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In this paper, we propose a degree-basedmean-field SIS epidemic model with a saturated
function on complex networks. First, we adopt an edge-compartmental approach to lower
the dimensions of such a proposed system. Then we give the existence of the feasible
equilibria and completely study their stability by a geometric approach. We show that the
proposed system exhibits a backward bifurcation, whose stabilities are determined by
signs of the tangent slopes of the epidemic curve at the associated equilibria. Our results
suggest that increasing the management and the allocation of medical resources
effectively mitigate the lag effect of the treatment and then reduce the risk of an
outbreak. Moreover, we show that decreasing the average of a network sufficiently
eradicates the disease in a region or a country.
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1 INTRODUCTION

Mathematical modeling plays a crucial role in fighting against large scale infectious disease such as
Tuberculosis, HIV, COVID-19, etc., Compartment models have been used to anticipate the
progression of diseases and evaluate the effect of interventions on disease spread [1]. One of
such models separates the total population into two distinct categories with respect to disease status.
People who have not gotten the disease are labeled “susceptibles”; while those who have been infected
by a certain disease are called “infectives”. This kind of compartment model is denoted by “an SIS
epidemic model” [2–7], which has been extensively used to address the dynamics of those diseases,
describing an individual infected by a disease as having no immunity, thus becoming a
susceptible again.

Most of the existing models assume that all the individuals are well-mixed and they have
homogeneous mixing of surfaces, which implies that each individual has the same probability to
contact other individuals and ignores the degree of social heterogeneity induced by age, household,
spatial structures, and social spheres, etc. Generally, the social interactions of individuals generate a
certain pattern based on social preferences, which contributes to transmission heterogeneity. Indeed,
such factors may play a decisive role in the disease transmission and they also may help health
policymakers to take more effective control measures for curbing the disease spread [7, 8]. Epidemic
models on complex networks incorporate such contact heterogeneity and take account for how the
structures of the networks affect the disease prevalence. A popular degree-based SIS epidemic model
has been built [9] and it exhibits threshold dynamics [4, 5]. Since then, many factors including
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vector-borne [10, 11], infective media [12], awareness reaction
[13], and the gene diversity of pathogens [14], etc., have been
incorporated into the study of the co-evolution of networks and
epidemics.

In epidemiology, the basic reproduction number,R0, denotes
the average number of secondary cases produced by a typical
disease carrier during their infectious period [15–17]. Generally,
if R0 < 1, the infection will be eradicated as each infected
individual suffers a disease, on average, to less than one other
individual; if it is greater than one, then the outbreak will grow
exponentially. For a degree-based SIS epidemic model, the
expression of the basic reproduction number is given by

R0 � β

c

〈k2〉
〈k〉 , 〈k

2〉 � ∑n
k�1

k2p(k), 〈k〉 � ∑n
k�1

kp(k),

with transmission rate β and treatment rate c, which serves a vital
role in mitigating a disease transmission. However, when people
face an emerging infectious disease, such as COVID-19, SARS,
H1N1 etc., it may lead to a sharp increase in the number of
patients and may cause serious runs of medical resources. A delay
phenomena occurs since some infected individuals can not be
instantly treated in hospitals. Such properties can be addressed by
a Hill function by

T(I) � cI
1 + αI

.

where α denotes a hysteretic effect due to medical limitations.
Apparently, T(I)→ 0 when I is small enough and it tends
towards to c/α when I is large enough. The constant c/α
represents the capacity for treatment. Some scholars proposed
a type of step function [18] and a Verhulst-type function [19],
which have similar properties to T(I).

In view of such epidemiological models incorporating a
saturated treatment function, it is not hard to find that most
of them enable such models, essentially changing their dynamics.
Once a saturated function has been introduced, there always
exists a backward bifurcation, which implies that even if some
certain control measures make R0 < 1, it does not guarantee the
eradication of a disease in a region or a county. The presence of a
backward bifurcation indicates that there exists a bistable
phenomena, i.e, a stable endemic equilibria and a stable
disease-free equilibrium coexist when R0 < 1. The epidemic
curve converging to zero or a positive constant is definitely
determined by initial sizes of an infection. Some other
epidemiological mechanisms, including partial immunity by
vaccination [20], death caused by the disease [21], and
susceptible heterogeneity [22] etc., have been identified to
produce a backward bifurcation. However, the existing results
are usually shown in homogeneous models. Up to date, there are
few results to study backward bifurcation phenomena in
epidemic models on complex networks from theoretical view
of points. Recently, Li and Yousef proposed two degree-based SIR
and SIS models with a saturated function to study a backward
bifurcation phenomena. They showed a sufficient condition for
the occurrence of a backward bifurcation [23, 24]. Indeed, since
networkmodels have higher dimensions than those of well-mixed

models, studying the complex dynamics of such models is a
challenging issue from a theoretical view of points.

