individual run (n�6 repetitions) in the left zone (36±1°C), the center, and the right zone (36±1°C).

TABLE 1 | Model variables and parameters.

Model variables

Symbol Description Value Units Source

L(t), C(t), R(t) Number of bees in the left, center, and right zones (at time t) - bees -
Tl(t), Tr(t) Temperature in the left and right zones (at a time t) - °C empirical data
Wl(T), Wr(T) Waiting time in the left and right zones (at a temperature T) - s [18]
ϵ1(t), ϵ2(t), ϵ3(t) Gaussian distributed noise (at a time t) [0; 2] dmnl first principles
Xbee Social factor 0.0056 (s · bees)−1 fitting
Xseed Weight parameter for stimulus bees 1 dmnl free parameter
Pc,l Probability for bee switching from center to left zone - dmnl -
Pc,c Probability for bee staying in center zone - dmnl -
Pc,r Probability for bee switching from center to right zone - dmnl -
Pl,l Probability for bee staying in left zone - dmnl -
Pl,c Probability for bee switching from left to center zone - dmnl -
Pr,r Probability for bee staying in right zone - dmnl -
Pr,c Probability for bee switching from right to center zone - dmnl -

Model parameters

Symbol Description Value Units Source

L (0), C (0), R (0) Initial number of bees in the left, center and right zone (at t � 0) L(0) � 0
C(0) � 64
R(0) � 0

bees empirical data

N Total number of bees 64(exp.1 − 4)
24,25(exp.5)

bees empirical data

Sl, Sr Number of stimulus bees in the left and right zones Sl � 0
Sr � 5

bees empirical data
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ΔL
Δt � meetl(t) + joinl(t) − leavel(t) (3)

models the change in the number of bees in the left zone,

ΔR
Δt � meetr(t) + joinr(t) − leaver(t) (4)

models the change in the number of bees in the right zone, and

C(t) � N − L(t) − R(t) (5)

models the number of bees in the center simply by subtracting the
number of bees that are in the left and right zones from the total
number of bees.

These three equations are modeled following the standard
mass action law, as it expresses the expected interactions of
entities based on their mean densities, as it is also used in the
mathematical modeling of predator-prey and host-parasite
systems [21, 22], intraspecific competition [23], interspecific
competition [24], the spreading of infectious diseases [25], or
chemical, e.g., enzyme-substrate interactions [26].

As we aim for the simplest version of this model, we combined
all individual microscopic parameters—motion behavior, sensory
range, contact detection—into one single parameter that we
named “social factor” Xbee. Another microscopic system-level
aspect that needs to be modeled is the individual behavioral
response to the locally perceived temperature and how this affects
the social interaction. Young honeybees tend to stop after
encountering another bee and rest for some time after such
collisions, whereby the resting time is positively correlated
with the local temperature [9, 17]. This temperature-
dependent waiting time is represented by W(T). For the
model, we assume that the bees move randomly and stop
when encountering another bee with a probability determined
by Xbee and that the waiting time of those individuals depends on
the locally prevalent temperature [9]. The implemented waiting-
time function is depicted in Figure 4A. The terms on the RHS of
our equations are functions of time in our model. They express
specific processes that affect the rate of change of the specific
system variable on the LHS of the equation.

The functionsmeetl(t) andmeetr(t) represent half of the initial
center zone bees that, after interacting with each other in
dependence of our social factor Xbee, form a cluster in the left
and right zones equally likely and are described as

meetl(t) � meetr(t) � 1
2
·Xbee · C(t)2 (6)

The functions joinl(t) and joinr(t) represent initial center zone
bees that join already present bees in the left and right zones and
are described as

joinl(t) � Xbee · L(t) · C(t) (7)

for the left zone and

joinr(t) � Xbee · R(t) · C(t) (8)

for the right zone.
Finally, the functions leavel(t) and leaver(t) represent the bees

in either zone that transition back to the center zone after their

temperature-dependent waiting time has expired and are
described as

leavel(t) � L(t)
Wl(Tl(t)) (9)

for the left zone and

leaver(t) � R(t)
Wr(Tr(t)) (10)

for the right zone.
In our empirical experiments with bees, the number of bees

was kept constant in experiments 1 to 3. For the simulation runs
of our model, we thus set N to a value of 64, and equivalent to the
experiments, all bees were starting in the center region, therefore
C (0) � N bees and L (0) � R (0) � 0 bees. The variables that
represent the mean temperatures within the left and right area are
set Tl(t) � 36°C and Tr(t) � 30°C, respectively, for comparison
with experiment 1, to Tl(t) � 36°C on the right and Tr(t) � 32°C on
the left for comparison with experiment 2 and to Tl(t) � Tr(t) �
36°C on both sides for comparison with experiment 3.