There are three main contributions in this paper. First, we
propose a degree-based SIS epidemic model with a saturated
function to study its long-term behaviors. Second, to overcome
the difficulty of high dimensions for a network, we adopt an edge-
based compartmental approach to lower the dimensions of an SIS
epidemic model. Such an approach changes a complete degree-
based model to a degree-edge-mixed model, and hence, it lowers
the dimension of such a model from 2n to n + 1. Third, we
proposed a geometric method to completely characterize the local
stability of each equilibrium.

The organization of this paper is as follows: In Section 2, a
degree-based SIS epidemic model on complex networks with a
saturated function is proposed. Furthermore, we adopt an edge-
compartmental approach to rewrite it as a degree-edge-mixed
model. Section 3 gives a geometric approach to study the local
stability of each equilibrium. In Section 4, we conducted some
numerical simulations to illustrate our theoretical results. We give
a brief discussion in the last section.

2 MODEL FORMULATION

In this paper, we focus on the complete stability of each
equilibrium by a novel approach. Let us assume that the
maximum contact number of an individual is n and then the
degree set is N � {1, 2,/, n}. The total subpopulation Nk(t) is
categorized into two statuses: susceptible and infective. Let Sk(t)
and Ik(t) represent the densities of susceptible nodes and infected
nodes at time t and degree k(k ∈ N), respectively. Inspired by the
modeling approach [9], we account for the limitation of medical
resources and propose a mean-field SIS epidemic model as
follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dSk(t)
dt

� −βkSk(t)Θ(t) + cIk(t)
1 + αΘ(t),

dIk(t)
dt

� βkSk(t)Θ(t) − cIk(t)
1 + αΘ(t),

(1)

where β denotes the transmission rate and c represents the
treatment rate; α stands for the lag effect of the treatment due
to the limitation of medical resources. From epidemiological view
of points, the term

Θ(t) � 1
〈k〉 ∑n

k�1
kp(k)Ik(t),

denotes the probability of a given node connecting to an infected
node at time t. Hence, it can be considered as a density of an [SI]
edge at time t. Following the steps [10], model (1) can be rewritten
as a degree-edge-mixed mode.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dSk(t)
dt

� −βkSk(t)Θ(t) + c[1 − Sk(t)]
1 + αΘ(t) ,

dΘ(t)
dt

� 1
〈k〉 ∑n

k�1
βk2p(k)Sk(t)Θ(t) − cΘ(t)

1 + αΘ(t),
(2)
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with initial condition

Sk(0) � Sk0 > 0,Θ(0) � Θ0 ≥ 0.

LEMMA 2.1. If Θ(0)> 0, system (2) has a positive solution, i.e,
for all k ∈ N and t ∈ R+, Sk(t)> 0 and Θ(t)> 0.

PROOF Observing the (n + 1) equation of system (2), we solve
it and obtain

Θ(t) � Θ(0)e∫t

0
z(τ)dτ

, (3)

where

z(t) � β

〈k〉 ∑n
k�1

k2p(k)Sk(t) − c

1 + αΘ(t).

Obviously, Θ(t)> 0 if Θ(0)> 0. Now, we will prove the positivity
of Sk(t) for k ∈ N and t ∈ R+. By the continuity of the solution, if
we claim that there exists a t0 > 0 such that Sk(t0) � 0 for some
k ∈ N. Then Sk(t)> 0 for t ∈[0, t0) and Sk′(t0)< 0.However, from
the first n equation of (2), it follows that

dSk(t)
dt t�t0�

c

1 + αΘ(t0)> 0.
∣∣∣∣∣∣∣∣

This leads to a contradiction with the claim. Therefore, Sk(t)> 0
for k ∈ N+ and t ∈ R+.