The functions that involve the waiting timesWl (T(t)) andWr

(T(t)) in the modeling of specific rates of change represent the
number of bees that leave their zone of resting (Eq.(3) and (4) and
transition back into the center zone (Eq.5), which can be assumed
to be equal to the mean time a bee spends in this zone. This
waiting duration is not directly a function of time, but a function
of the local temperature, as was expressed by W (T(t)) in Eq. 1.
However, the mean temperatures and thus the waiting times
within the two zones are able to change in time in our
experiments.

Finally, our system of coupled difference equations is
numerically solved through the forward Euler method with a
step size of Δt � 1.

In our model building approach, we aim at a “one fits all”
model; thus, we fitted our free parameter Xbee to the empirical
data set from all our experiments in static environments
(experiments 1–3), aiming for a value with which the model
can qualitatively (and partially even quantitatively) represent the
results from all three experiments sufficiently.

Using the method described in subsection 2.2.2, we found the
best fit for our free parameter with a value of Xbee � 0.0056 1

s·bee.
The results of this fitting are shown in Figure 7, where the
empirical data (median fraction of bees, IQR, minimum, and
maximum) that were used for fitting are plotted over time for
experiments 1 (Figure 7A), 2 (Figure 7B), and 3 (Figure 7C) with
the respective fitted model results (dashed lines).

3.3 Predicting Macroscopic Aggregation
Patterns in Complex Environments
To test the predictive ability of the model when applied to new
data, we simulated our model in resembling to the two
experimental settings that were not previously used to fit the
model’s parameters: experiment 4 with a dynamic thermal
environment and experiment 5 with an additional social
stimulus. The model predictions of these experiments can then
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be compared to the empirical observations for validation
purposes.

3.3.1 Aggregation Patterns in a Dynamic Thermal
Environment (Model Solved With the Forward Euler
Method)
The empiric results from experiment 4 show that the median
fraction of bees in the left zone at the optimal temperature rises
in the initial phase, when this side holds a global optimum of
36°C. As soon as the heat lamp on the left is switched off in
minute 30, the median fraction of bees in the left zone starts to
decrease. In parallel, we find an increase in the right zone (32°C)
while the median fraction of bees in the center rises only slightly
(8A). As soon as the left zone starts to cool down, the unchanged
right zone becomes the global optimum in the system, and the
bees collectively start to aggregate in this zone. Statistical
analysis of our data indicates a median fraction of bees in
the left zone that is significantly higher than in the right
zone at minute 30 (p < 0.001). When comparing the median
fraction of bees in the left zone at minute 30 with the median
fraction of bees in the right zone at the end of the experiment

(minute 105), no statistical difference was found (p � 0.97). The
same was found when comparing the median fraction of bees in
the left zone at minute 105 and the right zone at minute 30
(p � 0.63).

To model the dynamic thermal environment from experiment
4, we implemented the time dependency via the temporal
progression of the temperature T � T(t), as detailed in Section
2.2.1. Besides adding the required exponential decay of
temperature in the left zone and applying noise to the
system’s free parameter (see Section 2.2.3), no changes were
made to the model for simulating experiment 4. As the system has
three distinct possibilities for the interaction of bees (C2, C · L, and
C · R), we implemented three uncorrelated noise factors ϵ1(t),
ϵ2(t), and ϵ3(t), corresponding to Eq. 2, and with one factor for
each of the three possibilities. As the bees that leave the center
split up 50:50 (Eq. 6), the noise that is applied to one side needs to
be reflected in the other by subtracting it from the maximum
possible value that the noise can deliver, forming the term (2
− ϵ1(t)).