Remark 2.1. Lemma 2.1 ensures that the solution of system (2)
is strictly positive if Θ0 > 0, which supports that Ik(t)> 0 for all
t ∈ R+ and k ∈ N. The strong connectivity of a network guarantees
the positivity of the solution as long as Ik(0)≠ 0 or there exists at
least k0 ∈ N such that Ik0 > 0.Noting that Nk(t) � Sk(t) + Ik(t) �
1, we have from Lemma 2.1 that Sk(t)≤ 1, and Ik(t)< 1, for all
k ∈ N and t ∈ R+. Employing the expression of Θ, we assert that

Θ(t) � 1
〈k〉 ∑n

k�1
kp(k)Ik(t)< 1.

Therefore, for all t ∈ R+ and k ∈ N, the set

Γ � {ϕ ∈ (R+)n+1
∣∣∣∣0< Sk(t)≤ 1, 0≤Θ(t)< 1} (4)

is positively invariant associate with system (2) and ϕ � (Sk0,Θ0).
In what follows, we focus on the long term behaviors of system (2)
taking the initial data from Γ.

3 STABILITY OF EQUILIBRIA

In this section, we will consider the local stability of system (2) by
a novel-geometric approach, which resolves such a matter once
and for all. First, we try to give the basic reproduction numberR0

in an explicit form by the approach in [25]. Obviously, system (2)
always has a disease-free equilibrium E0 � (1, 0). Linearising the
n + 1 equation in system (2) yields to

dΘ(t)
dt

� β〈k2〉
〈k〉 Θ(t) − cΘ(t), (5)

Solving Eq. 5 by a constant variation method, one drives a renew
equation

Θ(t) � Θ0e
−ct + β〈k2〉

〈k〉 ∫t

0
e−c τΘ(t − τ)dτ. (6)

So that the basic reproduction number is calculated in form of

R0 � 〈k2〉
〈k〉

β

c
. (7)

The epidemiological meaning of R0 is the average number of
secondary infected edges produced by a typical [SI] edge during
its infectious period. Now, let us account for the local stability of
disease-free equilibrium E0.

THEOREM 3.1. IfR0 < 1, then the disease-free equilibrium E0 is
locally asymptotically stable for any ϕ ∈ Γ.

PROOF Linearizing system (2) around the disease-free
equilibrium E0 results in

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dsk(t)
dt

� −csk(t) − βkS0kθ,

dθ(t)
dt

� (β〈k2〉〈k〉 − c)θ. (8)

Let us assume that system (8) has the solutionwith exponential forms, i.e,
sk(t) � sk0eλt and θ(t) � θ0eλt . Plugging them into (8), we have that

⎧⎪⎪⎨⎪⎪⎩
λsk0 � −csk0 − βkθ0,

λθ0 � (β〈k2〉〈k〉 − c)θ0, (9)

If θ0 ≠ 0, we cancel θ0 on both sides of system (8) to derive that
λ � c(R0 − 1). Otherwise, θ0 � 0. From the first equation of (8),
it follows that λ � −c< 0. From what has been discussed, we
conclude that if R0 < 1, then the disease-free equilibrium E0 is
locally stable for any ϕ ∈ Γ.

THEOREM 3.2. If R̂0 � β(1+α)〈k2〉
c〈k〉 ≤ 1, the disease-free

equilibrium E0 is globally asymptotically stable if ϕ ∈ Γ.
PROOF Let us candidate a Lyapunov function by

V(t) � Θ(t).
Differentiating V along the solution of system (2) leads to

dV(t)
dt (2) � dΘ(t)

dt
� 1
〈k〉∑

k�1

n

βk2p(k)Sk(t)Θ(t) − cΘ(t)
1 + αΘ(t)

∣∣∣∣∣∣∣∣∣
≤(β〈k2〉〈k〉 − c

1 + αΘ)Θ(t)
� (β〈k2〉〈k〉 − c

1 + α
− cα(1 − Θ(t))
(1 + α)(1 + αΘ(t)))Θ(t)

<(β〈k2〉〈k〉 − c

1 + α
)Θ(t) � c

1 + α
(R̂0 − 1)Θ(t),

here we have used the fact that Θ(t)< 1 and Sk(t)≤ 1 for all
t ∈ R+. Hence, if R̂0 < 1, then _V(t)< 0. While if R̂0 � 1, then

dV(t)
dt (2) ≤ − cα(1 − Θ(t))

(1 + α)(1 + αΘ(t))Θ(t)≤ 0.
∣∣∣∣∣∣∣∣

The equality holds if and only if Θ(t) � 0. Hence, the largest
invariant set M � {ϕ ∈ Γ

∣∣∣∣ _V(t) � 0} only contains a singleton
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point E0. Consequently, the Lyapunov-Kasovskii-LaSalle theorem
ensures that E0 is globally asymptotically stable if R̂0 < 1.Now, we
are in a position to study the existence of the endemic steady state,
whose components of that feasible equilibrium satisfy

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 � −βkS*kΘ* + c(1 − S*k)

1 + αΘ*
,

0 � 1
〈k〉 ∑n

k�1
βk2p(k)S*kΘ* − cΘ*

1 + αΘ*
.