After introducing the noise, the resulting cluster functions
(Eqs. 6–8) are being restated as following:

FIGURE 7 |Model fitting. Shown is the fraction of bees in the different evaluation zones (Left, Center, Right) from empirical data (median with IQR, minimum and
maximum) over time with the respective fitted model data (dashed lines) with the social factor Xbee of 0.0056 1

s·bee for (A) experiment 1 (L: 36±1°C, R: 30±1°C), n�9
repetitions (B) experiment 2 (L: 36±1°C, R: 32±1°C), n�8 repetitions and (C) experiment 3 (L: 36±1°C, R: 36±1°C), n�6 repetitions. Dotted horizontal lines indicate the
expected occupancy if the bees ignored other bees and the local temperature (uniform distribution model).
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meetl(t) � ϵ1(t) · 12 ·Xbee · C(t)2 (11)

meetr(t) � (2 − ϵ1(t)) · 12 ·Xbee · C(t)2 (12)

joinl(t) � ϵ2(t) ·Xbee · L(t) · C(t) (13)

joinr(t) � ϵ3(t) ·Xbee · R(t) · C(t) (14)

For the prediction of the empirical data, we performed 20
individual runs with the model, with settings that match the
experimental conditions: An initial static thermal environment
with 36°C on the left side and 32°C on the right side, with the
temperature on the left side decreasing according to the
exponential decay and groups of 64 bees. For Xbee, we used
the value 0.0056 1

s·bee as it was determined by the initial fit to
data from static thermal environments.

The resulting simulation data are shown in Figure 8B: Our
model generates a lower variance but predicts the dynamics in

all zones quantitatively well when compared to the empirical
data. The model also qualitatively captures the delay between
the switching off of the heat lamp in the left zone and the
decrease in the median fraction of bees, but compared to the
empirical data, the delay is longer and even shows an initial
increase (compare Figure 8A left and B left). Similarly to the
empirical data, also in the model, the median fraction of bees is
comparably low and increases slightly in the later half of the
experimental runtime during the transition of bees from the left
to the right side (Figure 8B). The model also qualitatively
captures the increase in the number of bees in the right zone
at about the point in time when the median fraction of bees on
the other side starts to decrease, what also fits qualitatively well
to the empirical data (Figure 8B). The median fraction of bees
in the right zone after the transition at minute 105 does not
significantly differ from the median fraction of bees in the left
zone at minute 30 before the transition in the model data (p �

FIGURE 8 | Empirical and model results from experiment 4. (A) Empirical data: Shown is the median fraction of bees (with IQR, minimum and maximum) in the
different evaluation zones (Left, Center, Right) over 105 minutes experimental runtime (data collected in 1-minute intervals), n�17 repetitions. Dotted horizontal lines
indicate the expected occupancy if the bees ignored other bees and the local temperature (uniform distribution). (B) Predictions of the model solved with the forward
Euler method: Shown is the median fraction of bees (with IQR, minimum andmaximum) in the different evaluation zones (Left, Center, Right) over an equivalent of
105 minutes experimental runtime, grey lines represent the individual model runs, n�20 repetitions. (C) Individual-based Monte Carlo simulation predictions: Shown is
the median fraction of bees (with IQR, minimum and maximum) in the different evaluation zones over the experimental runtime, grey lines represent the individual model
runs, n�20 repetitions. The solid vertical lines in the graphs for the left zone in (A), (B) and (C) indicate the point in time where the lamp in this zone was switched off at
minute 30.
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0.253). While the empirical data show no statistical significant
differences when comparing the median fraction of bees in the
left zone at minute 105 and in the right zone at minute 30, the
model results show a significant difference for the same
comparison (p < 0.001).

The quantitative comparison between the empirical data and
the model data shows that there is no significant difference
between the median fraction of bees in the experimental left
zone and in the simulated left zone (p � 0.843) and also no
significant difference when comparing the median fraction of
bees in the experimental and in the simulated right zone (p �
0.96) at minute 30. The same was found when comparing the
median fraction of bees of the experimental and of the model data
in the left zone (p � 0.165) and in the right zone (p � 0.353) at
minute 105.

The noise in the model that is solved with the forward Euler
method produces a lower variance compared to the empirical
data. We therefore simulated the same experiment with an
individual-based sequential Monte Carlo method as described
in the next section.