(10)

From the first equation of (10), we get

S*k �
c

1+αΘ*
βkΘ* + c

1+αΘ*
, k ∈ N. (11)

Substituting Eq. 11 into the second equation of (10) and
canceling cΘ*

1+αΘ*, we have that

F(Θ*) :� 1 − β

〈k〉 ∑n
k�1

k2p(k) 1
βkΘ* + c

1+αΘ*
. (12)

Apparently, if F(Θ) � 0 has a solutionΘ> 0, then system (10) has
an endemic equilibrium. Note that F(Θ) has the following
properties:

F(0) � 1 −R0, F(1) � 1 − β

〈k〉∑
k�1

n

k2p(k) 1
βk + c

1+α
> 0. (13)

Consequently, we conclude the following theorem on the
existence of system (2).

THEOREM 3.3 If R0 > 1, then F(Θ) has at least one positive
solution Θ*. In turn, system (2) has at least one positive endemic
equilibrium E*.

PROOF If R0 > 1, then F(0)< 0 and F(1)> 0. The Immediate
Value Theorem ensures that F(Θ*) � 0 has at least one positive
point in (0, 1).

From Theorem 3.3, we assert that system (2) has the existence
of the endemic equilibrium, but it does not guarantee the
uniqueness of the positive solution when R0 > 1. However, if α
is too small or large enough, it is easy to find that the function F is
a decreasing function associated with Θ. Then we can claim the
uniqueness of the endemic equilibriumwhereasR0 > 1.However,
forR0 < 1, we do not catch the existence of such equilibria due to
the complex structure of F. To overcome that difficulty, we select
a sensitive analysis for model parameters to investigate the
existence of a backward bifurcation of that model for R0 < 1.

Now, we are concerned with the endemic curve which
bifurcates backwards at (R0,Θ*) � (1, 0). If a backward
bifurcation takes place, there always exist some additional
conditions except R0 < 1. To assess such a phenomena, we
express β � R0c

〈k〉
〈k2〉 from R0. Substituting this expression into

Eq. 12, one arrives at

F(Θ*) � 1 −R0〈k2〉∑
k�1

n

k2p(k) 1

R0
〈k〉
〈k2〉 kΘ* + 1

1+αΘ*

� 0. (14)

Calculating the derivative of Eq. 14 with respect to R0 by the
Implicit Function Theorem, we obtain

zΘ*

zR0
� ∑n

k�1 k
2p(k)τ(k,R0,Θ*)[1 −R0τ(k,R0,Θ*)Q(k,R0,Θ*)]
R0 ∑n

k�1 k2p(k)M(k,R0,Θ*)τ2(k,R0,Θ*) ,

(15)
where

τ(k,R0,Θ) � 1

R0
〈k〉
〈k2〉 kΘ + 1

1 + αΘ

,

M(k,R0,Θ) � kR0
〈k〉
〈k2〉 −

α

(1 + αΘ)2,

Q(k,R0,Θ) � k
〈k〉
〈k2〉Θ.

After a simple computation, we have that

zΘ*

zR0
(R0 ,Θ)�(1,0) �

〈k2〉2

〈k〉〈k3〉 − α〈k2〉2
.

∣∣∣∣∣∣∣∣∣ (16)

LEMMA 3.4. Suppose R0 < 1. A backward bifurcation occurs if
the following inequality holds:

α> 〈k〉〈k
3〉

〈k2〉2
. (17)

Proof This is a direct result from Section 2.3 [26].
Next, let us move our attention on to the local stability of
equilibria if they exist, which is a challenge issue for a degree-
based epidemic model due to the complex structure. We will
propose a geometric approach to deal with such
an issue.Linearising system (2) around E* and taking the
exponential perturbation solution similar to Theorem 3.1, we
obtain

(λ+βkΘ* + c

1+αΘ*)sk0 +⎛⎝βkSpk +
αc(1−S*k)(1+αΘ*)2⎞⎠θ0 � 0, (18)