3.3.2 Aggregation Patterns in a Dynamic Thermal
Environment (Individual-Based Monte Carlo
Simulation)
To represent the higher variance that is shown in the
experimental data, we introduce a sequential and individual-
based Monte Carlo simulation, in which the difference equations
are described by the probabilities for each bee to transition into a
neighboring zone (see Figure 9).

The probability P for a bee to transition from the center C to
the left zone L is defined as Pc,l(t) � Xbee · (L(t) + 0.5 · C(t)) and,
respectively, to the right zone R as Pc,r(t) � Xbee · (R(t) + 0.5 · C(t)).
The probability for a bee to leave the left zone is defined as Pl,c(t) �
1/Wl(t) and as Pr,c(t) � 1/Wr(t) to leave the right zone. The
probabilities Pl,l(t), Pr,r(t), and Pc,c(t) are the counter-probabilities
and are defined as Pl,l(t) � 1 − Pl,c(t) for the left zone, Pr,r(t) � 1 −
Pr,c(t) for the right zone, and Pc,c(t) � 1 − Pc,l(t) − Pc,r(t) for the
center zone.

The results are depicted in Figure 8C and show that the
variance produced by the individual-based Monte Carlo
simulation is greater than the variance produced by the model
solved with the forward Euler method (Figure 8B) and more
similar to the empirical data shown inFigure 8A.

Similarly to the predictions made by the model solved with the
forward Euler method, the median fraction of simulated bees in
the right zone after the transition at minute 105 does not
significantly differ from the median fraction of bees in the left
zone at minute 30 before the transition (p � 0.291). As it is the
case for the results of the model solved with the forward Euler
method, and in contrast to the empirical results, the results from
the individual-based Monte Carlo simulation also show a
significant difference when comparing the median fraction of
bees in the left zone at minute 105 and in the right zone at minute
30 (p < 0.001).

The quantitative comparison between the empirical data and
the model data shows that there is no significant difference
between the median fraction of bees in the experimental left
zone and in the simulated left zone (p � 0.772) and also no
significant difference when comparing the median fraction of
bees in the experimental and in the simulated right zone (p �
0.437) at minute 30. The same was found when comparing the
median fraction of bees of the experimental and of the model data
in the right zone at minute 105 (p � 0.279), while there is a
significant difference between the median fraction of bees of the
experimental data and the model data in the left zone at minute
105 (p � 0.002).

3.3.3 Aggregation Patterns in a Static Environment
With an Added Social Stimulus
The results from experiment 2 reported in Section 3.1 show that
the bees are collectively able to distinguish the global from the
local optimum with the majority of the bees found in the right
zone at 36°C after 30 min (Figure 5B). Based on these findings, we
studied whether or not this collective decision-making process
can be biased by a social stimulus in the local optimum in the
same thermal environment used for experiment 2. Therefore, we
tested groups of 24–25 bees and additionally introduced five bees
that were confined in the local optimum. The empirical results for
this experiment are shown in Figure 10A (blue data set). To show
the effect of the social stimulus on the macroscopic behavior, we
compare it with data from comparable experiments without a
social stimulus, redrawn from [9] (red data set), where
experiments with groups of 24 bees in the same static thermal
environment were reported.

These results show that the median fraction of bees in the
global optimum is significantly lower in experiments with a social

FIGURE 9 | Finite state machine of the individual-based Monte Carlo simulation. States and transitions as described in Section 3.3.2.
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stimulus compared to experiments without a social stimulus (p �
0.036, compare boxplots in Figure 10A left zone), while the
median fraction of bees is significantly higher in the local
optimum in experiments with a social stimulus (caged bees)
compared to the experiments without caged bees (p � 0.009,
compare boxplots in Figure 10A right zone); thus, the data show
that a social stimulus has an influence on the overall macroscopic
aggregation pattern of the bees.

To be able to predict the results of the empirical experiment
with a social stimulus with our model, we had to implement an
equivalent for these “caged bees.” We did this by modifying our
difference equation system and included an additional term that
takes into account the number of stimulus bees Sl and Sr and
another parameter different from Xbee, the “social seed”
parameter Xseed, that acts as a weighting value for Sl and Sr.
We can see these bees as being “informed agents” or acting as
social “influencers” in the collective decision-making process. We
assume that a stimulus bee weighs as much as a free bee in the
calculations, thus Xseed � 1.0. The three difference equations for
the three zones are being extended by introducing the following
functions to the left and right zones, respectively:

sociall(t) � ϵ2(t) ·Xbee · C(t) ·Xseed · Sl (15)

socialr(t) � ϵ3(t) ·Xbee · C(t) ·Xseed · Sr (16)

Furthermore, while all other empirical data are based on
experiments with groups of 64 bees, the experiments with
caged bees were performed with groups of 24–25 bees plus
five bees in the cage at the local optimum. The model was
previously fitted to a group size of 64 bees and was not
refitted to adapt for the smaller group size, and thus the lower
population density, in the same setup.