− 1
〈k〉∑n

k�1
βk2p(k)Θ*sk0 +⎛⎝λ+ c

(1+αΘ*)2 −
1
〈k〉∑βk2p(k)S*k⎞⎠θ0 � 0

(19)

If λ≠ − (βkΘ* + c
1+αΘ*), solving Eq. 18 yields to

sk0 � −
(βkS*k + αc(1−S*k)

(1+αΘ*)2)θ0
λ + βkΘ* + c

1+αΘ*

. (20)

Replacing sk0 in Eq. 19 by Eq. 20 and canceling θ0, one
admits

H(λ) �: βΘ
*

〈k〉∑
k�1

n

k2p(k)
βkS*k + αc(1−S*k)

(1+αΘ*)2
λ+βkΘ* + c

1+αΘ*

+λ+ c

(1+αΘ*)2 −
β

〈k〉∑
k�1

n

k2p(k)S*k � 0.

(21)

Recall that

β

〈k〉 ∑n
k�1

k2p(k)S*k �
c

1 + αΘ*
,

and hence,
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H(0) � β

〈k〉∑
k�1

n

k2p(k)
βkS*kΘ* + cα(1 − S*k)Θ*

(1 + αΘ*)2
βkΘ* + c

1 + αΘ*

− c

1 + αΘ*

αΘ*

1 + αΘ*

� c

1 + αΘ*

β

〈k〉∑
k�1

n

k2p(k)
1 − S*k +

α(1 − Sk)Θ*

1 + αΘ*
− αΘ*

1 + αΘ*

βkΘ* + c

1 + αΘ*

� c

1 + αΘ*

β

〈k〉∑
k�1

n

k2p(k)
1 − S*k −

αSkΘ*

1 + αΘ*

βkΘ* + c

1 + αΘ*

.

(22)

Alternatively, taking the derivative of F with respect to Θ*

leads to

F′(Θ*) � − β

〈k〉∑
k�1

n

k2p(k)
−βkSkΘ* + cαSkΘ*

(1 + αΘ*)2
(βkΘ* + c

1+αΘ*)2SkΘ*

� c

1 + αΘ*

β

〈k〉∑
k�1

n

k2p(k)
1 − Sk − αSkΘ*

1 + αΘ*

(βkΘ* + c

1+αΘ*)2S*kΘ*

� β

Θ*〈k〉∑
k�1

n

k2p(k)
1 − S*k −

αSkΘ*

1 + αΘ*

βkΘ* + c

1 + αΘ*

.

(23)

Plugging Eq. 23 into Eq. 22, we have that

H(0) � cΘ
1 + αΘ F′(Θ). (24)

If λ � −(βkΘ* + c
1+αΘ*), then θ0 � 0. From Eq. 19, it follows the

positivity of β, k, p(k), and 〈k〉 that sk0 � 0. This case is
impossible since (sk0, θ0) is an eigenvector of the eigenvalue

λ � −(βkΘ* + c
1+αΘ*). From what has been discussed, we give

some local stability of endemic equilibria.
THEOREM 3.5. Let E* � (S*k ,Θ*) be any feasible endemic

equilibrium. The following statements are valid.

(1) If F′(Θ*)> 0, then E* is locally asymptotically stable;
(2) If F′(Θ*)< 0, then E* is unstable.

PROOF To address the stability of case (1), we rewriteH(λ) defined
by Eq. 21 in the form of

Ĥ (λ) � Θ*

〈k〉∑
k�1

n

βk2p(k)⎡⎣βkS*k + αc(1 − S*k)(1 + αΘ*)2⎤⎦∏i≠ k
n [λ + L(i,Θ*)]

+(λ − c

1 + αΘ*

αΘ*

1 + αΘ*)∏
k�1

n [λ + L(k,Θ*)] � 0, (25)

where L(k,Θ) � βkΘ + c
1+αΘ, k ∈ N. Suppose (6) has a solution λ*

with Reλ≥ 0. Noting that

∣∣∣∣∣∣Ĥ(λ)
∣∣∣∣∣∣≥ Ĥ(Reλ)≥ Ĥ(0) � ∏

k�1

n

L(k,Θ*)H(0)

� ∏
k�1

n

L(k,Θ*) cΘ
1 + αΘ F’(Θ). (26)

Hence, if F′(Θ*)> 0. Then ∣∣∣∣Ĥ(λ)∣∣∣∣> 0 contradicts with Eq. 6. This
implies that Eq. 6 has no solution with nonnegative real parts.
Consequently, the endemic equilibrium E* is locally stable if
F′(Θ*)> 0.On the contrary, if F′(Θ*)< 0, it follows from Eq. 21
that

lim
λ→+∞

H(λ) � 0, H(0) � cΘ
1 + αΘ F ′(Θ)< 0 (27)

This, together with the Intermediate Value Theorem, ensures that
Eq. 21 has at least one positive real solution. Hence, the endemic
equilibrium E* is unstable. This completes the proof.