The simulation results with the extended model solved with
the forward Euler method are depicted in Figure 10B. To show
the effect of the implemented social stimulus, we compare the
results with simulations using groups of 24 bees without the social
stimulus term. The median fraction of bees in the global optimum
is predicted to be significantly lower in runs with a social stimulus
acting at the zone with the local optimum on the opposite arena

side, compared to runs without a social stimulus acting on the
other side (p < 0.001, compare boxplots in Figure 10B left zone).
The median fraction of bees is predicted to be significantly higher
in the local optimum zone in runs with the social stimulus
presents compared to the runs without the social stimulus (p
< 0.001, compare boxplots in Figure 10B right zone).

The statistical analysis shows that there is no significant
difference between the empirical and the model data with
social stimulus in the median fraction of bees in the left zone
(p � 0.734) as well as in the right zone (p � 0.273, compare
Figures 10A,B blue data series in left zone and A and B blue data
series in right zone). The prediction of the model solved with the
forward Euler method is therefore quantitatively comparable to
the empirical data.

The resulting distributions of 10 exemplary runs of the
individual-based Monte Carlo simulation are shown in
Figure 10C. The comparison between the results from the
model solved with the forward Euler method and the
individual-based Monte Carlo simulation shows that there is
no significant difference between the median fraction of bees in
the left zones (p � 0.623, compare boxplots of left zone in Figures
10B,C) or the right zones (p � 0.053, compare boxplots of right
zones in Figures 10B,C).

4 DISCUSSION AND CONCLUSIONS

This study shows that groups of young bees, in contrast to the
highly variable individual thermotactic behavior of young bees
[10], reliably manage to aggregate at a global thermal optimum
amongst the accessible set of options. It provides novel empirical
findings about symmetry-breaking events and shows the
flexibility and dynamics of the bees’ collective thermotactic
behavior in dynamic environments and the influence of social
cues on the collective decision-making. The simple model of this
collective thermotactic behavior, which was step-wise developed
here (Figure 11), uses only one free parameter that combines all
microscopic individual parameters. Despite its simplicity, the
model is able to capture the bees’ aggregation patterns of all

FIGURE 10 | Empirical and model results from experiment 5. (A) Empirical data: Shown is the comparison of the median fraction of bees (with Q1, Q3, minimum
and maximum) in the different evaluation zones (Left, Center, Right) at minute 30 between experiments with an added social stimulus in the local optimum (blue, n�10
repetitions) and experiments without this social stimulus (red, data redrawn from [9], n�8 repetitions). (B) Predictions of the model solved with the forward Euler method:
Comparison of the median fraction of bees (with Q1, Q3, minimum, and maximum) in the different zones (Left, Center, Right) at minute 30 between runs with an
added social stimulus in the local optimum (blue, n�10 repetitions) and experiments without this social stimulus (red, n�10 repetitions). (C) Predictions of the individual-
based Monte Carlo simulation: Comparison of the median fraction of bees (with Q1, Q3, minimum, and maximum) in the different zones (Left, Center, Right) at minute
30 between runs with an added social stimulus in the local optimum (blue, n�10 repetitions) and experiments without this social stimulus (red, n�10 repetitions).
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tested scenarios. The model shows that the prerequisites for
explaining the abilities of the bee collective by means of social
interactions are much smaller than an equally well-performing
individual problem-solving would require. Thus, the observed
behavior is a clear candidate for a phenomenon known as “swarm
intelligence” [5, 27–29]. This phenomenon has aspects of
emergence and exhibits interesting micromacro bridging at its
core, a simple model to describe such systems is therefore of
great value.