If a backward bifurcation takes place, Lemma 3.4 and
Theorem 3.5 give the stability of two positive endemic equilibria.

THEOREM 3.6. If R0 < 1, and α> 〈k〉〈k3〉
〈k2〉2 , system (2) has two

endemic equilibria. The one with a smaller quantitative of
infected nodes is unstable; while the other, with a higher value
of infected nodes, is locally asymptotically stable.

THEOREM 3.7. Suppose R0 > 1. If α≪ 1, or α is large enough,
then the endemic equilibrium E* is globally asymptotically
stable if ϕ ∈ Γ\{E0}.

PROOF Let us pick up a candidate Lyapunov function by

V[S,Θ](t) � VS(t) + VΘ(t), t ∈ R+,

where

VS(t) � 1
〈k〉∑

k�1

n

kp(k)S*kg[Sk(t)S*k
], (28)

VΘ(t) � Θ*g[Θ(t)Θ* ], (29)

where g(x) � x − 1 − lnx with x > 0.
Taking the derivative of VS along the trajectory of Eq. 2, we

obtain

dVS(t)
dt (2) � 1

〈k〉∑
k�1

n

kp(k)[1 − S*k
Sk(t)] dSk(t)

dt

∣∣∣∣∣∣∣∣∣
� β

〈k〉∑
k�1

n

kp(k)S*kΘ*⎡⎣1 − Sk(t)
1 − S*k

1 + αΘ*

1 + αΘ(t) −
Sk(t)
S*k

Θ(t)
Θ*

− 1 − Sk(t)
1 − S*k

1 + αΘ*

1 + αΘ
S*k

Sk(t) +
Θ(t)
Θ* ] (30)

On the contrary, differentiating VΘ along the solution of Eq. 2
leads to

dVΘ(t)
dt (2) � (1 − Θ*

Θ(t)) dΘ(t)
dt

∣∣∣∣∣∣∣∣
� β

〈k〉∑
k�1

n

kp(k)S*kΘ*[Sk(t)
S*k

Θ(t)
Θ* − Θ(t)

Θ*

1 + αΘ*

1 + αΘ(t) −
Sk(t)
S*k

+ 1 + αΘ*

1 + αΘ(t)].
(31)

Adding Eqs 30, 31 together, one derives that
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dV[S,Θ](t)
dt (2) � β

〈k〉∑
k�1

n

kp(k)S*kΘ* 1 + αΘ*

1 + αΘ(t)[ 1 − Sk(t)
1 − S*k

− 1 − Sk(t)
1 − S*k

S*k
Sk(t) −

Θ(t)
Θ*

∣∣∣∣∣∣∣∣∣
+1 + Sk(t)

S*k

1 + αΘ(t)
1 + αΘ* + Θ(t)

Θ*

1 + αΘ(t)
1 + αΘ* ]

� β

〈k〉∑
k�1

n

kp(k)S*kΘ* 1 + αΘ*

1 + αΘ(t)[g(1 − Sk(t)
1 − S*k

) + g( 1 − S*k
1 − Sk(t))]

− β

〈k〉∑
k�1

n

kp(k)S*kΘ* 1 + αΘ*

1 + αΘ(t)[ g( 1 − S*k
1 − Sk(t)) + g(1 − Sk(t)

1 − S*k

S*k
Sk(t)) + g(1 + αΘ(t)

1 + αΘ*

Sk(t)
S*k

)]
+ β

〈k〉∑
k�1

n

kp(k)S*kΘ* 1 + αΘ*

1 + αΘ(t) × [g(Θ(t)Θ*

1 + αΘ(t)
1 + αΘ* ) − g(Θ(t)Θ* )].

(32)

If α≪ 1 or it is large enough, then the term

1 + αΘ(t)
1 + αΘ* → 1,

here we have used the fact that Θ* and Θ are both smaller than
one. Therefore, the first and the last terms move towards to zero.
Apparently, dV[S,Θ](t)dt ≤ 0. The equality holds if and only if

Sk(t)
S*

� 1 + αΘ(t)
1 + αΘ* � 1.

Consequently, the largest invariant set of M �
{ϕ ∈ Γ

∣∣∣∣ _V[S,Θ](t) � 0} contains only a singleton point E*.
From LaSalle’s invariance principle, it follows that the endemic
equilibrium E* is globally asymptotically stable.

4 NUMERICAL SIMULATION

In this section, we will proceed with some numerical experiments
to validate our theoretical results. We account for an epidemic
spreading on a scale-free network. Hence, we assume that the
degree distribution of that network is p(k) � ξk−2.5 and

maximum degree n � 100. Then ξ � 1/ ∑100
k�1

p(k) � 0.7458.

Hence, the average degree, the second movement and the
third movement of this network are 〈k〉 � 1.7995,
〈k2〉 � 13.8643, and 〈k3〉 � 500.7832.

First, we fix α � 0.01. If we take β � 0.032, we calculate R0 �
0.9862< 1 and R̂0 � 0.9960< 1. Theorem 3.2 ensures that the
disease-free equilibrium E0 is globally asymptotically stable. Let

us pick up twenty different initial conditions for system (2). We
find that the densities of infected edges associated with those
initial data converge to zero (see Figure 1A). Enlarging β � 0.33,
we estimate R0 � 1.071> 1. Since α � 0.01≪ 1, Theorem 3.7
ensures that the endemic equilibrium E* is globally
asymptotically stable. Figure 1B displays that all the
trajectories of system (2) move towards to a positive constant.

Second, we fix β � 0.033 and henceR0 � 1.071.We verify α and
consider the existence and the uniqueness of the endemic equilibria. If
we choose α � 100 and it is large enough, Theorem 3.7 shows that the
endemic equilibrium E* is globally asymptotically stable. Figure 2A
depicts that the densities of infected edges from differential initial data
converge to an endemic equilibrium Θ* � 0.9546. If we pick up α �
5, 10, 15, 20, 25, which are mediated values, all the trajectories of
system (2) converge to their corresponding positive equilibria. From
Figure 2B we find that increasing values of α gradually advances the
arrival times and increases the sizes of the associated endemic
equilibria. This indicates that enriching the adequate medical
resources effectively reduce the risk of an infection.

Third, if we fix the structure of the network, then a key value
α0 � 〈k〉〈k3〉

〈k2〉2 � 4.6883 determines whether or not a backward
bifurcation happens when R0 < 1. If we select α � 6> α0 and
β � 0.032, then R0 < 1. From Lemma 3.4, system exhibits a
backward bifurcation at (R0,Θ*) � (1, 0). From Figure 3, it
follows that the trajectories of system (2) partially converge to
a positive level or partially move towards to zero. However, when
we take α � 4< α0, however, R̂0 � 4.9308> 1 does not satisfy the
conditions of Theorem 3.2. Figure 3B shows that the disease-free
equilibrium E0 is still asymptotically stable.

Finally, we want further insight into the existence of endemic
equilibria when R0 < 1. We take the parameters similar to case
one except α. In this case, R0 � 0.9862< 1. As we know, the
endemic Θ* is a function with respect to α and R0. If we change
values of α from 4.8 to 6.8 with step 0.5. Figure 4 suggests that
there always exists a backward bifurcation; In addition, the lag
effect α controls the depth of the backward bifurcation; the larger
α, the bigger the depth of the bifurcation. α is bigger in case of
strength of lag effects of medical resources. Figure 4B displays the

FIGURE 1 | The evolution of the densities of infected edges with different initial values Sk0 � 1 − 0.02 × i,Θ � 0.02 × i, i � 1, 2,/, 20. (A) With β � 0.032. (B)
With β � 0.033.
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distributions of the positive equilibria in a given region (R0, α).
In the blue region, system (2) has only unique disease-free
equilibrium E0, which is globally asymptotically stable; In the
grey region, a backward bifurcation occurs, i.e, system (2) exhibits
a bistable phenomena, one endemic equilibria with a large value is
stable and the other one with a small value is unstable; Moreover,
the disease-free equilibrium E0 is locally stable. In the green
region, system (2) has a unique endemic equilibrium and it is
stable.