The empirical data show that local optima do not trap a
significant amount of bees; thus, we can reject that the bees simply
perform an individual uphill walk in the temperature gradient. In
addition, we deduce from our experiments with two equal optima
in the environment an informative result: The analysis of the
individual runs shows that the bees sometimes exhibit strong
symmetry breaking and collectively choose one of the two equally
favorable options. Such symmetry breaking is, for example,
known to happen in choice experiments with ants, where

FIGURE 11 | Graphic representation of our scientific workflow and concept. Based on empiric results from laboratory experiments and a-priory knowledge (e.g.,
temperature-dependent waiting time), we built a simple model of the collective thermotaxis in honeybees that describe the change of the number of bees in the three
zones with three coupled difference equations and combined all individual microscopic parameters into the free parameter Xbee in Model Step 1.We then fitted the model
to data from 3 different laboratory experiments to determine a single value for the free parameter Xbee. After this fitting, the model was further refined by adding noise
to the free parameter Xbee (Model Step 2). To test the predictive ability and validate the model, we compared the simulation results to a laboratory experiment with a
dynamic gradient (Experiment 4) using the previously fitted value for Xbee. In Model Step 3, we introduced the “social seed” parameter Xbee to simulate caged bees
equivalent to Experiment 5. Starting with single empirical facts, we gained a fundamental understanding of the CAS by gradually developing our model and using
subsequent empirical experiments to validate previous model building steps.
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small random variations in trail laying are amplified and lead to a
collective choice for one of two identical shelter options [6]. We
assume a similar effect in our focal honeybee system: Whenever
more bees randomly move to one side of the arena, more small
initial aggregations may emerge faster on this side than on the
other and increase the probability of additional bees joining there.
Furthermore, empirical research on the individual motion
behavior in this experimental setting (e.g., tracking individual
trajectories) will be necessary to learn more about the
prerequisites for symmetry breaking in this system.

We further showed the adaptability of the collective
thermotaxis in honeybees in dynamic environments as the
bees were capable of selecting a previously neglected less
warm place when the environment changed. This shows that
bees are not exclusively searching for their thermal optimum of
36°C, but instead dynamically and adaptively choose the best
available option in their environment at a given time
collectively, while they simultaneously try to stay together as
a group. This is demonstrated by introducing a “social seed” to
bias the group decision: Although the bees usually would choose
the warmest area in the environment, an additional social
stimulus unfolds a significant influence onto the overall
collective behavior and ultimately has a tendency of drawing
the bees to a comparably suboptimal temperature zone. The
caged bees can exert some sort of direct physical influence, e.g.,
via olfactory or ground-vibrational cues. Additionally, they also
exert some indirect influence via the system’s behavioral
feedback loops, e.g., by increasing the stopping probability.
Such effects have also been observed in swarms of robots
that perform similar behavioral programs [19]. Analogous to
our experiments, some immobile robots are placed at a local
optimum. These immobile robots simply increase the stopping
probability there, what induces a similar change in the
macroscopic swarm behavior without the need of emitting
any additional cues. This indicates that no direct influence
from the caged bees is necessary, just their plain local
presence was sufficient to emphasize local behavioral
feedback loops to draw the group to the local temperature
optimum. Although the robot swarm example shows that
communication via direct signal exchange is not necessary to
achieve such effects, the bees could still exchange signals, e.g., to
achieve a faster or more stable effect. Also, more indirect
density-dependent amplifiers are possible. The temperature-
dependent waiting time could be additionally modulated by
cluster size, as it was shown for the aggregation behavior of
cockroaches [30]. A bee could wait increasingly longer the more
bees it is surrounded by, what would further stabilize
aggregations as soon as a certain number of bees are aggregated.

The results of our experiments suggest that the ability to solve
the given sets of problems cannot be explained by simple
individual behavioral programs such as a simple gradient
ascent, probabilistic choosing, or a specific temperature
threshold. Thus, solving the problem on an individual level
would require a sophisticated behavior, assuming several
sophisticated (cognitive) abilities: good sensor discrimination,
memory, self-localization in the environment (map making), and
the ability to choose individually from multiple options.