5 DISCUSSION

In this paper, we considered a mean-field degree-based SIS
epidemic model with a saturated treatment function. First, we

adopted an edge-compartmental approach to simplify a pure
degree-based model to a degree-edge-mixed model. Second, we
proposed a novel method-a geometric approach to completely
study the stability of each feasible equilibrium. The proposed
model exhibits a backward bifurcation, i.e, R0 < 1 does not
sufficiently guarantee the eradication of an outbreak.

Compared with the results in [5, 25], a degree-based SIS
epidemic model on complex networks shows a threshold
dynamic, in the sense that, if R0 < 1, then the disease-free
equilibrium E0 is globally asymptotically stable; Otherwise,
the unique endemic equilibrium E* is globally asymptotically
stable. However, in our system, a saturated treatment
function radically altered such a threshold property.
Lemma 3.4 suggests that the hysteretic effect leads to the
occurrence of backward bifurcation.

FIGURE 2 | The evolution of the densities of infected edges with different initial values Sk0 � 1 − 0.02 × i,Θ0 � 0.02 × i, i � 1, 2,/,20. (A) With α � 100. (B)
With α � 5, 10,15, 20, 25.

FIGURE 3 | The evolution of the densities of infected edges with different initial values Sk0 � 1 − 0.02 × i,Θ0 � 0.02 × i, i � 1, 2,/, 20. (A)with α � 6. (B)with α � 4.
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The basic reproduction number R0 has no relationship with
the lag effect of α. However, it is a vital value which determines
whether or not a backward bifurcation occurs. In view of most
existing results about that phenomena, they usually showed the
existence and did not point out the stability of each equilibrium
except some simple models with lower dimensions [2, 3, 18, 19].
In this paper, we proposed a geometric approach to completely
solve such an issue. Our results suggest that whereas R0 < 1 and
α> 〈k〉〈k3〉

〈k2〉2 , one positive equilibrium with a larger value is stable;
the other with small data is unstable. Their stabilities definitely
depend on those signs of tangent slopes of the epidemic curve
F(Θ). To establish it, we build a bridge between the local stability
and the derivative of the epidemic curve, which is a universal
result for any system even if it has a more complex structure [23].

Generally, the contact magnitude of an outbreak is characterized
by the average degree 〈k〉 and its heterogeneity is measured by the
two movement degrees 〈k2〉 of a network. To assess how the
heterogeneity of a network affects the transmission of an
infection, we fixed all the parameters as in part one of Section 4.
Then we take the degree distribution function p(k) � k−r with r �
−2.49,−2.5,−2.505, respectively. Then 〈k〉 � 1.840, 1.7995 and

1.7924. As 〈k〉 increases, the system undergoes three different
phenomena: the extinction of an outbreak, the occurrence of a
backward bifurcation, and the persistence of the disease (see
Figure 5). This expounds that the system (2) undergoes a phase
transition with the change of the network structure.

From an epidemiological viewpoint, the occurrence of a
backward bifurcation implies that those control measures
enabling R0 < 1 do not efficiently ensures the eradication of
an infection. In this case, the evolution of the disease heavily
depends on the initial numbers of infected individuals. If it is
small, the disease will die out; Otherwise, it will maintain a
positive level and it cannot be radically eradicated from a
region or a county. Hence, enhancing the management and
allocations of medical resources plays an important role in
slowing down a disease prevalence. Those control measures
are in favor of effectively reducing the lag effect due to the
limitations of medical resources as long as people face an
emerging disease.

However, there are some limitations of this paper. First, we
do not incorporate the population demography into the
modeling process because introducing birth and death nodes

FIGURE 4 |Backward bifurcation in system (2). (A) The figure of functionΘ associated withR0 with different values of α. (B) The diagram of bifurcation phase on the
(R0 , α)− plane.

FIGURE 5 | Time series of the densities of Θ with different degree distributions. (A) With 〈k〉 � 1.840. (B) With 〈k〉 � 1.7995 (C) With 〈k〉 � 1.7924.
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essentially changes the topology of a network [27, 28]. This
makes the model become too complex and then it has been
become an unresolved issue to analyze its dynamical behaviors
from mathematical view of points. Second, we do not couple
individual contact data with some reported data for a realistic
disease to study its evolutionary behaviors [29]. Third, we do not
consider the convolution of information spread and epidemic
transmission on multi-layered networks [30]. To carry out such
a project, it may provide some valuable control suggestions for
policymakers and public health government. We leave these for
our future works.
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