Rejecting complex individual behaviors and looking into
simple collective behaviors are the core motivation of the
model that we have built and have, based on empirical
validation experiments, refined here in several steps (see
Figure 10). Our simulations show that a simple model of
interactions amongst the bees is sufficient to capture the
observed collective macroscopic behavior through a few simple
assumptions about the mechanisms operating on the microscopic
system level. Under the assumption of social interaction, purely
random motion and modulating the resting behavior after a bee-
to-bee contact suffice to explain all the observed collective
behavioral patterns in all tested environments, which are a
significant step in the understanding of a natural complex
adaptive system, such as a honeybee colony. With only one
free parameter, which we call the “social factor” (Xbee), both
modeling approaches, the mean-field approach of the model
solved with the forward Euler method and the individual-
based Monte Carlo simulation, were capable of qualitatively
and for the most part also quantitatively predicting the
emerging flexible group-level behavior of the bees in a
complex dynamic environment. The free parameter was
exclusively fitted with data from static environments, and both
modeling approaches used the same parameter value, what shows
an interesting generality of our model. The only addition that was
necessary to model the dynamic environmental setting was not in
the model of the bees but in the model of the environment: It was
required to develop an additional temperature decay function.
While the individual-based Monte Carlo simulation better
captured the variance in the empirical data, the model solved
with the forward Euler method more accurately predicted the
overall macroscopic behavior when compared to the
empirical data.

Quantitative differences between the results from empirical
and simulation experiments, especially in the variance can be
attributed to the following factors: While the empirical data show
some fluctuations in the set temperatures in our setup (±1°C, as
shown in [9], Figure 2), we used idealized temperature gradient
fields in the model. With no noise acting on the waiting time, all
bees joining a zone in the same time step will therefore have the
exact same waiting time, making the idealized system more
reactive. In experiment 5, the differences can additionally be
attributed to the different group sizes used in the experiments and
the model. As the free parameter, Xbee integrates several
microscopic individual parameters that have an influence on
density-dependent processes in the system (e.g., stopping
probability after contact with another bee), changes in the
initial setting of the model runs, like the group size, can lead
to quantitatively different outcomes. Another important
difference between the empirical system and the difference
equation model is the fact that in the model, the bees are
considered to be volumeless points in space. Thus, in the
model, an infinite number of bees can squeeze themselves into
an infinitely small amount of space, while in reality, target spots
can get saturated. In addition, in reality, clusters can form
everywhere in the arena and block the path of bees towards
better places. Furthermore, physiological aspects, like depleting
energy reserves of individual bees that could lead to increased
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resting times, especially in dynamic environments, are not taken
into account in the model. It can therefore be the case that special,
more complex collective behaviors cannot be represented with
these simple models’ abstraction of the bee behavior and mean-
filed approximation. We show with our implementation of an
individual-based Monte Carlo simulation a better representation
of the variance and diversity concerning the macroscopic
collective behavior. Thus, a multi-agent model with complex
state machines [31, 32] or neural networks [33] to control the
agent’s behaviors could be the better approach for depicting more
complex situations. This would however require a full reversal of
the model-building strategy. Additionally, environmental factors
and beehive physics, such as acoustics and chemical and thermal
interactions with older bees, would then have to be implemented,
what may increase the degree of complexity by several orders of
magnitude.

Besides the fundamental basic research aspect, studying such
systems is of additional importance: Honeybees are under severe
ecological stress today, and this is endangering their wide-spread
role as ecosystem-service providers (pollination). Our model
enables us to predict the effects of a physical stimulus onto
the macroscopic collective decision-making such as the process
of preparing cells for the egg-laying of the queen, which is
performed by young bees at the same age as our experimental
bees. We found that the local abundance of such cell-preparing
bees is affected by the local temperature conditions. In the brood
nest, the local temperature conditions are actively regulated
(again collectively) by older bees, and this collective
thermoregulation is also influenced by the temperatures
outside of the hive. Ultimately, understanding how
temperature fields can affect the self-localization of young bees
is a crucial aspect of understanding brood production and colony
population growth in times of climate change. There is also an
application aspect to be considered here: Understanding the
complex adaptive system at the core of honeybee colonies can
help in designing novel smart beehives, in which technological
devices are capable of producing exactly these physical stimuli

and may thus exert a regulatory support for colonies in distress,
e.g., by motivating them to keep up brood production in adverse
environments or colony situations. We see this as a potential
cornerstone in developing modern “smart beehives” that go
beyond mere sensing by actively promoting the stability and
robustness of the colony [34, 35].
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